More stories

  • in

    Letting the Earth answer back: Designing better planetary conversations

    For Chen Chu MArch ’21, the invitation to join the 2023-24 cohort of Morningside Academy for Design Design Fellows has been an unparalleled opportunity to investigate the potential of design as an alternative method of problem-solving.

    After earning a master’s degree in architecture at MIT and gaining professional experience as a researcher at an environmental nongovernmental organization, Chu decided to pursue a PhD in the Department of Urban Studies and Planning. “I discovered that I needed to engage in a deeper way with the most difficult ethical challenges of our time, especially those arising from the fact of climate change,” he explains. “For me, MIT has always represented this wonderful place where people are inherently intellectually curious — it’s a very rewarding community to be part of.”

    Chu’s PhD research, guided by his doctoral advisor Delia Wendel, assistant professor of urban studies and international development, focuses on how traditional practices of floodplain agriculture can inform local and global strategies for sustainable food production and distribution in response to climate change. 

    Typically located alongside a river or stream, floodplains arise from seasonal flooding patterns that distribute nutrient-rich silt and create connectivity between species. This results in exceptionally high levels of biodiversity and microbial richness, generating the ideal conditions for agriculture. It’s no accident that the first human civilizations were founded on floodplains, including Mesopotamia (named for its location poised between two rivers, the Euphrates and Tigris), the Indus River Civilization, and the cultures of Ancient Egypt based around the Nile. Riverine transportation networks and predictable flooding rhythms provide a framework for trade and cultivation; nonetheless, floodplain communities must learn to live with risk, subject to the sudden disruptions of high waters, drought, and ecological disequilibrium. 

    For Chu, the “unstable and ungovernable” status of floodplains makes them fertile ground for thinking about. “I’m drawn to these so-called ‘wet landscapes’ — edge conditions that act as transitional spaces between land and water, between humans and nature, between city and river,” he reflects. “The development of extensively irrigated agricultural sites is typically a collective effort, which raises intriguing questions about how communities establish social organizations that simultaneously negotiate top-down state control and adapt to the uncertainty of nature.”

    Chu is in the process of honing the focus of his dissertation and refining his data collection methods, which will include archival research and fieldwork, as well as interviews with floodplain inhabitants to gain an understanding of sociopolitical nuances. Meanwhile, his role as a design fellow gives him the space to address the big questions that fire his imagination. How can we live well on shared land? How can we take responsibility for the lives of future generations? What types of political structures are required to get everyone on board? 

    These are just a few of the questions that Chu recently put to his cohort in a presentation. During the weekly seminars for the fellowship, he has the chance to converse with peers and mentors of multiple disciplines — from researchers rethinking the pedagogy of design to entrepreneurs applying design thinking to new business models to architects and engineers developing new habitats to heal our relationship with the natural world. 

    “I’ll admit — I’m wary of the human instinct to problem-solve,” says Chu. “When it comes to the material conditions and lived experience of people and planet, there’s a limit to our economic and political reasoning, and to conventional architectural practice. That said, I do believe that the mindset of a designer can open up new ways of thinking. At its core, design is an interdisciplinary practice based on the understanding that a problem can’t be solved from a narrow, singular perspective.” 

    The stimulating structure of a MAD Fellowship — free from immediate obligations to publish or produce, fellows learn from one another and engage with visiting speakers via regular seminars and events — has prompted Chu to consider what truly makes for generative conversation in the contexts of academia and the private and public sectors. In his opinion, discussions around climate change often fail to take account of one important voice; an absence he describes as “that silent being, the Earth.”

    “You can’t ask the Earth, ‘What does justice mean to you?’ Nature will not respond,” he reflects. To bridge the gap, Chu believes it’s important to combine the study of specific political and social conditions with broader existential questions raised by the environmental humanities. His own research draws upon the perspectives of thinkers including Dipesh Chakrabarty, Donna Haraway, Peter Singer,  Anna Tsing, and Michael Watts, among others. He cites James C. Scott’s lecture “In Praise of Floods” as one of his most important influences.

    In addition to his instinctive appreciation for theory, Chu’s outlook is grounded by an attention to innovation at the local level. He is currently establishing the parameters of his research, examining case studies of agricultural systems and flood mitigation strategies that have been sustained for centuries. 

    “One example is the polder system that is practiced in the Netherlands, China, Bangladesh, and many parts of the world: small, low-lying tracts of land submerged in water and surrounded by dykes and canals,” he explains. “You’ll find a different but comparable strategy in the colder regions of Japan. Crops are protected from the winter winds by constructing a spatial unit with the house at the center; trees behind the house serve as windbreakers and paddy fields for rice are located in front of the house, providing an integrated system of food and livelihood security.”

    Chu observes that there is a tendency for international policymakers to overlook local solutions in favor of grander visions and ambitious climate pledges — but he is equally keen not to romanticize vernacular practices. “Realistically, it’s always a two-way interaction. Unless you already have a workable local system in place, it’s difficult to implement a solution without top-down support. On the other hand, the large-scale technocratic dreams are empty if ignorant of local traditions and histories.” 

    By navigating between the global and the local, the theoretical and the practical, the visionary and the cautionary, Chu has hope in the possibility of gradually finding a way toward long-term solutions that adapt to specific conditions over time. It’s a model of ambition and criticality that Chu sees played out during dialogue at MAD and within his department; at root, he’s aware that the outcome of these conversations depends on the ethical context that shapes them.

    “I’ve been fortunate to have many mentors who have taught me the power of humility; a respect for the finitude, fragility,  and uncertainty of life,” he recalls. “It’s a mindset that’s barely apparent in today’s push for economic growth.” The flip-side of hubristic growth is an assumption that technological ingenuity will be enough to solve the climate crisis, but Chu’s optimism arises from a different source: “When I feel overwhelmed by the weight of the problems we’re facing, I just need to look around me,” he says. “Here on campus — at MAD, in my home department, and increasingly among the new generations of students — there’s a powerful ethos of political sensitivity, ethical compassion, and an attention to clear and critical judgment. That always gives me hope for the planet.” More

  • in

    Q&A: A blueprint for sustainable innovation

    Atacama Biomaterials is a startup combining architecture, machine learning, and chemical engineering to create eco-friendly materials with multiple applications. Passionate about sustainable innovation, its co-founder Paloma Gonzalez-Rojas SM ’15, PhD ’21 highlights here how MIT has supported the project through several of its entrepreneurship initiatives, and reflects on the role of design in building a holistic vision for an expanding business.

    Q: What role do you see your startup playing in the sustainable materials space?

    A: Atacama Biomaterials is a venture dedicated to advancing sustainable materials through state-of-the-art technology. With my co-founder Jose Tomas Dominguez, we have been working on developing our technology since 2019. We initially started the company in 2020 under another name and received Sandbox funds the next year. In 2021, we went through The Engine’s accelerator, Blueprint, and changed our name to Atacama Biomaterials in 2022 during the MITdesignX program. 

    This technology we have developed allows us to create our own data and material library using artificial intelligence and machine learning, and serves as a platform applicable to various industries horizontally — biofuels, biological drugs, and even mining. Vertically, we produce inexpensive, regionally sourced, and environmentally friendly bio-based polymers and packaging — that is, naturally compostable plastics as a flagship product, along with AI products.

    Q: What motivated you to venture into biomaterials and found Atacama?

    A: I’m from Chile, a country with a beautiful, rich geography and nature where we can see all the problems stemming from industry, waste management, and pollution. We named our company Atacama Biomaterials because the Atacama Desert in Chile — one of the places where you can best see the stars in the world — is becoming a plastic dump, as many other places on Earth. I care deeply about sustainability, and I have an emotional attachment to stop these problems. Considering that manufacturing accounts for 29 percent of global carbon emissions, it is clear that sustainability has a role in how we define technology and entrepreneurship, as well as a socio-economic dimension.

    When I first came to MIT, it was to develop software in the Department of Architecture’s Design and Computation Group, with MIT professors Svafa Gronfeldt as co-advisor and Regina Barzilay as committee member. During my PhD, I studied machine-learning methods simulating pedestrian motion to understand how people move in space. In my work, I would use lots of plastics for 3D printing and I couldn’t stop thinking about sustainability and climate change, so I reached out to material science and mechanical engineering professors to look into biopolymers and degradable bio-based materials. This is how I met my co-founder, as we were both working with MIT Professor Neil Gershenfeld. Together, we were part of one of the first teams in the world to 3D print wood fibers, which is difficult — it’s slow and expensive — and quickly pivoted to sustainable packaging. 

    I then won a fellowship from MCSC [the MIT Climate and Sustainability Consortium], which gave me freedom to explore further, and I eventually got a postdoc in MIT chemical engineering, guided by MIT Professor Gregory Rutledge, a polymer physicist. This was unexpected in my career path. Winning Nucleate Eco Track 2022 and the MITdesignX Innovation Award in 2022 profiled Atacama Biomaterials as one of the rising startups in Boston’s biotechnology and climate-tech scene.

    Q: What is your process to develop new biomaterials?

    A: My PhD research, coupled with my background in material development and molecular dynamics, sparked the realization that principles I studied simulating pedestrian motion could also apply to molecular engineering. This connection may seem unconventional, but for me, it was a natural progression. Early in my career, I developed an intuition for materials, understanding their mechanics and physics.

    Using my experience and skills, and leveraging machine learning as a technology jump, I applied a similar conceptual framework to simulate the trajectories of molecules and find potential applications in biomaterials. Making that parallel and shift was amazing. It allowed me to optimize a state-of-the-art molecular dynamic software to run twice as fast as more traditional technologies through my algorithm presented at the International Conference of Machine Learning this year. This is very important, because this kind of simulation usually takes a week, so narrowing it down to two days has major implications for scientists and industry, in material science, chemical engineering, computer science and related fields. Such work greatly influenced the foundation of Atacama Biomaterials, where we developed our own AI to deploy our materials. In an effort to mitigate the environmental impact of manufacturing, Atacama is targeting a 16.7 percent reduction in carbon dioxide emissions associated with the manufacturing process of its polymers, through the use of renewable energy. 

    Another thing is that I was trained as an architect in Chile, and my degree had a design component. I think design allows me to understand problems at a very high level, and how things interconnect. It contributed to developing a holistic vision for Atacama, because it allowed me to jump from one technology or discipline to another and understand broader applications on a conceptual level. Our design approach also meant that sustainability came to the center of our work from the very beginning, not just a plus or an added cost.

    Q: What was the role of MITdesignX in Atacama’s development?

    A: I have known Svafa Grönfeldt, MITdesignX’s faculty director, for almost six years. She was the co-advisor of my PhD, and we had a mentor-mentee relationship. I admire the fact that she created a space for people interested in business and entrepreneurship to grow within the Department of Architecture. She and Executive Director Gilad Rosenzweig gave us fantastic advice, and we received significant support from mentors. For example, Daniel Tsai helped us with intellectual property, including a crucial patent for Atacama. And we’re still in touch with the rest of the cohort. I really like this “design your company” approach, which I find quite unique, because it gives us the opportunity to reflect on who we want to be as designers, technologists, and entrepreneurs. Studying user insights also allowed us to understand the broad applicability of our research, and align our vision with market demands, ultimately shaping Atacama into a company with a holistic perspective on sustainable material development.

    Q: How does Atacama approach scaling, and what are the immediate next steps for the company?

    A: When I think about accomplishing our vision, I feel really inspired by my 3-year-old daughter. I want her to experience a world with trees and wildlife when she’s 100 years old, and I hope Atacama will contribute to such a future.

    Going back to the designer’s perspective, we designed the whole process holistically, from feedstock to material development, incorporating AI and advanced manufacturing. Having proved that there is a demand for the materials we are developing, and having tested our products, manufacturing process, and technology in critical environments, we are now ready to scale. Our level of technology-readiness is comparable to the one used by NASA (level 4).

    We have proof of concept: a biodegradable and recyclable packaging material which is cost- and energy-efficient as a clean energy enabler in large-scale manufacturing. We have received pre-seed funding, and are sustainably scaling by taking advantage of available resources around the world, like repurposing machinery from the paper industry. As presented in the MIT Industrial Liaison and STEX Program’s recent Sustainability Conference, unlike our competitors, we have cost-parity with current packaging materials, as well as low-energy processes. And we also proved the demand for our products, which was an important milestone. Our next steps involve strategically expanding our manufacturing capabilities and research facilities and we are currently evaluating building a factory in Chile and establishing an R&D lab plus a manufacturing plant in the U.S. More

  • in

    Building a better indoor herb garden

    Randall Briggs ’09, SM ’18 didn’t set out to build indoor gardens when he arrived at MIT. The winner of the 2010 2.007 robot competition class, he was excited to work on designing fighter planes one day.

    But in 2016, halfway through his studies for his master’s degree in mechanical engineering, Briggs’s father passed away unexpectedly. “It was a big blow to me. My motivation took a big hit, so it was hard for me to keep working on my research,” Briggs shares.

    Briggs ordered a home hydroponic garden in the hopes that growing herbs inside his apartment could bring him some positivity. “There is something healing about seeing something organic and beautiful grow and develop,” Briggs says.

    When the garden arrived, Briggs found that many aspects of the design fell short. The plants weren’t getting enough light because the LEDs were dispersing light throughout the room and not focusing it on the plants. “It’s just not very pleasing aesthetically when it’s, like, a fluorescent color of light, and it just fills your room,” Briggs says.

    He set forth to create a better indoor garden. Briggs turned his spare bedroom into a hydroponics lab, testing herbs growing under various lighting conditions and with different nutrient solutions. He read every book and article he could find on the subject. “The same seed pods that I had used in that cheap garden, when I moved them over to my garden, they grew way faster and way healthier and more fragrant and full of flavor,” he says.

    Working on this project became a daily source of joy for Briggs. “Every day when you come home, you want to see if it’s growing a little bit more or to see how they’re doing. I think that made me happy, too.”

    Briggs saw the potential for his garden to improve the well-being of others. “I thought if people had fresh herbs at home, they might be more inspired to cook for themselves instead of always just eating out, as it’s normally a lot healthier to cook your own food at home.”

    After much research and experimentation, GardenByte was born in 2017: a tabletop indoor herb garden that is nearly 3 feet wide with almost 2 feet of height for the plants to grow, which is quite a bit larger than most models on the market. With Briggs’s hydroponics technology, the plants grow three times faster than they would grow outdoors. His garden allows anyone to grow fresh herbs in a wide range of settings. And since plants have a longer shelf life than cut herbs, they also cut down on food waste.

    Briggs was determined to make something that grows plants well and is attractive in a variety of settings. The outer case is handcrafted from solid hardwood from a local Massachusetts lumber yard, ensuring both durability and a visually pleasing aesthetic that seamlessly integrates into any kitchen or restaurant setting. The light bar, crafted from a single piece of crystal-clear acrylic, maintains an unobtrusive and ethereal appearance. This choice complements the overall design while allowing the LED lights to emit a powerful simulation of full sunshine. To ensure a smooth transition from daytime growth to evening, four different types of LEDs were incorporated. Polymer lenses focus the light directly onto the plants, preventing any wastage or unnecessary light spillage in the room. A light and color sensor on top detect the lighting conditions in the room and automatically adjust the lighting in the garden to match, enhancing plant growth. The grid tray is designed to accommodate up to 39 plants at once, offering ample space for an array of herbs. To simplify plant care, the garden is connected to a mobile app that will allow you to care for your plants while you’re away.

    The herb garden contains computer numerical control (CNC) machined-aluminum parts, in contrast with the flimsier plastic most products use. The heat flow capacity of aluminum disperses the heat from all the LEDs and the aluminum grid tray helps keep it compact and thin but rigid, so users can lift the plants up without it bending.

    Briggs received his foundation in machining as an undergrad at the MIT Edgerton Center, where he was on the MIT Motorsports team and MIT Electric Vehicle Team. He learned how to use the CNC machines in the student machine shop at the Area 51 garage under the tutelage of Instructor Pat McAtamney and Briggs’s teammates.

    Building an electric motorcycle on the Electric Vehicle Team for the Isle of Man TT Race in 2011 helped prepare Briggs for creating a robust product for production. The race took place on city streets, raising the potential for deadly crashes. “When we were building that motorcycle, the head of our team, Lennon Rodgers, kept reiterating to us, ‘you got to think aircraft quality, like aircraft quality. This is actually a life-or-death project.’ Seeing the way that he led, and the way that he really set the bar for quality and for execution and kind of kept things moving, was really helpful for me.”

    “My hope in the future is to make a more mass-market version that’s a little bit cheaper and more available to everybody,” Briggs shares.

    The feedback from his first customers has all been positive. After delivering the product to a chef in Boston, Briggs says, “He told me that the whole first evening he was sitting at home with his boyfriend and he just kept staring at it, and he’s like, ‘it is so beautiful. It is so beautiful.’”

    “I feel like something that my dad taught me was that sometimes to do hard things, it does take hard work, and that it’s not always going to be exciting, necessarily,” Briggs shares. “It’s good to be inspired, it’s good to be passionate, but it’s not always going to get you through. And sometimes it’s just hard work that you got to press through the tough parts.” More

  • in

    Jackson Jewett wants to design buildings that use less concrete

    After three years leading biking tours through U.S. National Parks, Jackson Jewett decided it was time for a change.

    “It was a lot of fun, but I realized I missed buildings,” says Jewett. “I really wanted to be a part of that industry, learn more about it, and reconnect with my roots in the built environment.”

    Jewett grew up in California in what he describes as a “very creative household.”

    “I remember making very elaborate Halloween costumes with my parents, making fun dioramas for school projects, and building forts in the backyard, that kind of thing,” Jewett explains.

    Both of his parents have backgrounds in design; his mother studied art in college and his father is a practicing architect. From a young age, Jewett was interested in following in his father’s footsteps. But when he arrived at the University of California at Berkeley in the midst of the 2009 housing crash, it didn’t seem like the right time. Jewett graduated with a degree in cognitive science and a minor in history of architecture. And even as he led tours through Yellowstone, the Grand Canyon, and other parks, buildings were in the back of his mind.

    It wasn’t just the built environment that Jewett was missing. He also longed for the rigor and structure of an academic environment.

    Jewett arrived at MIT in 2017, initially only planning on completing the master’s program in civil and environmental engineering. It was then that he first met Josephine Carstensen, a newly hired lecturer in the department. Jewett was interested in Carstensen’s work on “topology optimization,” which uses algorithms to design structures that can achieve their performance requirements while using only a limited amount of material. He was particularly interested in applying this approach to concrete design, and he collaborated with Carstensen to help demonstrate its viability.

    After earning his master’s, Jewett spent a year and a half as a structural engineer in New York City. But when Carstensen was hired as a professor, she reached out to Jewett about joining her lab as a PhD student. He was ready for another change.

    Now in the third year of his PhD program, Jewett’s dissertation work builds upon his master’s thesis to further refine algorithms that can design building-scale concrete structures that use less material, which would help lower carbon emissions from the construction industry. It is estimated that the concrete industry alone is responsible for 8 percent of global carbon emissions, so any efforts to reduce that number could help in the fight against climate change.

    Implementing new ideas

    Topology optimization is a small field, with the bulk of the prior work being computational without any experimental verification. The work Jewett completed for his master’s thesis was just the start of a long learning process.

    “I do feel like I’m just getting to the part where I can start implementing my own ideas without as much support as I’ve needed in the past,” says Jewett. “In the last couple of months, I’ve been working on a reinforced concrete optimization algorithm that I hope will be the cornerstone of my thesis.”

    The process of fine-tuning a generative algorithm is slow going, particularly when tackling a multifaceted problem.

    “It can take days or usually weeks to take a step toward making it work as an entire integrated system,” says Jewett. “The days when that breakthrough happens and I can see the algorithm converging on a solution that makes sense — those are really exciting moments.”

    By harnessing computational power, Jewett is searching for materially efficient components that can be used to make up structures such as bridges or buildings. These are other constraints to consider as well, particularly ensuring that the cost of manufacturing isn’t too high. Having worked in the industry before starting the PhD program, Jewett has an eye toward doing work that can be feasibly implemented.

    Inspiring others

    When Jewett first visited MIT campus, he was drawn in by the collaborative environment of the institute and the students’ drive to learn. Now, he’s a part of that process as a teaching assistant and a supervisor in the Undergraduate Research Opportunities Program.  

    Working as a teaching assistant isn’t a requirement for Jewett’s program, but it’s been one of his favorite parts of his time at MIT.

    “The MIT undergrads are so gifted and just constantly impress me,” says Jewett. “Being able to teach, especially in the context of what MIT values is a lot of fun. And I learn, too. My coding practices have gotten so much better since working with undergrads here.”

    Jewett’s experiences have inspired him to pursue a career in academia after the completion of his program, which he expects to complete in the spring of 2025. But he’s making sure to take care of himself along the way. He still finds time to plan cycling trips with his friends and has gotten into running ever since moving to Boston. So far, he’s completed two marathons.

    “It’s so inspiring to be in a place where so many good ideas are just bouncing back and forth all over campus,” says Jewett. “And on most days, I remember that and it inspires me. But it’s also the case that academics is hard, PhD programs are hard, and MIT — there’s pressure being here, and sometimes that pressure can feel like it’s working against you.”

    Jewett is grateful for the mental health resources that MIT provides students. While he says it can be imperfect, it’s been a crucial part of his journey.

    “My PhD thesis will be done in 2025, but the work won’t be done. The time horizon of when these things need to be implemented is relatively short if we want to make an impact before global temperatures have already risen too high. My PhD research will be developing a framework for how that could be done with concrete construction, but I’d like to keep thinking about other materials and construction methods even after this project is finished.” More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More

  • in

    Greening roofs to boost climate resilience

    When the historic cities of Europe were built hundreds of years ago, there were open green spaces all around them. But today’s city centers can be a 30-minute drive or more to the vast open greenery that earlier Europeans took for granted.

    That’s what the startup Roofscapes is trying to change. The company, founded by three students from MIT’s master of architecture program, is using timber structures to turn the ubiquitous pitched roofs of Paris into accessible green spaces.

    The spaces would provide a way to grow local food, anchor biodiversity, reduce the temperatures of buildings, improve air quality, increase water retention, and give residents a new way to escape the dense urban clusters of modern times.

    “We see this as a way to unlock the possibilities of these buildings,” says Eytan Levi MA ’21, SM ’21, who co-founded the company with Olivier Faber MA ’23 and Tim Cousin MA ’23. “These surfaces weren’t being used otherwise but could actually have a highly positive contribution to the value of the buildings, the environment, and the lives of the people.”

    For the co-founders, Roofscapes is about helping build up climate resilience for the future while improving quality of life in cities now.

    “It was always important to us to work with as little contradictions to our values as possible in terms of environmental and social impact,” Faber says. “For us, Roofscapes is a way to apply some of our academic learnings to the real world in a way that is tactical and impactful, because we’re tapping into this whole issue — pitched roof adaptation — that has been ignored by traditional architecture.”

    Three architects with a vision

    The founders, who grew up in France, met while studying architecture as undergraduates in Switzerland, but after graduating and working at design firms for a few years, they began discussing other ways they could make a difference.

    “We knew we wanted to have an impact on the built environment that was different than what a lot of architectural firms were doing. We were thinking about a startup, but mostly we came to MIT because we knew we’d have a lot of agency to grow our skills and competency in adapting the built environment to the climate and biodiversity crises,” Faber explains.

    Three months after coming to MIT, they applied to the DesignX accelerator to explore ways to make cities greener by using timber structures to build flat, green platforms on the ubiquitous pitched roofs of European cities’ older buildings.

    “In European city centers, two thirds of the roofs are pitched, and there’s no solution to make them accessible and put green surfaces on them,” Cousin says. “Meanwhile, we have all these issues with heat islands and excessive heat in urban centers, among other issues like biodiversity collapse, retention of rain water, lack of green spaces. Green roofs are one of the best ways to address all of these problems.”

    They began making small models of their imagined green roofs and talking with structural engineers around campus. The founders also gained operational knowledge from MIT’s Center for Real Estate, where Levi studied.

    In 2021, they showcased a 170-square-foot model at the Seoul Biennale of Architecture and Urbanism in South Korea. The model showed roofs made from different materials and pitched at different angles, along with versions of Roofscapes’ wooden platforms with gardens and vegetation built on top.

    When Levi graduated, he moved to Paris, where Cousin and Faber are joining him this spring. “We’re starting with Paris because all the roofs there are the same height, and you can really feel the potential when you go up there to help the city adapt,” says Cousin.

    Roofscapes’ big break came last year, when the company won a grant from the City of Paris as part of a program to improve the city’s climate resilience. The grant will go toward Roofscapes’ first project on the roof of a former town hall building in the heart of Paris. The company plans to test the project’s impact on the temperature of the buildings, humidity levels, and the biodiversity it can foster.

    “We were just three architects with a vision, and at MIT it became a company, and now in Paris we’re seeing the reality of deploying this vision,” Cousin says. “This is not something you do with three people. You need everyone in the city on the same side. We’re being advocates, and it’s exciting to be in this position.”

    A grassroots roof movement

    The founders say they hear at least once a week from a building owner or tenant who is excited to become a partner, giving them a list of more than 60 buildings to consider for their systems down the line. Still, they plan to focus on running tests on a few pilot projects in Paris before expanding more quickly using prefabricated structures.

    “It’s great to hear that constant interest,” Levi says. “It’s like we’re on the same team, because they’re potential clients, but they’re also cheering us on in our work. We know from the interest that once we have a streamlined process, we can get a lot of projects at once.”

    Even in just the three years since founding the company, the founders say they’ve seen their work take on a new sense of urgency.

    “We’ve seen a shift in people’s minds since we started three years ago,” Levi says. “Global warming is becoming increasingly graspable, and we’re seeing a greater will from building owners and inhabitants. People are very supportive of the notion that we have a heritage environment, but as the climate changes drastically, our building stock doesn’t work anymore the way it worked in the 19th century. It needs to be adapted, and that’s what we are doing.” More

  • in

    Taking the long view: The Deep Time Project

    How would we design and build differently if we learned to live at multiple time scales? How would human communities respond to global challenges if the short-term mindset of contemporary life was expanded to encompass new dimensions of past and future — diving into the depths of geological history and projecting forward to imagine the consequences of our actions today?

    These are questions that Cristina Parreño Alonso addresses in her practice as an architect, artist, and senior lecturer in the MIT Department of Architecture. Her field of research, which she has termed “Transtectonics,” explores the cultural and environmental implications of expanded temporal sensibilities in architectural material practice. A building, Parreño argues, is a “material event,” part of a process of construction and deconstruction that is shaped by the past and directly impacts the future — an impact that has become all the more apparent in the epoch of the Anthropocene, in which humans have become the dominant force influencing the physical composition and regulating systems of the planet.

    Parreño’s classes at MIT have included design studios that position architecture in relation to geological processes, and historical surveys of building practices that embrace traces of time and rhythms of maintenance. She recently devised a new class, 4.181 (The Deep Time Project), which launched in fall 2022 with the support of a 2022 Cross Disciplinary Class Grant from the MIT Center for Art, Science and Technology (CAST), in addition to the d’Arbeloff Fund for Excellence in Education.

    Learning deep time literacy

    “The course proposes that architects must develop deep-time literacy if we are to become true planetary stewards,” says Parreño. “Rather than attempting to identify solutions, the course is intended to provoke new ways of thinking that lead to greater accountability — a recognition that we, as architects, are intervening in something larger than ourselves, and that the consequences of our actions extend far beyond the timescales of our human lives and civilizations.” The class, which was offered to master’s students in the School of Architecture and Planning and the Harvard Graduate School of Design, culminated in a series of “material essays” that seek to bring deep time into contemporary consciousness. These multimedia projects — which include physical prototypes, text components, sound, and video  — are on display until March 24 at the Wiesner Student Art Gallery.

    “Being part of the exhibition has made me realize the advantages of belonging to a collective that recognizes the urgency of addressing the idea of time at different scales,” says architecture master’s student Christina Battikha, whose material essay “Plastic Time” imagines a future when plastic is integral to the geological structure of the Earth. Envisioned as a jagged plastic “rock,” the sculpture interprets the ubiquitous synthetic material as a natural phenomenon, a human-made product that far outlasts a human lifespan.

    Taking the form of a clay “Rosetta Stone” inscribed with multiple languages, architecture student Tatiana Victorovna Estrina’s material essay explores how the evolution of language impacts the built environment. “My project identifies a gap of imagination in deep time research,” she explains. “The installation became a futuristic exploration of opportunities for the adaptive relationship between the human body and its prosthetic additions of language and architecture.”

    Provocative perspectives

    “Developing the class here at MIT grants us the capacity to hold conversations across disciplines,” says Parreño. “That’s all the more necessary, because deep time literacy requires a very holistic way of thinking; it raises awareness of the fact that we are inherently interconnected, and makes it clear that we can’t afford to operate in compartments.”

    This attention to interdisciplinarity is exemplified by the guest speakers invited to share their ideas with the class, each providing a new way of accessing the deep time paradigm. Among the speakers were Marcia Bjornerud, a structural geologist and educator who argues that a geologist’s temporal perspective can empower us to make decisions for a more sustainable future. Richard Fisher, a senior journalist at the BBC, and Bina Venkataraman, journalist and author of “The Optimist’s Telescope: Thinking Ahead in a Reckless Age,” both shared their experiences of engaging the public in the perils of short-term-ism and the positive effects of taking the long view in daily life. The historian of science Jimena Canales provided a philosophical background to the conundrums of time perception, citing the renowned debate between Albert Einstein and the philosopher Henri Bergson.

    Alongside these large-scale thinkers and academic researchers were practitioners who directly apply planetary perspectives at a local level. Joseph Bagley is Boston’s city architect, investigating the layers of time that constitute the urban fabric. Faries Gray, the sagamore of the Massachusett Tribe at Ponkapoag, advocates for Indigenous ways of knowing that recognize the continuity between human cultures and the living history of the land. Together, these different ways of relating to deep time offer a toolkit for contemplating a concept too large to be held in the human mind.

    Thinking through art

    Parreño’s own way of conceptualizing deep time is informed by her artistic and philosophical inquiry into the paradoxes of time, tectonics, and materiality. Exhibited at the Schusev State Museum of Architecture in Moscow, her installation Tectonics of Wisdom focused on the typology of the library as a way of demonstrating how architecture is intertwined with geological and civilizational history. Carbon to Rock, shown at the 2021 Venice Architecture Biennale, explores new artificial manipulations of the geological timescales of the carbon cycle, rethinking igneous rocks as a resilient material for high-carbon-capture architecture. In addition, Parreño has published several essays on the subject of deep time for journals including Strelka Magazine, Log, and JAE Journal of Architectural Education. Her work as a writer and theorist is complemented by her art installations — or material essays — that serve as a research methodology and a means of communication.

    Likewise, the exhibition component of the Deep Time Project is a way of giving thoughts physical form. Estrina’s installation was initially prompted by the need to communicate the presence of buried nuclear waste to future generations — or even future species. Battikha’s sculpture is a response to the vast buildup of plastic generated by cycles of supply and demand. However, rather than making value judgements or condemning human actions, these works are intended to disrupt conventional patterns of perception, experimenting with longer-term perspectives that have the potential to change ingrained assumptions and daily habits. “There needs to be a paradigm shift before we can effectively address the enormity of the challenges ahead,” says Parreño. “The Deep Time Project is about taking a step back, reframing these problems in ways that will allow us to ask the right questions.” More

  • in

    Integrating humans with AI in structural design

    Modern fabrication tools such as 3D printers can make structural materials in shapes that would have been difficult or impossible using conventional tools. Meanwhile, new generative design systems can take great advantage of this flexibility to create innovative designs for parts of a new building, car, or virtually any other device.

    But such “black box” automated systems often fall short of producing designs that are fully optimized for their purpose, such as providing the greatest strength in proportion to weight or minimizing the amount of material needed to support a given load. Fully manual design, on the other hand, is time-consuming and labor-intensive.

    Now, researchers at MIT have found a way to achieve some of the best of both of these approaches. They used an automated design system but stopped the process periodically to allow human engineers to evaluate the work in progress and make tweaks or adjustments before letting the computer resume its design process. Introducing a few of these iterations produced results that performed better than those designed by the automated system alone, and the process was completed more quickly compared to the fully manual approach.

    The results are reported this week in the journal Structural and Multidisciplinary Optimization, in a paper by MIT doctoral student Dat Ha and assistant professor of civil and environmental engineering Josephine Carstensen.

    The basic approach can be applied to a broad range of scales and applications, Carstensen explains, for the design of everything from biomedical devices to nanoscale materials to structural support members of a skyscraper. Already, automated design systems have found many applications. “If we can make things in a better way, if we can make whatever we want, why not make it better?” she asks.

    “It’s a way to take advantage of how we can make things in much more complex ways than we could in the past,” says Ha, adding that automated design systems have already begun to be widely used over the last decade in automotive and aerospace industries, where reducing weight while maintaining structural strength is a key need.

    “You can take a lot of weight out of components, and in these two industries, everything is driven by weight,” he says. In some cases, such as internal components that aren’t visible, appearance is irrelevant, but for other structures aesthetics may be important as well. The new system makes it possible to optimize designs for visual as well as mechanical properties, and in such decisions the human touch is essential.

    As a demonstration of their process in action, the researchers designed a number of structural load-bearing beams, such as might be used in a building or a bridge. In their iterations, they saw that the design has an area that could fail prematurely, so they selected that feature and required the program to address it. The computer system then revised the design accordingly, removing the highlighted strut and strengthening some other struts to compensate, and leading to an improved final design.

    The process, which they call Human-Informed Topology Optimization, begins by setting out the needed specifications — for example, a beam needs to be this length, supported on two points at its ends, and must support this much of a load. “As we’re seeing the structure evolve on the computer screen in response to initial specification,” Carstensen says, “we interrupt the design and ask the user to judge it. The user can select, say, ‘I’m not a fan of this region, I’d like you to beef up or beef down this feature size requirement.’ And then the algorithm takes into account the user input.”

    While the result is not as ideal as what might be produced by a fully rigorous yet significantly slower design algorithm that considers the underlying physics, she says it can be much better than a result generated by a rapid automated design system alone. “You don’t get something that’s quite as good, but that was not necessarily the goal. What we can show is that instead of using several hours to get something, we can use 10 minutes and get something much better than where we started off.”

    The system can be used to optimize a design based on any desired properties, not just strength and weight. For example, it can be used to minimize fracture or buckling, or to reduce stresses in the material by softening corners.

    Carstensen says, “We’re not looking to replace the seven-hour solution. If you have all the time and all the resources in the world, obviously you can run these and it’s going to give you the best solution.” But for many situations, such as designing replacement parts for equipment in a war zone or a disaster-relief area with limited computational power available, “then this kind of solution that catered directly to your needs would prevail.”

    Similarly, for smaller companies manufacturing equipment in essentially “mom and pop” businesses, such a simplified system might be just the ticket. The new system they developed is not only simple and efficient to run on smaller computers, but it also requires far less training to produce useful results, Carstensen says. A basic two-dimensional version of the software, suitable for designing basic beams and structural parts, is freely available now online, she says, as the team continues to develop a full 3D version.

    “The potential applications of Prof Carstensen’s research and tools are quite extraordinary,” says Christian Málaga-Chuquitaype, a professor of civil and environmental engineering at Imperial College London, who was not associated with this work. “With this work, her group is paving the way toward a truly synergistic human-machine design interaction.”

    “By integrating engineering ‘intuition’ (or engineering ‘judgement’) into a rigorous yet computationally efficient topology optimization process, the human engineer is offered the possibility of guiding the creation of optimal structural configurations in a way that was not available to us before,” he adds. “Her findings have the potential to change the way engineers tackle ‘day-to-day’ design tasks.” More