More stories

  • in

    High-energy and hungry for the hardest problems

    A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.

    But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.

    Tackling turbulence

    It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.

    Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.

    Play video

    Alcator C-Mod Tokamak Tour

    White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”

    In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.

    White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.

    Laser-focused on turbulence

    Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.

    But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.

    “I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”

    At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”

    As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”

    But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”

    Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.

    Restless for a challenge

    White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.

    As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.

    In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.

    White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.

    These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.

    Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More

  • in

    Fusion’s newest ambassador

    When high school senior Tuba Balta emailed MIT Plasma Science and Fusion Center (PSFC) Director Dennis Whyte in February, she was not certain she would get a response. As part of her final semester at BASIS Charter School, in Washington, she had been searching unsuccessfully for someone to sponsor an internship in fusion energy, a topic that had recently begun to fascinate her because “it’s not figured out yet.” Time was running out if she was to include the internship as part of her senior project.

    “I never say ‘no’ to a student,” says Whyte, who felt she could provide a youthful perspective on communicating the science of fusion to the general public.

    Posters explaining the basics of fusion science were being considered for the walls of a PSFC lounge area, a space used to welcome visitors who might not know much about the center’s focus: What is fusion? What is plasma? What is magnetic confinement fusion? What is a tokamak?

    Why couldn’t Balta be tasked with coming up with text for these posters, written specifically to be understandable, even intriguing, to her peers?

    Meeting the team

    Although most of the internship would be virtual, Balta visited MIT to meet Whyte and others who would guide her progress. A tour of the center showed her the past and future of the PSFC, one lab area revealing on her left the remains of the decades-long Alcator C-Mod tokamak and on her right the testing area for new superconducting magnets crucial to SPARC, designed in collaboration with MIT spinoff Commonwealth Fusion Systems.

    With Whyte, graduate student Rachel Bielajew, and Outreach Coordinator Paul Rivenberg guiding her content and style, Balta focused on one of eight posters each week. Her school also required her to keep a weekly blog of her progress, detailing what she was learning in the process of creating the posters.

    Finding her voice

    Balta admits that she was not looking forward to this part of the school assignment. But she decided to have fun with it, adopting an enthusiastic and conversational tone, as if she were sitting with friends around a lunch table. Each week, she was able to work out what she was composing for her posters and her final project by trying it out on her friends in the blog.

    Her posts won praise from her schoolmates for their clarity, as when in Week 3 she explained the concept of turbulence as it relates to fusion research, sending her readers to their kitchen faucets to experiment with the pressure and velocity of running tap water.

    The voice she found through her blog served her well during her final presentation about fusion at a school expo for classmates, parents, and the general public.

    “Most people are intimidated by the topic, which they shouldn’t be,” says Balta. “And it just made me happy to help other people understand it.”

    Her favorite part of the internship? “Getting to talk to people whose papers I was reading and ask them questions. Because when it comes to fusion, you can’t just look it up on Google.”

    Awaiting her first year at the University of Chicago, Balta reflects on the team spirit she experienced in communicating with researchers at the PSFC.

    “I think that was one of my big takeaways,” she says, “that you have to work together. And you should, because you’re always going to be missing some piece of information; but there’s always going to be somebody else who has that piece, and we can all help each other out.” More

  • in

    Migration Summit addresses education and workforce development in displacement

    “Refugees can change the world with access to education,” says Alnarjes Harba, a refugee from Syria who recently shared her story at the 2022 Migration Summit — a first-of-its-kind, global convening to address the challenges that displaced communities face in accessing education and employment.

    At the age of 13, Harba was displaced to Lebanon, where she graduated at the top of her high school class. But because of her refugee status, she recalls, no university in her host country would accept her. Today, Harba is a researcher in health-care architecture. She holds a bachelor’s degree from Southern New Hampshire University, where she was part of the Global Education Movement, a program providing refugees with pathways to higher education and work.

    Like many of the Migration Summit’s participants, Harba shared her story to call attention not only to the barriers to refugee education, but also to the opportunities to create more education-to-employment pathways like MIT Refugee Action Hub’s (ReACT) certificate programs for displaced learners.

    Organized by MIT ReACT, the MIT Abdul Latif Jameel World Education Lab (J-WEL), Na’amal, Karam Foundation, and Paper Airplanes, the Migration Summit sought to center the voices and experiences of those most directly impacted by displacement — both in narratives about the crisis and in the search for solutions. Themed “Education and Workforce Development in Displacement,” this year’s summit welcomed more than 900 attendees from over 30 countries, to a total of 40 interactive virtual sessions led by displaced learners, educators, and activists working to support communities in displacement.

    Sessions highlighted the experiences of refugees, migrants, and displaced learners, as well as current efforts across the education and workforce development landscape, ranging from pK-12 initiatives to post-secondary programs, workforce training to entrepreneurship opportunities.

    Overcoming barriers to access

    The vision for the Migration Summit developed, in part, out of the need to raise more awareness about the long-standing global displacement crisis. According to the United Nations High Commissioner for Refugees (UNHCR), 82.4 million people worldwide today are forcibly displaced, a figure that doesn’t include the estimated 12 million people who have fled their homes in Ukraine since February.

    “Refugees not only leave their countries; they leave behind a thousand memories, their friends, their families,” says Mondiant Dogon, a human rights activist, refugee ambassador, and author who gave the Migration Summit’s opening keynote address. “Education is the most important thing that can happen to refugees. In that way, we can leave behind the refugee camps and build our own independent future.”

    Yet, as the stories of the summit’s participants highlight, many in displacement have lost their livelihoods or had their education disrupted — only to face further challenges when trying to access education or find work in their new places of residence. Obstacles range from legal restrictions, language and cultural barriers, and unaffordable costs to lack of verifiable credentials. UNHCR estimates that only 5 percent of refugees have access to higher education, compared to the global average of 39 percent.

    “There is another problem related to forced displacement — dehumanization of migrants,” says Lina Sergie Attar, the founder and CEO of Karam Foundation. “They are unjustly positioned as enemies, as a threat.”

    But as Blein Alem, an MIT ReACT alum and refugee from Eritrea, explains, “No one chooses to be a refugee — it just occurs. Whether by conflict, war, human rights violations, just because you have refugee status does not mean that you are not willing to make a change in your life and access to education and work.” Several participants, including Alem, shared that, even with a degree in hand, their refugee status limited their ability to work in their new countries of residence.

    Displaced communities face complex and structural challenges in accessing education and workforce development opportunities. Because of the varying and vast effects of displacement, efforts to address these challenges range in scale and focus and differ across sectors. As Lorraine Charles, co-founder and director of Na’amal, noted in the Migration Summit’s closing session, many organizations find themselves working in silos, or even competing with each other for funding and other resources. As a result, solution-making has been fragmented, with persistent gaps between different sectors that are, in fact, working toward the same goals.

    Imagining a modular, digital, collaborative approach

    A key takeaway from the month’s discussions, then, is the need to rethink the response to refugee education and workforce challenges. During the session, “From Intentions to Impact: Decolonizing Refugee Response,” participants emphasized the systemic nature of these challenges. Yet formal responses, such as the 1951 Refugee Convention, have been largely inadequate — in some instances even oppressing the communities they’re meant to support, explains Sana Mustafa, director of partnership and engagement for Asylum Access.

    “We have the opportunity to rethink how we are handling the situation,” Mustafa says, calling for more efforts to include refugees in the design and development of solutions.

    Presenters also agreed that educational institutions, particularly universities, could play a vital role in providing more pathways for refugees and displaced learners. Key to this is rethinking the structure of education itself, including its delivery.

    “The challenge right now is that degrees are monolithic,” says Sanjay Sarma, vice president for MIT Open Learning, who gave the keynote address on “Pathways to Education, Livelihood, and Hope.” “They’re like those gigantic rocks at Stonehenge or in other megalithic sites. What we need is a much more granular version of education: bricks. Bricks were invented several thousand years ago, but we don’t really have that yet formally and extensively in education.”

    “There is no way we can accommodate thousands and thousands of refugees face-to-face,” says Shai Reshef, the founder and president of University of the People. “The only path is a digital one.”

    Ultimately, explains Demetri Fadel of Karam Foundation, “We really need to think about how to create a vision of education as a right for every person all around the world.”

    Underlying many of the Migration Summit’s conclusions is the awareness that there is still much work to be done. However, as the summit’s co-chair Lana Cook said in her closing remarks, “This was not a convening of despair, but one about what we can build together.”

    The summit’s organizers are currently putting together a public report of the key findings that have emerged from the month’s conversations, including recommendations for thematic working groups and future Migration Summit activities. More

  • in

    Strengthening students’ knowledge and experience in climate and sustainability

    Tackling the climate crisis is central to MIT. Critical to this mission is harnessing the innovation, passion, and expertise of MIT’s talented students, from a variety of disciplines and backgrounds. To help raise this student involvement to the next level, the MIT Climate and Sustainability Consortium (MCSC) recently launched a program that will engage MIT undergraduates in a unique, year-long, interdisciplinary experience both developing and implementing climate and sustainability research projects.

    The MCSC Climate and Sustainability Scholars Program is a way for students to dive deeply and directly into climate and sustainability research, strengthen their skill sets in a variety of climate and sustainability-related areas, build their networks, and continue to embrace and grow their passion.The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research.

    The program, open to rising juniors and seniors from all majors and departments, is inspired by MIT’s SuperUROP program. Students will enroll in a year-long class while simultaneously engaging in research. Research projects will be climate- and sustainability-focused and can be on or off campus. The course will be initially facilitated by Desiree Plata, the Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.“Climate and sustainability challenges face real barriers in science, technology, policy, and beyond,” says Plata, who also serves on the MCSC’s Faculty Steering Committee. “We need to motivate an all-hands effort to bring MIT talent to bear on these challenges, and we need to give our students the tools to make tangible benefits within and between their disciplines. This was our goal in designing the MCSC Scholars Program, and it’s what I’m most excited about.”

    The Climate and Sustainability Scholars Program has relevance across all five schools, and the number of places the course is cross-listed continues to grow. As is the broader goal of the MCSC, the Climate and Sustainability Scholars Program aims to amplify and extend MIT’s expertise — through engaging students of all backgrounds and majors, bringing in faculty mentors and instructors from around the Institute, and identifying research opportunities and principal investigators that span disciplines. The student cohort model will also build off of the successful community-building endeavors by the MIT Energy Initiative and Environmental Solutions Initiative, among others, to bring students with similar interests together into an interdisciplinary, problem-solving space.The program’s fall semester will focus on key climate and sustainability topics, such as decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts, and humanities-based communication of climate topics, all while students engage in research. Students will simultaneously develop project proposals, participate in a project through MIT’s Undergraduate Research Opportunities Program, and communicate their work using written and oral media. The spring semester’s course will focus on research and experiential activities, and help students communicate their outputs in entrepreneurial or policy activities that would enable the research outcomes to be rapidly scaled for impact.Throughout the program, students will engage with their research mentors, additional mentors drawn from MCSC-affiliated faculty, postdoctoral Impact Fellows, and graduate students — and there will also be opportunities for interaction with representatives of MCSC member companies.“Providing opportunities for students to sharpen the skills and knowledge needed to pioneer solutions for climate change mitigation and adaptation is critical,” says Olivetti. “We are excited that the Climate and Sustainability Scholars Program can contribute to that important mission.” More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More

  • in

    Q&A: Bettina Stoetzer on envisioning a livable future

    In an ongoing series, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving the economic, political, ethical, and cultural dimensions of climate change, as well as mitigating its myriad social and ecological impacts. Bettina Stoetzer is the Class of 1948 Career Development Associate Professor of Anthropology at MIT; her research combines perspectives on ecology and environmental change with an analysis of migration, race, and social justice. In this conversation with SHASS Communications, she shares insights from anthropology and from her forthcoming book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin” (Duke University Press, 2022).Q: You research “ruderal” ecologies — those rising up like weeds in inhospitable locales such as industrial zones. What does your work reveal about the relationship between humans and the environment, particularly as climate change presents ever more challenges to human habitation?A: The term ruderal originates from the Latin word “rudus,” meaning “rubble.” In urban ecology it refers to organisms that spontaneously inhabit inhospitable environments such as rubble spaces, the cracks in sidewalks, or spaces alongside train tracks and roads. As an anthropologist, I find the ruderal to be a useful lens for examining this historical moment when environmental degradation, war, forced migration, economic inequality, and rising nationalism render much of the world inhospitable to so many beings.

    My book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin,” is inspired by the insights of botany, ecology, as well as by social justice struggles. During my fieldwork in Berlin, I engaged with diverse communities — botanists, environmentalists, public officials, and other Berlin residents, such as white German nature enthusiasts, Turkish migrants who cultivate city gardens, and East African refugees who live in the forested edges of the city.The botanists I spoke with researched so-called “ruderal flora” that flourished in the city’s bombed landscapes after the end of World War II. Berlin’s rubble vegetation was abundant with plants that usually grow in much warmer climate zones, and the botanists realized that many of these plants’ seeds had arrived in the city by chance — hitching a ride via imported materials and vehicles, or the boots of refugees. At the same time, the initial appearance of these plants illustrated that Berlin had become hotter, which shed light on the early signs of climate change. But that is only part of the story. Listening to migrants, refugees, and other Berlin residents during my fieldwork, I also learned that it is important to consider the ways in which people who are often not recognized as experts relate to urban lands. White European environmental discourse often frames migrants and communities of color as having an inappropriate relation to “nature” in the city, and racializes them on that basis. For example, Turkish migrants who barbecue in Berlin’s parks are often portrayed as polluting the “green lungs” of Berlin.Yet from working with these communities, as well as with other Berliners who cultivated urban vegetable gardens, built makeshift shelters in abandoned lots, produced informal food economies in Berlin’s parks, or told stories about their experience in the forest edges of the city, I learned that people, while grappling with experiences of racism, actually carved out alternative ways of relating to urban lands that challenged white European and capitalist traditions.Engaging with these practices, I utilize the concept of the ruderal and expand it as an analytic for tracking seemingly disparate worlds — and for attending to the heterogeneous ways in which people build lives out of the ruins of European nationalism and capitalism. My goal in the book is not to equate people with plants, but rather to ask how people, plants, animals, and other living beings are intertwined in projects of capitalist extraction and in nation-making — and how they challenge and rework these projects.Q: In what ways do you think the tools and insights from anthropology can advance efforts to address climate change and its impacts?A: When tackling complex environmental challenges, climate change included, the focus is often on “the social consequences of” climate change and technological solutions to address it. What is exciting about anthropology is that it gives us tools to interrogate environmental challenges through a broader lens.Anthropologists use in-depth fieldwork to examine how people make sense of and relate to the world. Ethnographic fieldwork can help us examine how climate change affects people in their everyday lives, and it can reveal how different stakeholders approach environmental challenges. By providing a deeper understanding of the ways in which people relate to the material world, to land, and to other beings, anthropological analyses also shed light on the root causes of climate change and expand our imagination of how to live otherwise.Through these close-up analyses, ethnography can also illuminate large-scale political phenomena. For instance, by making visible the relation between climate change denial and the erosion of democratic social structures in people’s everyday lives, it can provide insights into the rise of nationalist and authoritarian movements. This is a question I explore in my new research project. (One case study in the new research focuses on the ways in which pigs, people, and viruses have co-evolved during urbanization, industrial agriculture, and the climate crisis, e.g.: the so-called African Swine Fever virus among wild boar — which proliferate in the ruins of industrial agriculture and climate changes — trigger political responses across Europe, including new border fences.)

    Through several case studies, I examine how the changing mobility patterns of wildlife (due to climate change, habitat loss, and urbanization) pose challenges for tackling the climate crisis across national borders and for developing new forms of care for nonhuman lives.Q: You teach MIT’s class 21A.407 (Gender, Race, and Environmental Justice). Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The key premise of this class is that the environmental challenges facing the world today cannot be adequately addressed without a deeper understanding of racial, gender, and class inequalities, as well as the legacies of colonialism. Our discussion begins with the lands on which we, at MIT, stand. We read about the colonization of New England and how it radically transformed local economies and landscapes, rearranged gender and racial relations, and led to the genocide and dispossession of Indigenous communities and their way of life.From this foundation, the goal is to expand our ideas of what it means to talk about ecology, the “environment,” and justice. There is not one way in which humans relate to land and to nonhuman beings, or one way of (re-)producing the conditions of our livelihoods (capitalism). These relations are all shaped by history, culture, and power.We read anthropological scholarship that explores how climate change, environmental pollution, and habitat destruction are also the consequences of modes of inhabiting the earth inherited from colonial relations to land that construct human and nonhuman beings as extractable “resources.” Considering these perspectives, it becomes clear that pressing environmental challenges can only be solved by also tackling racism and the legacies of colonialism.Throughout the semester, we read about environmental justice struggles that seek to stop the destruction of land, undo the harm of toxic exposures, and mitigate the effects of climate change. I hope that one of the takeaways students gain from this course is that Black, Indigenous, people-of-color, and feminist activists and scholars have been leading the way in shaping more livable futures.

    Q: In confronting an issue as formidable as global climate change, what gives you hope?A: I am really inspired by youth climate justice activists, especially from the Global South, who insist on new solutions to the climate emergency that counter market-driven perspectives, address global economic inequalities, and raise awareness about climate-driven displacement. Confronting climate change will require building more democratic structures and climate justice activists are at the forefront of this.Here at MIT, I also see a growing enthusiasm among our students to develop solutions to the climate crisis and to social injustices. I am particularly excited about Living Climate Futures, an initiative in Anthropology, History, and the Program on Science, Technology, and Society. We will be hosting a symposium at the end of April featuring environmental and climate justice leaders and youth activists from across the country. It will be a unique opportunity to explore how community leaders and research institutions such as MIT can collaborate more closely to tackle the challenges of climate change.

    Interview prepared by MIT SHASS CommunicationsSenior writer: Kathryn O’NeillSeries editor, designer: Emily Hiestand, communications director More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More