More stories

  • in

    Designing across cultural and geographic divides

    In addition to the typical rigors of MIT classes, Terrascope Subject 2.00C/1.016/EC.746 (Design for Complex Environmental Issues) poses some unusual hurdles for students to navigate: collaborating across time zones, bridging different cultural and institutional experiences, and trying to do hands-on work over Zoom. That’s because the class includes students from not only MIT, but also Diné College in Tsaile, Arizona, within the Navajo Nation, and the University of Puerto Rico-Ponce (UPRP).Despite being thousands of miles apart, students work in teams to tackle a real-world problem for a client, based on the Terrascope theme for the year. “Understanding how to collaborate over long distances with people who are not like themselves will be an important item in many of these students’ toolbelts going forward, in some cases just as much as — or more than — any particular design technique,” says Ari Epstein, Terrascope associate director and senior lecturer. Over the past several years, Epstein has taught the class along with Joel Grimm of MIT Beaver Works and Libby Hsu of MIT D-Lab, as well instructors from the two collaborating institutions. Undergraduate teaching fellows from all three schools are also key members of the instructional staff.Since the partnership began three years ago (initially with Diné College, with the addition of UPRP two years ago), the class themes have included food security and sustainable agriculture in Navajo Nation; access to reliable electrical power in Puerto Rico; and this year, increasing museum visitors’ engagement with artworks depicting mining and landscape alteration in Nevada.Each team — which includes students from all three colleges — meets with clients online early in the term to understand their needs; then, through an iterative process, teams work on designing prototypes. During MIT’s spring break, teams travel to meet with the clients onsite to get feedback and continue to refine their prototypes. At the end of the term, students present their final products to the clients, an expert panel, and their communities at a hybrid showcase event held simultaneously on all three campuses.Free-range design engineering“I really loved the class,” says Graciela Leon, a second-year mechanical engineering major who took the subject in 2024. “It was not at all what I was expecting,” she adds. While the learning objectives on the syllabus are fairly traditional — using an iterative engineering design process, developing teamwork skills, and deepening communication skills, to name a few — the approach is not. “Terrascope is just kind of like throwing you into a real-world problem … it feels a lot more like you are being trusted with this actual challenge,” Leon says.The 2024 challenge was to find a way to help the clients, Puerto Rican senior citizens, turn on gasoline-powered generators when the electrical power grid fails; some of them struggle with the pull cords necessary to start the generators. The students were tasked with designing solutions to make starting the generators easier.Terrascope instructors teach fundamental skills such as iterative design spirals and scrum workflow frameworks, but they also give students ample freedom to follow their ideas. Leon admits she was a bit frustrated at first, because she wasn’t sure what she was supposed to be doing. “I wanted to be building things and thought, ‘Wow, I have to do all these other things, I have to write some kind of client profile and understand my client’s needs.’ I was just like, ‘Hand me a drill! I want to design something!’”When he took the class last year, Uziel Rodriguez-Andujar was also thrown off initially by the independence teams had. Now a second-year UPRP student in mechanical engineering, he’s accustomed to lecture-based classes. “What I found so interesting is the way [they] teach the class, which is, ‘You make your own project, and we need you to find a solution to this. How it will look, and when you have it — that’s up to you,’” he says.Clearing hurdlesTeaching the course on three different campuses introduces a number of challenges for students and instructors to overcome — among them, operating in three different time zones, overcoming language barriers, navigating different cultural and institutional norms, communicating effectively, and designing and building prototypes over Zoom.“The culture span is huge,” explains Epstein. “There are different ways of speaking, different ways of listening, and each organization has different resources.”First-year MIT student EJ Rodriguez found that one of the biggest obstacles was trying to convey ideas to teammates clearly. He took the class this year, when the theme revolved around the environmental impacts of lithium mining. The client, the Nevada Museum of Art, wanted to find ways to engage visitors with its artwork collection related to mining-related landscape changes.Rodriguez and his team designed a pendulum with a light affixed to it that illuminates a painting by a Native American artist. When the pendulum swings, it changes how the visitor experiences the artwork. The team built parts for the pendulum on different campuses, and they reached a point where they realized their pieces were incompatible. “We had different visions of what we wanted for the project, and different vocabulary we were using to describe our ideas. Sometimes there would be a misunderstanding … It required a lot of honesty from each campus to be like, ‘OK, I thought we were doing exactly this,’ and obviously in a really respectful way.”It’s not uncommon for students at Diné College and UPRP to experience an initial hurdle that their MIT peers do not. Epstein notes, “There’s a tendency for some folks outside MIT to see MIT students as these brilliant people that they don’t belong in the same room with.” But the other students soon realize not only that they can hold their own intellectually, but also that their backgrounds and experiences are incredibly valuable. “Their life experiences actually put them way ahead of many MIT students in some ways, when you think about design and fabrication, like repairing farm equipment or rebuilding transmissions,” he adds.That’s how Cauy Bia felt when he took the class in 2024. Currently a first-year graduate student in biology at Diné College, Bia questioned whether he’d be on par with the MIT students. “I’ve grown up on a farm, and we do a lot of building, a lot of calculations, a lot of hands-on stuff. But going into this, I was sweating it so hard [wondering], ‘Am I smart enough to work with these students?’ And then, at the end of the day, that was never an issue,” he says.The value of reflectionEvery two weeks, Terrascope students write personal reflections about their experiences in the class, which helps them appreciate their academic and personal development. “I really felt that I had undergone a process that made me grow as an engineer,” says Leon. “I understood the importance of people and engineering more, including teamwork, working with clients, and de-centering the project away from what I wanted to build and design.”When Bia began the semester, he says, he was more of a “make-or-break-type person” and tended to see things in black and white. “But working with all three campuses, it kind of opened up my thought process so I can assess more ideas, more voices and opinions. And I can get broader perspectives and get bigger ideas from that point,” he says. It was also a powerful experience culturally for him, particularly “drawing parallels between Navajo history, Navajo culture, and seeing the similarities between that and Puerto Rican culture, seeing how close we are as two nations.”Rodriguez-Andujar gained an appreciation for the “constant struggle between simplicity and complexity” in engineering. “You have all these engineers trying to over-engineer everything,” he says. “And after you get your client feedback [halfway through the semester], it turns out, ‘Oh, that doesn’t work for me. I’m sorry — you have to scale it down like a hundred times and make it a lot simpler.’”For instructors, the students’ reflections are invaluable as they strive to make improvements every year. In many ways, you might say the class is an iterative design spiral, too. “The past three years have themselves been prototypes,” Epstein says, “and all of the instructional staff are looking forward to continuing these exciting partnerships.” More

  • in

    VAMO proposes an alternative to architectural permanence

    The International Architecture Exhibition of La Biennale di Venezia holds up a mirror to the industry — not only reflecting current priorities and preoccupations, but also projecting an agenda for what might be possible. Curated by Carlo Ratti, MIT professor of practice of urban technologies and planning, this year’s exhibition (“Intelligens. Natural. Artificial. Collective”) proposes a “Circular Economy Manifesto” with the goal to support the “development and production of projects that utilize natural, artificial, and collective intelligence to combat the climate crisis.” Designers and architects will quickly recognize the paradox of this year’s theme. Global architecture festivals have historically had a high carbon footprint, using vast amounts of energy, resources, and materials to build and transport temporary structures that are later discarded. This year’s unprecedented emphasis on waste elimination and carbon neutrality challenges participants to reframe apparent limitations into creative constraints. In this way, the Biennale acts as a microcosm of current planetary conditions — a staging ground to envision and practice adaptive strategies.VAMO (Vegetal, Animal, Mineral, Other)When Ratti approached John Ochsendorf, MIT professor and founding director of MIT Morningside Academy of Design (MAD), with the invitation to interpret the theme of circularity, the project became the premise for a convergence of ideas, tools, and know-how from multiple teams at MIT and the wider MIT community. The Digital Structures research group, directed by Professor Caitlin Mueller, applied expertise in designing efficient structures of tension and compression. The Circular Engineering for Architecture research group, led by MIT alumna Catherine De Wolf at ETH Zurich, explored how digital technologies and traditional woodworking techniques could make optimal use of reclaimed timber. Early-stage startups — including companies launched by the venture accelerator MITdesignX — contributed innovative materials harnessing natural byproducts from vegetal, animal, mineral, and other sources. The result is VAMO (Vegetal, Animal, Mineral, Other), an ultra-lightweight, biodegradable, and transportable canopy designed to circle around a brick column in the Corderie of the Venice Arsenale — a historic space originally used to manufacture ropes for the city’s naval fleet. “This year’s Biennale marks a new radicalism in approaches to architecture,” says Ochsendorf. “It’s no longer sufficient to propose an exciting idea or present a stylish installation. The conversation on material reuse must have relevance beyond the exhibition space, and we’re seeing a hunger among students and emerging practices to have a tangible impact. VAMO isn’t just a temporary shelter for new thinking. It’s a material and structural prototype that will evolve into multiple different forms after the Biennale.”Tension and compressionThe choice to build the support structure from reclaimed timber and hemp rope called for a highly efficient design to maximize the inherent potential of comparatively humble materials. Working purely in tension (the spliced cable net) or compression (the oblique timber rings), the structure appears to float — yet is capable of supporting substantial loads across large distances. The canopy weighs less than 200 kilograms and covers over 6 meters in diameter, highlighting the incredible lightness that equilibrium forms can achieve. VAMO simultaneously showcases a series of sustainable claddings and finishes made from surprising upcycled materials — from coconut husks, spent coffee grounds, and pineapple peel to wool, glass, and scraps of leather. The Digital Structures research group led the design of structural geometries conditioned by materiality and gravity. “We knew we wanted to make a very large canopy,” says Mueller. “We wanted it to have anticlastic curvature suggestive of naturalistic forms. We wanted it to tilt up to one side to welcome people walking from the central corridor into the space. However, these effects are almost impossible to achieve with today’s computational tools that are mostly focused on drawing rigid materials.”In response, the team applied two custom digital tools, Ariadne and Theseus, developed in-house to enable a process of inverse form-finding: a way of discovering forms that achieve the experiential qualities of an architectural project based on the mechanical properties of the materials. These tools allowed the team to model three-dimensional design concepts and automatically adjust geometries to ensure that all elements were held in pure tension or compression.“Using digital tools enhances our creativity by allowing us to choose between multiple different options and short-circuit a process that would have otherwise taken months,” says Mueller. “However, our process is also generative of conceptual thinking that extends beyond the tool — we’re constantly thinking about the natural and historic precedents that demonstrate the potential of these equilibrium structures.”Digital efficiency and human creativity Lightweight enough to be carried as standard luggage, the hemp rope structure was spliced by hand and transported from Massachusetts to Venice. Meanwhile, the heavier timber structure was constructed in Zurich, where it could be transported by train — thereby significantly reducing the project’s overall carbon footprint. The wooden rings were fabricated using salvaged beams and boards from two temporary buildings in Switzerland — the Huber and Music Pavilions — following a pedagogical approach that De Wolf has developed for the Digital Creativity for Circular Construction course at ETH Zurich. Each year, her students are tasked with disassembling a building due for demolition and using the materials to design a new structure. In the case of VAMO, the goal was to upcycle the wood while avoiding the use of chemicals, high-energy methods, or non-biodegradable components (such as metal screws or plastics). “Our process embraces all three types of intelligence celebrated by the exhibition,” says De Wolf. “The natural intelligence of the materials selected for the structure and cladding; the artificial intelligence of digital tools empowering us to upcycle, design, and fabricate with these natural materials; and the crucial collective intelligence that unlocks possibilities of newly developed reused materials, made possible by the contributions of many hands and minds.”For De Wolf, true creativity in digital design and construction requires a context-sensitive approach to identifying when and how such tools are best applied in relation to hands-on craftsmanship. Through a process of collective evaluation, it was decided that the 20-foot lower ring would be assembled with eight scarf joints using wedges and wooden pegs, thereby removing the need for metal screws. The scarf joints were crafted through five-axis CNC milling; the smaller, dual-jointed upper ring was shaped and assembled by hand by Nicolas Petit-Barreau, founder of the Swiss woodwork company Anku, who applied his expertise in designing and building yurts, domes, and furniture to the VAMO project. “While digital tools suited the repetitive joints of the lower ring, the upper ring’s two unique joints were more efficiently crafted by hand,” says Petit-Barreau. “When it comes to designing for circularity, we can learn a lot from time-honored building traditions. These methods were refined long before we had access to energy-intensive technologies — they also allow for the level of subtlety and responsiveness necessary when adapting to the irregularities of reused wood.”A material palette for circularityThe structural system of a building is often the most energy-intensive; an impact dramatically mitigated by the collaborative design and fabrication process developed by MIT Digital Structures and ETH Circular Engineering for Architecture. The structure also serves to showcase panels made of biodegradable and low-energy materials — many of which were advanced through ventures supported by MITdesignX, a program dedicated to design innovation and entrepreneurship at MAD. “In recent years, several MITdesignX teams have proposed ideas for new sustainable materials that might at first seem far-fetched,” says Gilad Rosenzweig, executive director of MITdesignX. “For instance, using spent coffee grounds to create a leather-like material (Cortado), or creating compostable acoustic panels from coconut husks and reclaimed wool (Kokus). This reflects a major cultural shift in the architecture profession toward rethinking the way we build, but it’s not enough just to have an inventive idea. To achieve impact — to convert invention into innovation — teams have to prove that their concept is cost-effective, viable as a business, and scalable.”Aligned with the ethos of MAD, MITdesignX assesses profit and productivity in terms of environmental and social sustainability. In addition to presenting the work of R&D teams involved in MITdesignX, VAMO also exhibits materials produced by collaborating teams at University of Pennsylvania’s Stuart Weitzman School of Design, Politecnico di Milano, and other partners, such as Manteco. The result is a composite structure that encapsulates multiple life spans within a diverse material palette of waste materials from vegetal, animal, and mineral forms. Panels of Ananasse, a material made from pineapple peels developed by Vérabuccia, preserve the fruit’s natural texture as a surface pattern, while rehub repurposes fragments of multicolored Murano glass into a flexible terrazzo-like material; COBI creates breathable shingles from coarse wool and beeswax, and DumoLab produces fuel-free 3D-printable wood panels. A purpose beyond permanence Adriana Giorgis, a designer and teaching fellow in architecture at MIT, played a crucial role in bringing the parts of the project together. Her research explores the diverse network of factors that influence whether a building stands the test of time, and her insights helped to shape the collective understanding of long-term design thinking.“As a point of connection between all the teams, helping to guide the design as well as serving as a project manager, I had the chance to see how my research applied at each level of the project,” Giorgis reflects. “Braiding these different strands of thinking and ultimately helping to install the canopy on site brought forth a stronger idea about what it really means for a structure to have longevity. VAMO isn’t limited to its current form — it’s a way of carrying forward a powerful idea into contemporary and future practice.”What’s next for VAMO? Neither the attempt at architectural permanence associated with built projects, nor the relegation to waste common to temporary installations. After the Biennale, VAMO will be disassembled, possibly reused for further exhibitions, and finally relocated to a natural reserve in Switzerland, where the parts will be researched as they biodegrade. In this way, the lifespan of the project is extended beyond its initial purpose for human habitation and architectural experimentation, revealing the gradual material transformations constantly taking place in our built environment.To quote Carlo Ratti’s Circular Economy Manifesto, the “lasting legacy” of VAMO is to “harness nature’s intelligence, where nothing is wasted.” Through a regenerative symbiosis of natural, artificial, and collective intelligence, could architectural thinking and practice expand to planetary proportions? More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    Minimizing the carbon footprint of bridges and other structures

    Awed as a young child by the majesty of the Golden Gate Bridge in San Francisco, civil engineer and MIT Morningside Academy for Design (MAD) Fellow Zane Schemmer has retained his fascination with bridges: what they look like, why they work, and how they’re designed and built.He weighed the choice between architecture and engineering when heading off to college, but, motivated by the why and how of structural engineering, selected the latter. Now he incorporates design as an iterative process in the writing of algorithms that perfectly balance the forces involved in discrete portions of a structure to create an overall design that optimizes function, minimizes carbon footprint, and still produces a manufacturable result.While this may sound like an obvious goal in structural design, it’s not. It’s new. It’s a more holistic way of looking at the design process that can optimize even down to the materials, angles, and number of elements in the nodes or joints that connect the larger components of a building, bridge, tower, etc.According to Schemmer, there hasn’t been much progress on optimizing structural design to minimize embodied carbon, and the work that exists often results in designs that are “too complex to be built in real life,” he says. The embodied carbon of a structure is the total carbon dioxide emissions of its life cycle: from the extraction or manufacture of its materials to their transport and use and through the demolition of the structure and disposal of the materials. Schemmer, who works with Josephine V. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering at MIT, is focusing on the portion of that cycle that runs through construction.In September, at the IASS 2024 symposium “Redefining the Art of Structural Design in Zurich,” Schemmer and Carstensen presented their work on Discrete Topology Optimization algorithms that are able to minimize the embodied carbon in a bridge or other structure by up to 20 percent. This comes through materials selection that considers not only a material’s appearance and its ability to get the job done, but also the ease of procurement, its proximity to the building site, and the carbon embodied in its manufacture and transport.“The real novelty of our algorithm is its ability to consider multiple materials in a highly constrained solution space to produce manufacturable designs with a user-specified force flow,” Schemmer says. “Real-life problems are complex and often have many constraints associated with them. In traditional formulations, it can be difficult to have a long list of complicated constraints. Our goal is to incorporate these constraints to make it easier to take our designs out of the computer and create them in real life.”Take, for instance, a steel tower, which could be a “super lightweight, efficient design solution,” Schemmer explains. Because steel is so strong, you don’t need as much of it compared to concrete or timber to build a big building. But steel is also very carbon-intensive to produce and transport. Shipping it across the country or especially from a different continent can sharply increase its embodied carbon price tag. Schemmer’s topology optimization will replace some of the steel with timber elements or decrease the amount of steel in other elements to create a hybrid structure that will function effectively and minimize the carbon footprint. “This is why using the same steel in two different parts of the world can lead to two different optimized designs,” he explains.Schemmer, who grew up in the mountains of Utah, earned a BS and MS in civil and environmental engineering from University of California at Berkeley, where his graduate work focused on seismic design. He describes that education as providing a “very traditional, super-strong engineering background that tackled some of the toughest engineering problems,” along with knowledge of structural engineering’s traditions and current methods.But at MIT, he says, a lot of the work he sees “looks at removing the constraints of current societal conventions of doing things, and asks how could we do things if it was in a more ideal form; what are we looking at then? Which I think is really cool,” he says. “But I think sometimes too, there’s a jump between the most-perfect version of something and where we are now, that there needs to be a bridge between those two. And I feel like my education helps me see that bridge.”The bridge he’s referring to is the topology optimization algorithms that make good designs better in terms of decreased global warming potential.“That’s where the optimization algorithm comes in,” Schemmer says. “In contrast to a standard structure designed in the past, the algorithm can take the same design space and come up with a much more efficient material usage that still meets all the structural requirements, be up to code, and have everything we want from a safety standpoint.”That’s also where the MAD Design Fellowship comes in. The program provides yearlong fellowships with full financial support to graduate students from all across the Institute who network with each other, with the MAD faculty, and with outside speakers who use design in new ways in a surprising variety of fields. This helps the fellows gain a better understanding of how to use iterative design in their own work.“Usually people think of their own work like, ‘Oh, I had this background. I’ve been looking at this one way for a very long time.’ And when you look at it from an outside perspective, I think it opens your mind to be like, ‘Oh my God. I never would have thought about doing this that way. Maybe I should try that.’ And then we can move to new ideas, new inspiration for better work,” Schemmer says.He chose civil and structural engineering over architecture some seven years ago, but says that “100 years ago, I don’t think architecture and structural engineering were two separate professions. I think there was an understanding of how things looked and how things worked, and it was merged together. Maybe from an efficiency standpoint, it’s better to have things done separately. But I think there’s something to be said for having knowledge about how the whole system works, potentially more intermingling between the free-form architectural design and the mathematical design of a civil engineer. Merging it back together, I think, has a lot of benefits.”Which brings us back to the Golden Gate Bridge, Schemmer’s longtime favorite. You can still hear that excited 3-year-old in his voice when he talks about it.“It’s so iconic,” he says. “It’s connecting these two spits of land that just rise straight up out of the ocean. There’s this fog that comes in and out a lot of days. It’s a really magical place, from the size of the cable strands and everything. It’s just, ‘Wow.’ People built this over 100 years ago, before the existence of a lot of the computational tools that we have now. So, all the math, everything in the design, was all done by hand and from the mind. Nothing was computerized, which I think is crazy to think about.”As Schemmer continues work on his doctoral degree at MIT, the MAD fellowship will expose him to many more awe-inspiring ideas in other fields, leading him to incorporate some of these in some way with his engineering knowledge to design better ways of building bridges and other structures. More

  • in

    To design better water filters, MIT engineers look to manta rays

    Filter feeders are everywhere in the animal world, from tiny crustaceans and certain types of coral and krill, to various molluscs, barnacles, and even massive basking sharks and baleen whales. Now, MIT engineers have found that one filter feeder has evolved to sift food in ways that could improve the design of industrial water filters.In a paper appearing this week in the Proceedings of the National Academy of Sciences, the team characterizes the filter-feeding mechanism of the mobula ray — a family of aquatic rays that includes two manta species and seven devil rays. Mobula rays feed by swimming open-mouthed through plankton-rich regions of the ocean and filtering plankton particles into their gullet as water streams into their mouths and out through their gills.The floor of the mobula ray’s mouth is lined on either side with parallel, comb-like structures, called plates, that siphon water into the ray’s gills. The MIT team has shown that the dimensions of these plates may allow for incoming plankton to bounce all the way across the plates and further into the ray’s cavity, rather than out through the gills. What’s more, the ray’s gills absorb oxygen from the outflowing water, helping the ray to simultaneously breathe while feeding.“We show that the mobula ray has evolved the geometry of these plates to be the perfect size to balance feeding and breathing,” says study author Anette “Peko” Hosoi, the Pappalardo Professor of Mechanical Engineering at MIT.The engineers fabricated a simple water filter modeled after the mobula ray’s plankton-filtering features. They studied how water flowed through the filter when it was fitted with 3D-printed plate-like structures. The team took the results of these experiments and drew up a blueprint, which they say designers can use to optimize industrial cross-flow filters, which are broadly similar in configuration to that of the mobula ray.“We want to expand the design space of traditional cross-flow filtration with new knowledge from the manta ray,” says lead author and MIT postdoc Xinyu Mao PhD ’24. “People can choose a parameter regime of the mobula ray so they could potentially improve overall filter performance.”Hosoi and Mao co-authored the new study with Irmgard Bischofberger, associate professor of mechanical engineering at MIT.A better trade-offThe new study grew out of the group’s focus on filtration during the height of the Covid pandemic, when the researchers were designing face masks to filter out the virus. Since then, Mao has shifted focus to study filtration in animals and how certain filter-feeding mechanisms might improve filters used in industry, such as in water treatment plants.Mao observed that any industrial filter must strike a balance between permeability (how easily fluid can flow through a filter), and selectivity (how successful a filter is at keeping out particles of a target size). For instance, a membrane that is studded with large holes might be highly permeable, meaning a lot of water can be pumped through using very little energy. However, the membrane’s large holes would let many particles through, making it very low in selectivity. Likewise, a membrane with much smaller pores would be more selective yet also require more energy to pump the water through the smaller openings.“We asked ourselves, how do we do better with this tradeoff between permeability and selectivity?” Hosoi says.As Mao looked into filter-feeding animals, he found that the mobula ray has struck an ideal balance between permeability and selectivity: The ray is highly permeable, in that it can let water into its mouth and out through its gills quickly enough to capture oxygen to breathe. At the same time, it is highly selective, filtering and feeding on plankton rather than letting the particles stream out through the gills.The researchers realized that the ray’s filtering features are broadly similar to that of industrial cross-flow filters. These filters are designed such that fluid flows across a permeable membrane that lets through most of the fluid, while any polluting particles continue flowing across the membrane and eventually out into a reservoir of waste.The team wondered whether the mobula ray might inspire design improvements to industrial cross-flow filters. For that, they took a deeper dive into the dynamics of mobula ray filtration.A vortex keyAs part of their new study, the team fabricated a simple filter inspired by the mobula ray. The filter’s design is what engineers refer to as a “leaky channel” — effectively, a pipe with holes along its sides. In this case, the team’s “channel” consists of two flat, transparent acrylic plates that are glued together at the edges, with a slight opening between the plates through which fluid can be pumped. At one end of the channel, the researchers inserted 3D-printed structures resembling the grooved plates that run along the floor of the mobula ray’s mouth.The team then pumped water through the channel at various rates, along with colored dye to visualize the flow. They took images across the channel and observed an interesting transition: At slow pumping rates, the flow was “very peaceful,” and fluid easily slipped through the grooves in the printed plates and out into a reservoir. When the researchers increased the pumping rate, the faster-flowing fluid did not slip through, but appeared to swirl at the mouth of each groove, creating a vortex, similar to a small knot of hair between the tips of a comb’s teeth.“This vortex is not blocking water, but it is blocking particles,” Hosoi explains. “Whereas in a slower flow, particles go through the filter with the water, at higher flow rates, particles try to get through the filter but are blocked by this vortex and are shot down the channel instead. The vortex is helpful because it prevents particles from flowing out.”The team surmised that vortices are the key to mobula rays’ filter-feeding ability. The ray is able to swim at just the right speed that water, streaming into its mouth, can form vortices between the grooved plates. These vortices effectively block any plankton particles — even those that are smaller than the space between plates. The particles then bounce across the plates and head further into the ray’s cavity, while the rest of the water can still flow between the plates and out through the gills.The researchers used the results of their experiments, along with dimensions of the filtering features of mobula rays, to develop a blueprint for cross-flow filtration.“We have provided practical guidance on how to actually filter as the mobula ray does,” Mao offers.“You want to design a filter such that you’re in the regime where you generate vortices,” Hosoi says. “Our guidelines tell you: If you want your plant to pump at a certain rate, then your filter has to have a particular pore diameter and spacing to generate vortices that will filter out particles of this size. The mobula ray is giving us a really nice rule of thumb for rational design.”This work was supported, in part, by the U.S. National Institutes of Health, and the Harvey P. Greenspan Fellowship Fund.  More

  • in

    Dancing with currents and waves in the Maldives

    Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.    Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world. “There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder. In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board. “There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.” More

  • in

    A bright and airy hub for climate at MIT

    Seen from a distance, MIT’s Cecil and Ida Green Building (Building 54) — designed by renowned architect and MIT alumnus I.M. Pei ’40 — is one of the most iconic buildings on the Cambridge, Massachusetts, skyline. Home to the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), the 21-story concrete structure soars over campus, topped with its distinctive spherical radar dome. Close up, however, it was a different story.A sunless, two-story, open-air plaza beneath the tower previously served as a nondescript gateway to the department’s offices, labs, and classrooms above. “It was cold and windy — probably the windiest place on campus,” EAPS department head Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, told a packed auditorium inside the building in March. “You would pass through the elevators and disappear into the corridors, never to be seen again until the end of the day.”Van der Hilst was speaking at a dedication event to celebrate the opening of the renovated and expanded space, 60 years after the Green Building’s original dedication in 1964. In a dramatic transformation, the perpetually-shaded expanse beneath the tower has been filled with an airy, glassed-in structure that is as inviting as the previous space was forbidding.Designed to meet LEED-platinum certification, the newly-constructed Tina and Hamid Moghadam Building (Building 55) seems to float next to the Brutalist tower, its glass façade both opening up the interior and reflecting the sunlight and green space outside. The 300-seat auditorium within the original tower has been similarly transformed, bringing light and space to the newly dubbed Dixie Lee Bryant (1891) Lecture Hall, named after the first person to earn a geology degree at MIT.Catalyzing collaborationThe project is about more than updating an overlooked space. “The building we’re here to celebrate today does something else,” MIT President Sally Kornbluth said at the dedication.“In its lightness, in its transparency, it calls attention not to itself, but to the people gathered inside it. In its warmth, its openness, it makes room for culture and community. And it welcomes in those who don’t yet belong … as we take on the immense challenges of climate together,” she continued, referencing the recent launch of The Climate Project at MIT — a whole-of-MIT initiative to innovate bold solutions to climate change. In MIT’s famously decentralized structure, the Moghadam Building provides a new physical hub for students, scientists, and engineers interested in climate and the environment to congregate and share ideas.From the start, fostering this kind of multidisciplinary collaboration was part of Van der Hilst’s vision. In addition to serving as the flagship location for EAPS, Building 54 has long been the administrative home of the MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering — a graduate program in partnership with Woods Hole Oceanographic Institute. With the addition of Building 55, EAPS has now been joined by the MIT Environmental Solutions Initiative (ESI) — a campus-wide program fostering education, outreach, and innovation in earth system science, urban infrastructure, and sustainability — and will welcome closer collaboration with Terrascope — a first-year learning community which invites its students to take on real-world environmental challenges.A shared vision comes to lifeThe building project dovetailed with the long-overdue refurbishment of the Green Building. After a multi-year fundraising campaign where Van der Hilst spearheaded the department’s efforts, the project received a major boost from lead donors Tina and Hamid Moghadam ’77, SM ’78, allowing the department to break ground in November 2021.In Moghadam, chair and CEO of Prologis, which owns 1.2 billion square feet of warehouses and other logistics infrastructure worldwide, EAPS found a fellow champion for climate and environmental innovation. By putting solar panels on the roofs of Prologis buildings, the company is now the second largest on-site producer of solar energy in the United States. “I don’t think there needs to be a trade-off between good sound economics and return on investment and solving climate change problems,” Moghadam said at the dedication. “The solutions that really work are the ones that actually make sense in a market economy.”Architectural firm AW-ARCH designed the Moghadam Building with a light touch, emphasizing spaciousness in contrast to the heavy concrete buildings that surround it. “The kind of delicacy and fragility of the thing is in some ways a depiction of what happens here,” said architect and co-founding partner Alex Anmahian at the dedication reception, giving a nod to the study of the delicate balance of the earth system itself. The sense is further illustrated by the responsiveness of the façade to the surrounding environment, which, depending on the time of day and quality of light, makes the glass alternately reflective and transparent.Inside, the 11,900-square foot pavilion is highly flexible and serves as a showcase for the science that happens in the labs and offices above. Central to the space is a 16-foot by 9-foot video wall featuring vivid footage of field work, lab research, data visualizations, and natural phenomena — visible even to passers-by outside. The video wall is counterposed to an unpretentious set of stair-step bleachers leading to the second floor that could play host to anything from a scientific lecture to a community pizza-and-movie night.Van der Hilst has referred to his vision for the atrium as a “campus living room,” and the furniture throughout is intentionally chosen to allow for impromptu rearrangements, providing a valuable public space on campus for students to work and socialize.The second level is similarly adaptable, featuring three classrooms with state-of-the-art teaching technologies that can be transformed from a single large space for a hackathon to intimate rooms for discussion.“The space is really meant for a yet unforeseen experience,” Anmahian says. “The reason it is so open is to allow for any possibility.”The inviting, dynamic design of the pavilion has also become an instant point of pride for the building’s inhabitants. At the dedication, School of Science dean Nergis Mavalvala quipped that anyone walking into the space “gains two inches in height.”Van der Hilst quoted a colleague with a similar observation: “Now, when I come into this space, I feel respected by it.”The perfect complementAnother significant feature of the project is the List Visual Arts Center Percent-for-Art Program installation by conceptual artist Julian Charrière, entitled “Everything Was Forever Until It Was No More.”Consisting of three interrelated works, the commission includes: “Not All Who Wander Are Lost,” three glacial erratic boulders which sit atop their own core samples in the surrounding green space; “We Are All Astronauts,” a trio of glass pillars containing vintage globes with distinctions between nations, land, and sea removed; and “Pure Waste,” a synthetic diamond embedded in the foundation, created from carbon captured from the air and the breath of researchers who work in the building.Known for themes that explore the transformation of the natural world over time and humanity’s complex relationship with our environment, Charrière was a perfect fit to complement the new Building 55 — offering a thought-provoking perspective on our current environmental challenges while underscoring the value of the research that happens within its walls. More

  • in

    New MIT-LUMA Lab created to address climate challenges in the Mediterranean region

    The MIT School of Architecture and Planning (SA+P) and the LUMA Foundation announced today the establishment of the MIT-LUMA Lab to advance paradigm-shifting innovations at the nexus of art, science, technology, conservation, and design. The aim is to empower innovative thinkers to realize their ambitions, support local communities as they seek to address climate-related issues, and scale solutions to pressing challenges facing the Mediterranean region.  The main programmatic pillars of the lab will be collaborative scholarship and research around design, new materials, and sustainability; scholar exchange and education collaborations between the two organizations; innovation and entrepreneurship activities to transfer new ideas into practical applications; and co-production of exhibitions and events. The hope is that this engagement will create a novel model for other institutions to follow to craft innovative solutions to the leading challenge of our time.The MIT-LUMA Lab draws on an establishing gift from the LUMA Foundation, a nonprofit organization based in Zurich formed by Maja Hoffmann in 2004 to support contemporary artistic production. The foundation supports a range of multidisciplinary projects that increase understanding of the environment, human rights, education, and culture.These themes are explored through programs organized by LUMA Arles, a project begun in 2013 and housed on a 27-acre interdisciplinary campus known as the Parc des Ateliers in Arles, France, an experimental site of exhibitions, artists’ residencies, research laboratories, and educational programs.“The Luma Foundation is committed to finding ways to address the current climate emergencies we are facing, focusing on exploring the potentials that can be found in diversity and engagement in every possible form,” says Maja Hoffmann, founder and president of the LUMA Foundation. “Cultural diversity, pluralism, and biodiversity feature at the top of our mission and our work is informed by these concepts.” A focus on the Mediterranean region“The culturally rich area of the Mediterranean, which has produced some of the most remarkable civilizational paradigms across geographies and historical periods, plays an important role in our thinking. Focusing the efforts of the MIT-LUMA Lab on the Mediterranean means extending the possibilities for positive change throughout other global ecosystems,” says Hoffmann. “Our projects of LUMA Arles and its research laboratory on materials and natural resources, the Atelier Luma, our position in one of Europe’s most important natural reserves, in conjunction with the expertise and forward-thinking approach of MIT, define the perfect framework that will allow us to explore new frontiers and devise novel ways to tackle our most significant civilizational risks,” she adds. “Supporting the production of new forms of knowledge and practices, and with locations in Cambridge and in Arles, our collaboration and partnership with MIT will generate solutions and models for the future, for the generations to come, in order to provide them the same and even better opportunities that what we have experienced.”“We know we do not have all the answers at MIT, but we do know how to ask the right questions, how to design effective experiments, and how to build meaningful collaborations,” says Hashim Sarkis, dean of SA+P, which will host the lab. “I am grateful to the LUMA Foundation for offering support for faculty research deployment designed to engage local communities and create jobs, for course development to empower our faculty to teach classes centered on these issues, and for students who seek to dedicate their lives and careers to sustainability. We also look forward to hosting fellows and researchers from the foundation to strengthen our collaboration,” he adds.The Mediterranean region, the MIT-LUMA Lab’s focus, is one of the world’s most vital and fragile global commons. The future of climate relies on the sustainability of the region’s forests, oceans, and deserts that have for millennia created the environmental conditions and system-regulating functions necessary for life on Earth. Those who live in these areas are often the most severely affected by even relatively modest changes in the climate. Climate research and action: A priority at MITTo reverse negative trends and provide a new approach to addressing the climate crisis in these vast areas, SA+P is establishing international collaborations that bring know-how to the field, and in turn to learn from the communities and groups most challenged by climate impacts.The MIT-LUMA Lab is the first in what is envisioned as a series of regionally focused labs at SA+P under the conceptual aegis of a collaborative platform called Our Global Commons. This project will support progress on today’s climate challenges by focusing on community empowerment, long-term local collaborations around research and education, and job creation. Faculty-led fieldwork, engagements with local stakeholders, and student involvement will be the key elements.The creation of Our Global Commons comes as MIT works to dramatically expand its efforts to address climate change. In February 2024, President Sally Kornbluth announced the Climate Project at MIT, a major new initiative to mobilize the Institute’s resources and capabilities to research, develop, deploy, and scale-up new climate solutions. The Institute will hire its first-ever vice president for climate to oversee the new effort. “With the Climate Project at MIT, we aim to help make a decisive difference, at scale, on crucial global climate challenges — and we can only do that by engaging with outstanding colleagues around the globe,” says Kornbluth. “By connecting us to creative thinkers steeped in the cultural and environmental history and emerging challenges of the Mediterranean region, the MIT-LUMA Lab promises to spark important new ideas and collaborations.”“We are excited that the LUMA team will be joining in MIT’s engagement with climate issues, especially given their expertise in advancing vital work at the intersection of art and science, and their long-standing commitment to expanding the frontiers of sustainability and biodiversity,” says Sarkis. “With climate change upending many aspects of our society, the time is now for us to reaffirm and strengthen our SA+P tradition of on-the-ground work with and for communities around the world. Shared efforts among local communities, governments and corporations, and academia are necessary to bring about real change.” More