More stories

  • in

    A civil discourse on climate change

    A new MIT initiative designed to encourage open dialogue on campus kicked off with a conversation focused on how to address challenges related to climate change.

    “Climate Change: Existential Threat or Bump in the Road” featured Steve Koonin, theoretical physicist and former U.S. undersecretary for science during the Obama administration, and Kerry Emanuel, professor emeritus of atmospheric science at MIT. A crowd of roughly 130 students, staff, and faculty gathered in an MIT lecture hall for the discussion on Tuesday, Oct. 24. 

    “The bump is strongly favored,” Koonin said when the talk began, referring to his contention that climate change was a “bump in the road” rather than an existential threat. After proposing a future in which we could potentially expect continued growth in America’s gross domestic product despite transportation and infrastructure challenges related to climate change, he concluded that investments in nuclear energy and capacity increases related to storing wind- and solar-generated energy could help mitigate climate-related phenomena. 

    Emanuel, while mostly agreeing with Koonin’s assessment of climate challenges and potential solutions, cautioned against underselling the threat of human-aided climate change.

    “Humanity’s adaptation to climate stability hasn’t prepared us to effectively manage massive increases in temperature and associated effects,” he argued. “We’re poorly adapted to less-frequent events like those we’re observing now.”

    Decarbonization, Emanuel noted, can help mitigate global conflicts related to fossil fuel usage. “Carbonization kills between 8 and 9 million people annually,” he said.

    The conversation on climate change is one of several planned on campus this academic year. The speaker series is one part of “Civil Discourse in the Classroom and Beyond,” an initiative being led by MIT philosophers Alex Byrne and Brad Skow. The two-year project is meant to encourage the open exchange of ideas inside and outside college and university classrooms. 

    The speaker series pairs external thought leaders with MIT faculty to encourage the interrogation and debate of all kinds of ideas.

    Finding common ground

    At the talk on climate change, both Koonin and Emanuel recommended a slow and steady approach to mitigation efforts, reminding attendees that, for example, developing nations can’t afford to take a developed world approach to climate change. 

    “These people have immediate needs to meet,” Koonin reminded the audience, “which can include fossil fuel use.”

    Both Koonin and Emanuel recommended a series of steps to assist with both climate change mitigation and effective messaging:

    Sustain and improve climate science — continue to investigate and report findings.
    Improve climate communications for non-experts — tell an easy-to-understand and cohesive story.
    Focus on reliability and affordability before mitigation — don’t undertake massive efforts that may disrupt existing energy transmission infrastructure.
    Adopt a “graceful” approach to decarbonization — consider impacts as broadly as possible.
    Don’t constrain energy supply in the developing world.
    Increase focus on developing and delivering alternative responses  — consider the potential ability to scale power generation, and delivery methods like nuclear energy.
    Mitigating climate risk requires political will, careful consideration, and an improved technical approach to energy policy, both concluded.

    “We have to learn to deal rationally with climate risk in a polarized society,” Koonin offered.

    The audience asked both speakers questions about impacts on nonhuman species (“We don’t know but we should,” both shared); nuclear fusion (“There isn’t enough tritium to effectively scale the widespread development of fusion-based energy; perhaps in 30 to 40 years,” Koonin suggested); and the planetary boundaries framework (“There’s good science underway in this space and I’m curious to see where it’s headed,” said Emanuel.) 

    “The event was a great success,” said Byrne, afterward. “The audience was engaged, and there was a good mix of faculty and students.”

    “One surprising thing,” Skow added, “was both Koonin and Emanuel were down on wind and solar power, [especially since] the idea that we need to transition to both is certainly in the air.”

    More conversations

    A second speaker series event, held earlier this month, was “Has Feminism Made Progress?” with Mary Harrington, author of “Feminism Against Progress,” and Anne McCants, MIT professor of history. An additional discussion planned for spring 2024 will cover the public health response to Covid-19.

    Discussions from the speaker series will appear as special episodes on “The Good Fight,” a podcast hosted by Johns Hopkins University political scientist Yascha Mounk.

    The Civil Discourse project is made possible due, in part, to funding from the Arthur Vining Davis Foundations and a collaboration between the MIT History Section and Concourse, a program featuring an integrated, cross-disciplinary approach to investigating some of humanity’s most interesting questions.

    The Civil Discourse initiative includes two components: the speaker series open to the MIT community, and seminars where students can discuss freedom of expression and develop skills for successfully engaging in civil discourse. More

  • in

    Dennis Whyte steps down as director of the Plasma Science and Fusion Center

    Dennis Whyte, who spearheaded the development of the world’s most powerful fusion electromagnet and grew the MIT Plasma Science and Fusion Center’s research volume by more than 50 percent, has announced he will be stepping down as the center’s director at the end of the year in order to devote his full attention to teaching, engaging in cutting-edge fusion research, and pursuing entrepreneurial activities at the PSFC.

    “The reason I came to MIT as a faculty member in ’06 was because of the PSFC and the very special place it held and still holds in fusion,” says Whyte, the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. When he was appointed director of the PSFC in 2015, Whyte saw it as an opportunity to realize even more of the PSFC’s potential: “After 10 years I think we’ve seen that dream come to life. Research and entrepreneurship are stronger than ever.”

    Whyte’s passion has always been for fusion — the process by which light elements combine to form heavier ones, releasing massive amounts of energy. One hundred years ago fusion was solely the provenance of astronomers’ speculation; through the efforts of generations of scientists and engineers, fusion now holds the potential to offer humanity an entirely new source of clean, abundant energy — and Whyte has been at the forefront of that effort.

    “Fusion’s challenges require interdisciplinary work, so it’s always fresh, and you get these unexpected intersections that can have wild outcomes. As an inherently curious person, fusion is perfect for me.”

    Whyte’s enthusiasm is legendary, especially when it comes to teaching. The effects of that enthusiasm are easy to see: At the start of his tenure, only a handful of students chose to pursue plasma physics and fusion science. Since then, the number of students has ballooned, and this year nearly 100 students from six departments are working with 15 faculty members.

    Of the growth, Whyte says, “It’s not just that we have more students; it’s that they’re working on more diverse topics, and their passion to make fusion a reality is the best part of the PSFC. Seeing full seminars and classes is fundamentally why I’m here.”

    Even as he managed the directorship and pursued his own scholarly work, Whyte remained active in the classroom and continued advising students. Zach Hartwig, a former student who is now a PSFC researcher and MIT faculty member himself, recalled his first meeting with Whyte as an incoming PhD student: “I had to choose between several projects and advisors and meeting Dennis made my decision easy. He catapulted out of his chair and started sketching his vision for a new fusion diagnostic that many people thought was crazy. His passion and eagerness to tackle only the most difficult problems in the field was immediately tangible.”

    For the past 13 years Whyte has offered a fusion technology design class that has generated several key breakthroughs, including liquid immersion blankets essential for converting fusion energy to heat, inside launch radio frequency systems used to stabilize fusing plasmas, and high-temperature superconducting electromagnets that have opened the door to the possibility of fusion devices that are not only smaller, but also more powerful and efficient.

    In fact, the potential of these electromagnets was significant enough that Whyte, an MIT postdoc, and three of Whyte’s former students (Hartwig among them) spun out a private fusion company to fully realize the magnets’ capabilities. Commonwealth Fusion Systems (CFS) both launched and signed a cooperative research agreement with the PSFC in 2018, and the founders’ vision parlayed into significant external investment, allowing a coalition of CFS and PSFC researchers to refine and develop the electromagnets first conceived in Whyte’s class.

    Three years later, after a historic day of testing, the magnet produced a field strength of 20 tesla, making it the most powerful fusion superconducting electromagnet in the world. According to Whyte, “The success of the TFMC magnet is an encapsulation of everything PSFC. It would’ve been impossible for a single investigator, or a lone spin-out, but we brought together all these disciplines in a team that could execute innovatively and incredibly quickly. We shortened the timescale not just for this project, but for fusion as a whole.”

    CFS remains an important collaborator, accounting for approximately 20 percent of the PSFC’s current research portfolio. While Whyte has no financial stake in the company, he remains a principal investigator on CFS’s SPARC project, a proof-of-concept fusion device predicted to produce more energy than it consumes, ready in 2025. SPARC is the lead-up to ARC, CFS’s commercially scalable fusion power plant planned to arrive in the early 2030s.

    The collaboration between CFS and MIT followed a blueprint that had been piloted more than a decade prior, when the Italian energy company Eni S.p.A signed on as a founding member of the MIT Energy Initiative to develop low-carbon technologies. After many years of successfully working in tandem with MITEI to advance renewable energy research, in 2018 Eni made a significant investment in a young CFS to assist in realizing commercial fusion power, which in turn indirectly funded PSFC research; Eni also collaborated directly with the PSFC to create the Laboratory for Innovative Fusion Technologies, which remains active.

    Whyte believes that “thoughtful and meaningful collaboration with the energy industry can make a difference with research and climate change. Industry engagement is very relevant — it changed both of us. Now Eni has fusion in their portfolio.” The arrangement is a demonstration of how public-private collaborations can accelerate the progress of fusion science, and ultimately the arrival of fusion power.

    Whyte’s move to diversify collaborators, leverage the PSFC’s strength as a multidisciplinary hub, and expand research volume was essential to the center’s survival and growth. Early in his tenure, a shift in funding priorities necessitated the shutdown of Alcator C-Mod, the fusion research device in operation at the PSFC for 23 years — though not before C-Mod set the world record for plasma pressure on its last day of operation. Through this transition, Whyte and the members of his leadership team were able to keep the PSFC whole.

    One alumnus was a particular source of inspiration to Whyte during that time: “Reinier [Beeuwkes] said to me, ‘what you’re doing doesn’t just matter to students and MIT, it matters to the world.’ That was so meaningful, and his words really sustained me when I was feeling major doubt.” In 2022 Beeuwkes won the MIT Alumni Better World Service Award for his support of fusion and the PSFC. Since 2018, sponsored research at the PSFC has more than doubled, as have the number of personnel.

    Whyte’s determination to build and maintain a strong community is a prevailing feature of his leadership. Matt Fulton, who started at the PSFC in 1987 and is now director of operations, says of Whyte, “You want a leader like Dennis on your worst days. We were staring down disaster and he had a plan to hold the PSFC together, and somehow it worked. The research was important, but the people have always been more important to him. We’re so lucky to have him.”

    The Office of the Vice President for Research is launching a search for the PSFC’s next leader. Should the search extend beyond the end of the year, an interim director will be appointed.  

    “As MIT works to magnify its impact in the areas of climate and sustainability, Dennis has built the PSFC into an extraordinary resource for the Institute to draw upon,” says Maria T. Zuber, MIT’s vice president for research. “His leadership has positioned MIT on the leading edge of fusion research and the emerging commercial fusion industry, and while the nature of his contributions will change, … the value he brings to the MIT community will remain clear. As Dennis steps down as director, the PSFC is ascendant.”  More

  • in

    Ayomikun Ayodeji ’22 named a 2024 Rhodes Scholar

    Ayomikun “Ayo” Ayodeji ’22 from Lagos, Nigeria, has been selected as a Rhodes Scholar for West Africa. He will begin fully funded postgraduate studies at Oxford University in the U.K. next fall.

    Ayodeji was supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

    “Ayo has worked hard to develop his vision and to express it in ways that will capture the imagination of the broader world. It is a thrill to see him recognized this year as a Rhodes Scholar,” says Professor Nancy Kanwisher, who co-chairs the committee along with Professor Will Broadhead.

    Ayodeji graduated from MIT in 2022 with BS degrees in chemical engineering and management. He is currently an associate at Boston Consulting Group.

    He is passionate about championing reliable energy access across the African landscape and fostering culturally inclusive communities. As a Rhodes Scholar, he will pursue an MSc in energy systems and an MSc in global governance and diplomacy.

    During his time at MIT, Ayodeji’s curiosity for energy innovations was fueled by his research on perovskite solar cells under the MIT Energy Initiative. He then went on to intern at Pioneer Natural Resources where he explored the boundless applications of machine learning tools in completions. At BCG, Ayodeji supports both public and private sector clients on a variety of renewable energy topics including clean energy transition, decarbonization roadmaps, and workforce development.

    Ayodeji’s community-oriented mindset led him to team up with a group of friends and partner with the Northeast Children’s Trust (NECT), an organization that helps children affected by the Boko Haram insurgency in northeastern Nigeria. The project, sponsored by Davis Projects for Peace and MIT’s PKG Center, expanded NECT’s programs via an offline, portable classroom server.

    Ayodeji served as an undergraduate representative on the MIT Department of Chemical Engineering’s Diversity, Equity, and Inclusion Committee. He was also vice president of the MIT African Students’ Association and a coordinator for the annual MIT International Students Orientation. More

  • in

    3 Questions: What should scientists and the public know about nuclear waste?

    Many researchers see an expansion of nuclear power, which produces no greenhouse gas emissions from its power generation, as an essential component of strategies to combat global climate change. Yet there is still strong resistance to such expansion, and much of that is based on the issue of how to safely dispose of the resulting radioactive waste material. MIT recently convened a workshop to help nuclear engineers, policymakers, and academics learn about approaches to communicating accurate information about the management of nuclear waste to students and the public, in hopes of allaying fears and encouraging support for the development of new, safer nuclear power plants around the world.

    Organized by Haruko Wainwright, an MIT assistant professor of nuclear science and engineering and of civil and environmental engineering, the workshop included professors, researchers, industry representatives, and government officials, and was designed to emphasize the multidisciplinary nature of the issue. MIT News asked Wainwright to describe the workshop and its conclusions, which she reported on in a paper just published in the Journal of Environmental Radioactivity.

    Q: What was the main objective of the this workshop?

    A: There is a growing concern that, in spite of much excitement about new nuclear reactor deployment and nuclear energy for tackling climate change, relatively less attention is being paid to the thorny question of long-term management of the spent fuel (waste) from these reactors. The government and industry have embraced consent-based siting approaches — that is, finding sites to store and dispose nuclear waste through broad community participation with equity and environmental justice considered. However, many of us in academia feel that those in the industry are missing key facts to communicate to the public.

    Understanding and managing nuclear waste requires a multidisciplinary expertise in nuclear, civil, and chemical engineering as well as environmental and earth sciences. For example, the amount of waste per se, which is always very small for nuclear systems, is not the only factor determining the environmental impacts because some radionuclides in the waste are vastly more mobile than others, and thus can spread farther and more quickly. Nuclear engineers, environmental scientists, and others need to work together to predict the environmental impacts of radionuclides in the waste generated by the new reactors, and to develop waste isolation strategies for an extended time.

    We organized this workshop to ensure this collaborative approach is mastered from the start. A second objective was to develop a blueprint for educating next-generation engineers and scientists about nuclear waste and shaping a more broadly educated group of nuclear and general engineers.

    Q: What kinds of innovative teaching practices were discussed and recommended, and are there examples of these practices in action?

     A: Some participants teach project-based or simulation-based courses of real-world situations. For example, students are divided into several groups representing various stakeholders — such as the public, policymakers, scientists, and governments — and discuss the potential siting of a nuclear waste repository in a community. Such a course helps the students to consider the perspectives of different groups, understand a plurality of points of view, and learn how to communicate their ideas and concerns effectively. Other courses may ask students to synthesize key technical facts and numbers, and to develop a Congressional testimony statement or an opinion article for newspapers. 

    Q: What are some of the biggest misconceptions people have about nuclear waste, and how do you think these misconceptions can be addressed?

    A: The workshop participants agreed that the broader and life-cycle perspectives are important. Within the nuclear energy life cycle, for example, people focus disproportionally on high-level radioactive waste or spent fuel, which has been highly regulated and well managed. Nuclear systems also produce secondary waste, including low-level waste and uranium mining waste, which gets less attention.

    The participants also believe that the nuclear industry has been exemplary in leading the environmental and waste isolation science and technologies. Nuclear waste disposal strategies were developed in the 1950s, much earlier than other hazardous waste which began to receive serious regulation only in the 1970s. In addition, current nuclear waste disposal practices consider the compliance periods of isolation for thousands of years, while other hazardous waste disposal is not required to consider beyond 30 years, although some waste has an essentially infinite longevity, for example, mercury or lead. Finally, there is relatively unregulated waste — such as CO2 from fossil energy, agricultural effluents and other sources — that is released freely into the biosphere and is already impacting our environment. Yet, many people remain more concerned about the relatively well-regulated nuclear waste than about all these unregulated sources.

    Interestingly, many engineers — even nuclear engineers — do not know these facts. We believe that we need to teach students not just cutting-edge technologies, but also broader perspectives, including the history of industries and regulations, as well as environmental science.

    At the same time, we need to move the nuclear community to think more holistically about waste and its environmental impacts from the early stages of design of nuclear systems. We should design new reactors from the “waste up.”  We believe that the nuclear industry should continue to lead waste-management technologies and strategies, and also encourage other industries to adopt lifecycle approaches about their own waste to improve the overall sustainability. More

  • in

    Putting public service into practice

    Salomé Otero ’23 doesn’t mince words about the social impact internship she had in 2022. “It was transformational for me,” she says.

    Otero, who majored in management with a concentration in education, always felt that education would play some role in her career path after MIT, but she wasn’t sure how. That all changed her junior year, when she got an email from the Priscilla King Gray Public Service Center (PKG Center) about an internship at The Last Mile, a San Francisco-based nonprofit that provides education and technology training for justice-impacted individuals.

    Otero applied and was selected as a web curriculum and re-entry intern at The Last Mile the summer between her junior and senior year — an eye-opening experience that cemented her post-graduation plans. “You hear some amazing stories, like this person was incarcerated before the iPhone had come out. Now he’s a software developer,” she explains. “And for me, the idea of using computer science education for good appealed to me on many fronts. But even if I hadn’t gotten the opportunity to work at The Last Mile, the fact that I saw a job description for this role and learned that companies have the resources to make a difference … I didn’t know that there were people and organizations dedicating their time and energy into this.”

    She was so inspired that, when she returned for her senior year, Otero found work at two education labs at MIT, completed another social impact internship over Independent Activities Period (IAP) at G{Code}, an education nonprofit that provides computer science education to women and nonbinary people of color, and decided to apply to graduate school. “I can tell you with 100 percent certainty that I would not be pursuing a PhD in education policy right now if it weren’t for the PKG Center,” she says. She will begin her doctorate this fall.

    Otero’s experience doesn’t surprise Jill Bassett, associate dean and director of the PKG Center. “MIT students are deeply concerned about the world’s most challenging problems,” she says. “And social impact internships are an incredible way for them to leverage their unique talents and skills to help create meaningful change while broadening their perspectives and discovering potential career paths.”

    “There’s a lot more out there”

    Founded 35 years ago, the PKG Center offers a robust portfolio of experiential learning programs broadly focused on four themes: climate change, health equity, racial justice, and tech for social good. The Center’s Social Impact Internship Program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures. Students reap rich rewards from these experiences, including learning ways to make social change, informing their academic journey and career path, and gaining valuable professional skills.

    “It was a really good learning opportunity,” says Juliet Liao ’23, a graduate of MIT’s Naval ROTC program who commissioned as a submarine officer in June. She completed a social impact internship with the World Wildlife Fund, where she researched greenhouse gas emissions related to the salmon industry. “I haven’t had much exposure to what work outside of the Navy looks like and what I’m interested in working on. And I really liked the science-based approach to mitigating greenhouse gas emissions.”

    Amina Abdalla, a rising junior in biological engineering, arrived at MIT with a strong interest in health care and determined to go to medical school. But her internship at MassHealth, the Medicaid and Children’s Health Insurance Program provider for the state of Massachusetts, broadened her understanding of the complexity of the health care system and introduced her to many career options that she didn’t know existed.

    “They did coffee chats between interns and various people who work in MassHealth, such as doctors, lawyers, policy advocates, and consultants. There’s a lot more out there that one can do with the degree that they get and the knowledge they gain. It just depends on your interests, and I came away from that really excited,” she says. The experience inspired her to take a class in health policy before she graduates. “I know I want to be a doctor and I have a lot of interest in science in general, but if I could do some kind of public sector impact with that knowledge, I would definitely be interested in doing that.”

    Social impact internships also provide an opportunity for students to hone their analytical, technical, and people skills. Selma Sharaf ’22 worked on developing a first-ever climate action plan for Bennett College in Greensboro, North Carolina, one of two all-women’s historically Black colleges and universities in the United States. She conducted research and stakeholder interviews with nonprofits; sustainability directors at similar colleges; local utility companies; and faculty, staff, and students at Bennett.

    “Our external outreach efforts with certain organizations allowed me to practice having conversations about energy justice and climate issues with people who aren’t already in this space. I learned how useful it can be to not only discuss the overall issues of climate change and carbon emissions, but to also zoom in on more relatable personal-level impacts,” she says. Sharaf is currently working in clean energy consulting and plans to pursue a master’s degree at Stanford University’s Atmosphere/Energy Program this fall.

    Working with “all stars”

    Organizations that partner with the PKG Center are often constrained by limited technical and financial resources. Since the program is funded by the PKG Center, these internships help expand their organizational capacity and broaden their impact; MIT students can take on projects that might not otherwise get done, and they also bring fresh skills and ideas to the organization — and the zeal to pursue those ideas.

    Emily Moberg ’11, PhD ’16 got involved with the social impact internship programs in 2020. Moberg, who is the director of Scope 3 Carbon Measurement and Mitigation at the World Wildlife Fund, has worked with 20 MIT students since then, including Liao. The body of work that Liao and several other interns completed has been published in the form of 10 briefs onmitigating greenhouse gas emissions from key commodities, such as soy, beef, coffee, and palm oil.

    “Social impact interns bring technical skills, deep curiosity, and tenacity,” Moberg says. “I’ve worked with students across many majors, including computer and materials science; all of them bring a new, fresh perspective to our problems and often sophisticated quantitative ability. Their presence often helps us to investigate new ideas or expand a project. In some cases, interns have proposed new projects and ideas themselves. The support from the PKG Center for us to host these interns has been critical, especially for these new explorations.”

    Anne Carrington Hayes, associate professor and executive director of the Global Leadership and Interdisciplinary Studies program at Bennett College, calls the MIT interns she’s worked with since 2021 “all stars.” The work Sharaf and three other students performed has culminated in a draft climate action plan that will inform campus renovations and other measures that will be implemented at the college in the coming years.

    “They have been foundational in helping me to research, frame, collect data, and engage with our students and the community around issues of environmental justice and sustainability, particularly from the lens of what would be impactful and meaningful for women of color at Bennett College,” she says.

    Balancing supply and demand

    Bassett says that the social impact internship program has grown exponentially in the past few years. Before the pandemic, the program served five students from summer 2019 to spring 2020; it now serves about 125 students per year. Over that time, funding has become a significant limiting factor; demand for internships was three times the number of available internships in summer 2022, and five times the supply during IAP 2023.

    “MIT students have no shortage of opportunities available to them in the private sector, yet students are seeking social impact internships because they want to apply their skills to issues that they care about,” says Julie Uva, the PKG Center’s program administrator for social impact internships and employment. “We want to ensure every student who wants a social impact internship can access that experience.”

    MIT has taken note of this financial shortfall: the Task Force 2021 report recommended fundraising to alleviate the under-supply of social impact experiential learning opportunities (ELOs), and MIT’s Fast Forward Climate Action Plan called on the Institute to make a climate or clean-energy ELOs available to every undergraduate who wants one. As a result, the Office of Experiential Learning is working with Resource Development to raise new funding to support many more opportunities, which would be available to students not only through the PKG Center but also other offices and programs, such as MIT D-Lab, Undergraduate Research Opportunity Programs, MISTI, and the Environmental Solutions Initiative, among others.

    That’s welcome news to Salomé Otero. She’s familiar with the Institute’s fundraising efforts, having worked as one of the Alumni Association’s Tech Callers. Now, as an alumna herself and a former social impact intern, she has an appreciation for the power of philanthropy.

    “MIT is ahead of the game compared to so many universities, in so many ways,” she says. “But if they want to continue to do that in the most impactful way possible, I think investing in ideas and missions like the PKG Center is the way to go. So when that call comes, I’ll tell whoever is working that night shift, ‘Yeah, I’ll donate to the PKG Center.’” More

  • in

    A welcome new pipeline for students invested in clean energy

    Akarsh Aurora aspired “to be around people who are actually making the global energy transition happen,” he says. Sam Packman sought to “align his theoretical and computational interests to a clean energy project” with tangible impacts. Lauryn Kortman says she “really liked the idea of an in-depth research experience focused on an amazing energy source.”

    These three MIT students found what they wanted in the Fusion Undergraduate Scholars (FUSars) program launched by the MIT Plasma Science and Fusion Center (PSFC) to make meaningful fusion energy research accessible to undergraduates. Aurora, Kortman, and Packman are members of a cohort of 10 for the program’s inaugural run, which began spring semester 2023.

    FUSars operates like a high-wattage UROP (MIT’s Undergraduate Research Opportunities Program). The program requires a student commitment of 10 to 12 hours weekly on a research project during the course of an academic year, as well as participation in a for-credit seminar providing professional development, communication, and wellness support. Through this class and with the mentorship of graduate students, postdocs, and research scientist advisors, students craft a publication-ready journal submission summarizing their research. Scholars who complete the entire year and submit a manuscript for review will receive double the ordinary UROP stipend — a payment that can reach $9,000.

    “The opportunity just jumped out at me,” says Packman. “It was an offer I couldn’t refuse,” adds Aurora.

    Building a workforce

    “I kept hearing from students wanting to get into fusion, but they were very frustrated because there just wasn’t a pipeline for them to work at the PSFC,” says Michael Short, Class of ’42 Associate Professor of Nuclear Science and Engineering and associate director of the PSFC. The PSFC bustles with research projects run by scientists and postdocs. But since the PSFC isn’t a university department with educational obligations, it does not have the regular machinery in place to integrate undergraduate researchers.

    This poses a problem not just for students but for the field of fusion energy, which holds the prospect of unlimited, carbon-free electricity. There are promising advances afoot: MIT and one of its partners, Commonwealth Fusion Systems, are developing a prototype for a compact commercial fusion energy reactor. The start of a fusion energy industry will require a steady infusion of skilled talent.

    “We have to think about the workforce needs of fusion in the future and how to train that workforce,” says Rachel Shulman, who runs the FUSars program and co-instructs the FUSars class with Short. “Energy education needs to be thinking right now about what’s coming after solar, and that’s fusion.”

    Short, who earned his bachelor’s, master’s, and doctoral degrees at MIT, was himself the beneficiary of the Undergraduate Research Opportunity Program (UROP) at the PSFC. As a faculty member, he has become deeply engaged in building transformative research experiences for undergraduates. With FUSars, he hopes to give students a springboard into the field — with an eye to developing a diverse, highly trained, and zealous employee pool for a future fusion industry.

    Taking a deep dive

    Although these are early days for this initial group of FUSars, there is already a shared sense of purpose and enthusiasm. Chosen from 32 applicants in a whirlwind selection process — the program first convened in early February after crafting the experience over Independent Activities Period — the students arrived with detailed research proposals and personal goals.

    Aurora, a first-year majoring in mechanical engineering and artificial intelligence, became fixed on fusion while still in high school. Today he is investigating methods for increasing the availability, known as capacity factor, of fusion reactors. “This is key to the commercialization of fusion energy,” he says.

    Packman, a first-year planning on a math and physics double major, is developing approaches to help simplify the computations involved in designing the complex geometries of solenoid induction heaters in fusion reactors. “This project is more immersive than my last UROP, and requires more time, but I know what I’m doing here and how this fits into the broader goals of fusion science,” he says. “It’s cool that our project is going to lead to a tool that will actually be used.”

    To accommodate the demands of their research projects, Shulman and Short discouraged students from taking on large academic loads.

    Kortman, a junior majoring in materials science and engineering with a concentration in mechanical engineering, was eager to make room in her schedule for her project, which concerns the effects of radiation damage on superconducting magnets. A shorter research experience with the PSFC during the pandemic fired her determination to delve deeper and invest more time in fusion.

    “It is very appealing and motivating to join people who have been working on this problem for decades, just as breakthroughs are coming through,” she says. “What I’m doing feels like it might be directly applicable to the development of an actual fusion reactor.”

    Camaraderie and support

    In the FUSar program, students aim to seize a sizeable stake in a multipronged research enterprise. “Here, if you have any hypotheses, you really get to pursue those because at the end of the day, the paper you write is yours,” says Aurora. “You can take ownership of what sort of discovery you’re making.”

    Enabling students to make the most of their research experiences requires abundant support — and not just for the students. “We have a whole separate set of programming on mentoring the mentors, where we go over topics with postdocs like how to teach someone to write a research paper, rather than write it for them, and how to help a student through difficulties,” Shulman says.

    The weekly student seminar, taught primarily by Short and Shulman, covers pragmatic matters essential to becoming a successful researcher — topics not always addressed directly or in the kind of detail that makes a difference. Topics include how to collaborate with lab mates, deal with a supervisor, find material in the MIT libraries, produce effective and persuasive research abstracts, and take time for self-care.

    Kortman believes camaraderie will help the cohort through an intense year. “This is a tight-knit community that will be great for keeping us all motivated when we run into research issues,” she says. “Meeting weekly to see what other students are able to accomplish will encourage me in my own project.”

    The seminar offerings have already attracted five additional participants outside the FUSars cohort. Adria Peterkin, a second-year graduate student in nuclear science and engineering, is sitting in to solidify her skills in scientific writing.

    “I wanted a structured class to help me get good at abstracts and communicating with different audiences,” says Peterkin, who is investigating radiation’s impact on the molten salt used in fusion and advanced nuclear reactors. “There’s a lot of assumed knowledge coming in as a PhD student, and a program like FUSars is really useful to help level out that playing field, regardless of your background.”

    Fusion research for all

    Short would like FUSars to cast a wide net, capturing the interest of MIT undergraduates no matter their backgrounds or financial means. One way he hopes to achieve this end is with the support of private donors, who make possible premium stipends for fusion scholars.

    “Many of our students are economically disadvantaged, on financial aid or supporting family back home, and need work that pays more than $15 an hour,” he says. This generous stipend may be critical, he says, to “flipping students from something else to fusion.”

    Although this first FUSars class is composed of science and engineering students, Short envisions a cohort eventually drawn from the broad spectrum of MIT disciplines. “Fusion is not a nuclear-focused discipline anymore — it’s no longer just plasma physics and radiation,” he says. “We’re trying to make a power plant now, and it’s an all hands-on-deck kind of thing, involving policy and economics and other subjects.”

    Although many are just getting started on their academic journeys, FUSar students believe this year will give them a strong push toward potential energy careers. “Fusion is the future of the energy transition and how we’re going to defeat climate change,” says Aurora. “I joined the program for a deep dive into the field, to help me decide whether I should invest the rest of my life to it.” More

  • in

    MIT climate and sustainability interns consider aviation emissions and climate change

    Over 600 MIT students are traveling abroad with the MIT International Science and Technology Initiatives (MISTI) to intern, research, and work in organizations across 25 countries this summer. Twenty percent of the students were placed in areas related to climate and sustainability.

    Through MISTI, hundreds of MIT students travel abroad each summer to intern in companies, universities, governments, and nongovernmental organizations. Since 2018, around 20 percent of the internships and research experiences have been in areas related to climate and sustainability. MISTI has been working to increase the number of interns working on these projects by increasing the number of hosts and available grants, as well as connecting with other labs, departments, and centers across MIT to support students’ global experiences.

    For the first time this year, MISTI developed pre-departure sessions intended to help students reflect on their experiences in the wider context of sustainability and climate change. Around 90 students were invited to participate in a Canvas course and an in-person session with guest speakers. In the Canvas session, students were asked to calculate the carbon footprint of their flight to their MISTI destination and compare the results to other common daily activities. Four out of five of them expressed that the level of emissions from their flights was higher, or much higher, than they previously thought. Half of the students expressed that this was the first time they thought about their flight emissions for the summer. The students were then directed to the MIT Climate Portal website and asked to reflect on the impact of carbon dioxide emissions on the climate and the effects of climate change on economically developing countries. The Canvas exercise concluded with readings and reflections on what can be done to address the climate crisis.

    The in-person session featured David Hsu, associate professor of urban and environmental planning and co-chair of the Campus Fast Forward working group on climate education, who presented his research and work on flight emissions. He emphasized the high impact of aviation on carbon dioxide emissions and how emissions are unevenly distributed on a global scale, based on income levels and per capita bases. A small group of travelers account for most of the emissions, which is also true in academic settings where a small number of travelers have a much higher carbon footprint. Hsu also explained the School of Architecture and Planning climate action plan and how it addresses faculty and student travel. “I know it’s hard. If we at MIT want to be leaders in this area, talking about it is not enough,” he said. “We have to act. We cannot be models just by doing research; we have to be role models at all levels. Faculty, staff, and students have to change their flight habits.”

    Having completed the climate and sustainability training, Favianna Colón Irizarry, a rising second-year majoring in chemical and biological engineering, explains, “to minimize our carbon footprint, we are taught to eat consciously and use environmentally friendly products. What we are not taught is that this alone will not make a difference; we ought to sacrifice more, like flying selectively and meaningfully, to truly make an impact. MISTI’s Climate and Sustainability helped me recognize this, as well as prepare me for how I choose to proceed in my future green endeavors.”

    Also during the session, rising seniors Anushree Chaudhuri and Melissa Stok, the leads for the MIT Student Sustainability Coalition, presented their work around coordinating efforts among students and the vast landscape of groups, organizations, and entities at the Institute. They invited all interested students to join and reach out to any of the entities that could be a good fit for their interests. Chaudhuri reflected afterwards, “Sustainability is inherently interdisciplinary. Every MIT student can incorporate sustainability into their work, regardless of major, class year, or interests! I was excited to join my SSC co-lead, Melissa, in speaking with a diverse group of MISTI interns about how to explore sustainability-related academic, extracurricular, professional, and experiential opportunities at MIT and beyond. These students come from many different disciplines, so it was incredibly heartening to hear that they are all pursuing a climate-related project abroad this summer.”

    Eduardo Rivera, MISTI’s coordinator for climate and sustainability expressed that “educational experiences abroad are a fundamental part of MIT’s mission to foster global leaders to tackle the climate crisis. This summer, more than 110 students will be working around the world in solar and wind technologies, carbon capture, climate adaptation and urban planning, sustainable concrete, electric mobility, among others. We are using this opportunity to expand on the reflection part of the experiential learning cycle. The goal of these pre-departure sessions is to raise awareness and help our students reflect on the impact of their everyday activities on the climate, and to also give them resources to learn and act thoughtfully. We hope they will not only become conscious travelers, but also agents for change.”

    “This year’s climate and sustainability pre-departure training were pilot sessions, and the goal is to expand this learning experience to all MISTI students, not just those working in the fields of climate and sustainability. This will be a unique opportunity to raise awareness and expand the knowledge to over 1,000 of our students as they travel to more than 40 countries across the globe,” explains Abby MacKenzie, MIT-India coordinator who co-developed the pre-departure sessions. More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More