More stories

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    A new microneedle-based drug delivery technique for plants

    Increasing environmental conditions caused by climate change, an ever-growing human population, scarcity of arable land, and limited resources are pressuring the agriculture industry to adopt more sustainable and precise practices that foster more efficient use of resources (e.g., water, fertilizers, and pesticides) and mitigation of environmental impacts. Developing delivery systems that efficiently deploy agrochemicals such as micronutrients, pesticides, and antibiotics in crops will help ensure high productivity and high produce quality, while minimizing the waste of resources, is crucial.

    Now, researchers in Singapore and the U.S. have developed the first-ever microneedle-based drug delivery technique for plants. The method can be used to precisely deliver controlled amounts of agrochemicals to specific plant tissues for research purposes. When applied in the field, it could one day be used in precision agriculture to improve crop quality and disease management.

    The work is led by researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their collaborators from MIT and the Temasek Life Sciences Laboratory (TLL).

    Current and standard practices for agrochemical application in plants, such as foliar spray, are inefficient due to off-target application, quick runoff in the rain, and actives’ rapid degradation. These practices also cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss, and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure, and food contamination.

    The novel silk-based microneedles technique circumvents these limitations by deploying and targeting a known amount of payload directly into a plant’s deep tissues, which will lead to higher efficacy of plant growth and help with disease management. The technique is minimally invasive, as it delivers the compound without causing long-term damage to the plants, and is environmentally sustainable. It minimizes resource wastage and mitigates the adverse side effects caused by agrochemical contamination of the environment. Additionally, it will help foster precise agricultural practices and provide new tools to study plants and design crop traits, helping to ensure food security.

    Described in a paper titled “Drug Delivery in Plants Using Silk Microneedles,” published in a recent issue of Advanced Materials, the research studies the first-ever polymeric microneedles used to deliver small compounds to a wide variety of plants and the plant response to biomaterial injection. Through gene expression analysis, the researchers could closely examine the reactions to drug delivery following microneedle injection. Minimal scar and callus formation were observed, suggesting minimal injection-induced wounding to the plant. The proof of concept provided in this study opens the door to plant microneedles’ application in plant biology and agriculture, enabling new means to regulate plant physiology and study metabolisms via efficient and effective delivery of payloads.

    The study optimized the design of microneedles to target the systemic transport system in Arabidopsis (mouse-ear cress), the chosen model plant. Gibberellic acid (GA3), a widely used plant growth regulator in agriculture, was selected for the delivery. The researchers found that delivering GA3 through microneedles was more effective in promoting growth than traditional methods (such as foliar spray). They then confirmed the effectiveness using genetic methods and demonstrated that the technique is applicable to various plant species, including vegetables, cereals, soybeans, and rice.

    Professor Benedetto Marelli, co-corresponding author of the paper, principal investigator at DiSTAP, and associate professor of civil and environmental engineering at MIT, shares, “The technique saves resources as compared to current methods of agrochemical delivery, which suffer from wastage. During the application, the microneedles break through the tissue barriers and release compounds directly inside the plants, avoiding agrochemical losses. The technique also allows for precise control of the amounts of the agrochemical used, ensuring high-tech precision agriculture and crop growth to optimize yield.”

    “The first-of-its-kind technique is revolutionary for the agriculture industry. It also minimizes resource wastage and environmental contamination. In the future, with automated microneedle application as a possibility, the technique may be used in high-tech outdoor and indoor farms for precise agrochemical delivery and disease management,” adds Yunteng Cao, the first author of the paper and postdoc at MIT.

    “This work also highlights the importance of using genetic tools to study plant responses to biomaterials. Analyzing these responses at the genetic level offers a comprehensive understanding of these responses, thereby serving as a guide for the development of future biomaterials that can be used across the agri-food industry,” says Sally Koh, the co-first author of this work and PhD candidate from NUS and TLL.

    The future seems promising as Professor Daisuke Urano, co-corresponding author of the paper, TLL principal investigator, and NUS adjunct assistant professor elaborates, “Our research has validated the use of silk-based microneedles for agrochemical application, and we look forward to further developing the technique and microneedle design into a scalable model for manufacturing and commercialization. At the same time, we are also actively investigating potential applications that could have a significant impact on society.”

    The study of drug delivery in plants using silk microneedles expanded upon previous research supervised by Marelli. The original idea was conceived by SMART and MIT: Marelli, Cao, and Professor Nam-Hai Chua, co-lead principal investigator at DiSTAP. Researchers from TLL and the National University of Singapore, Professor Urano Daisuke and Koh, joined the study to contribute biological perspectives. The research is carried out by SMART and supported by the National Research Foundation Singapore (NRF) under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT and NRF in 2007. SMART is the first entity in CREATE, developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research in areas of interest to both parties. SMART currently comprises an Innovation Center and interdisciplinary research groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, DiSTAP, Future Urban Mobility, and Low Energy Electronic Systems. More

  • in

    Tackling counterfeit seeds with “unclonable” labels

    Average crop yields in Africa are consistently far below those expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

    There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

    The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

    The problem of counterfeiting is an enormous one globally, the researchers point out, affecting everything from drugs to luxury goods, and many different systems have been developed to try to combat this. But there has been less attention to the problem in the area of agriculture, even though the consequences can be severe. In sub-Saharan Africa, for example, the World Bank estimates that counterfeit seeds are a significant factor in crop yields that average less than one-fifth of the potential for maize, and less than one-third for rice.

    Marelli explains that a key to the new system is creating a randomly-produced physical object whose exact composition is virtually impossible to duplicate. The labels they create “leverage randomness and uncertainty in the process of application, to generate unique signature features that can be read, and that cannot be replicated,” he says.

    What they’re dealing with, Sun adds, “is the very old job of trying, basically, not to get your stuff stolen. And you can try as much as you can, but eventually somebody is always smart enough to figure out how to do it, so nothing is really unbreakable. But the idea is, it’s almost impossible, if not impossible, to replicate it, or it takes so much effort that it’s not worth it anymore.”

    The idea of an “unclonable” code was originally developed as a way of protecting the authenticity of computer chips, explains Chandrakasan, who is the Vannevar Bush Professor of Electrical Engineering and Computer Science. “In integrated circuits, individual transistors have slightly different properties coined device variations,” he explains, “and you could then use that variability and combine that variability with higher-level circuits to create a unique ID for the device. And once you have that, then you can use that unique ID as a part of a security protocol. Something like transistor variability is hard to replicate from device to device, so that’s what gives it its uniqueness, versus storing a particular fixed ID.” The concept is based on what are known as physically unclonable functions, or PUFs.

    The team decided to try to apply that PUF principle to the problem of fake seeds, and the use of silk proteins was a natural choice because the material is not only harmless to the environment but also classified by the Food and Drug Administration in the “generally recognized as safe” category, so it requires no special approval for use on food products.

    “You could coat it on top of seeds,” Maji says, “and if you synthesize silk in a certain way, it will also have natural random variations. So that’s the idea, that every seed or every bag could have a unique signature.”

    Developing effective secure system solutions has long been one of Chandrakasan’s specialties, while Marelli has spent many years developing systems for applying silk coatings to a variety of fruits, vegetables, and seeds, so their collaboration was a natural for developing such a silk-based coding system toward enhanced security.

    “The challenge was what type of form factor to give to silk,” Sun says, “so that it can be fabricated very easily.” They developed a simple drop-casting approach that produces tags that are less than one-tenth of an inch in diameter. The second challenge was to develop “a way where we can read the uniqueness, in also a very high throughput and easy way.”

    For the unique silk-based codes, Marelli says, “eventually we found a way to add a color to these microparticles so that they assemble in random structures.” The resulting unique patterns can be read out not only by a spectrograph or a portable microscope, but even by an ordinary cellphone camera with a macro lens. This image can be processed locally to generate the PUF code and then sent to the cloud and compared with a secure database to ensure the authenticity of the product. “It’s random so that people cannot easily replicate it,” says Sun. “People cannot predict it without measuring it.”

    And the number of possible permutations that could result from the way they mix four basic types of colored silk nanoparticles is astronomical. “We were able to show that with a minimal amount of silk, we were able to generate 128 random bits of security,” Maji says. “So this gives rise to 2 to the power 128 possible combinations, which is extremely difficult to crack given the computational capabilities of the state-of-the-art computing systems.”

    Marelli says that “for us, it’s a good test bed in order to think out-of-the-box, and how we can have a path that somehow is more democratic.” In this case, that means “something that you can literally read with your phone, and you can fabricate by simply drop casting a solution, without using any advanced manufacturing technique, without going in a clean room.”

    Some additional work will be needed to make this a practical commercial product, Chandrakasan says. “There will have to be a development for at-scale reading” via smartphones. “So, that’s clearly a future opportunity.” But the principle now shows a clear path to the day when “a farmer could at least, maybe not every seed, but could maybe take some random seeds in a particular batch and verify them,” he says.

    The research was partially supported by the U.S. Office of Naval research and the National Science Foundation, Analog Devices Inc., an EECS Mathworks fellowship, and a Paul M. Cook Career Development Professorship. More

  • in

    Detailed images from space offer clearer picture of drought effects on plants

    “MIT is a place where dreams come true,” says César Terrer, an assistant professor in the Department of Civil and Environmental Engineering. Here at MIT, Terrer says he’s given the resources needed to explore ideas he finds most exciting, and at the top of his list is climate science. In particular, he is interested in plant-soil interactions, and how the two can mitigate impacts of climate change. In 2022, Terrer received seed grant funding from the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) to produce drought monitoring systems for farmers. The project is leveraging a new generation of remote sensing devices to provide high-resolution plant water stress at regional to global scales.

    Growing up in Granada, Spain, Terrer always had an aptitude and passion for science. He studied environmental science at the University of Murcia, where he interned in the Department of Ecology. Using computational analysis tools, he worked on modeling species distribution in response to human development. Early on in his undergraduate experience, Terrer says he regarded his professors as “superheroes” with a kind of scholarly prowess. He knew he wanted to follow in their footsteps by one day working as a faculty member in academia. Of course, there would be many steps along the way before achieving that dream. 

    Upon completing his undergraduate studies, Terrer set his sights on exciting and adventurous research roles. He thought perhaps he would conduct field work in the Amazon, engaging with native communities. But when the opportunity arose to work in Australia on a state-of-the-art climate change experiment that simulates future levels of carbon dioxide, he headed south to study how plants react to CO2 in a biome of native Australian eucalyptus trees. It was during this experience that Terrer started to take a keen interest in the carbon cycle and the capacity of ecosystems to buffer rising levels of CO2 caused by human activity.

    Around 2014, he began to delve deeper into the carbon cycle as he began his doctoral studies at Imperial College London. The primary question Terrer sought to answer during his PhD was “will plants be able to absorb predicted future levels of CO2 in the atmosphere?” To answer the question, Terrer became an early adopter of artificial intelligence, machine learning, and remote sensing to analyze data from real-life, global climate change experiments. His findings from these “ground truth” values and observations resulted in a paper in the journal Science. In it, he claimed that climate models most likely overestimated how much carbon plants will be able to absorb by the end of the century, by a factor of three. 

    After postdoctoral positions at Stanford University and the Universitat Autonoma de Barcelona, followed by a prestigious Lawrence Fellowship, Terrer says he had “too many ideas and not enough time to accomplish all those ideas.” He knew it was time to lead his own group. Not long after applying for faculty positions, he landed at MIT. 

    New ways to monitor drought

    Terrer is employing similar methods to those he used during his PhD to analyze data from all over the world for his J-WAFS project. He and postdoc Wenzhe Jiao collect data from remote sensing satellites and field experiments and use machine learning to come up with new ways to monitor drought. Terrer says Jiao is a “remote sensing wizard,” who fuses data from different satellite products to understand the water cycle. With Jiao’s hydrology expertise and Terrer’s knowledge of plants, soil, and the carbon cycle, the duo is a formidable team to tackle this project.

    According to the U.N. World Meteorological Organization, the number and duration of droughts has increased by 29 percent since 2000, as compared to the two previous decades. From the Horn of Africa to the Western United States, drought is devastating vegetation and severely stressing water supplies, compromising food production and spiking food insecurity. Drought monitoring can offer fundamental information on drought location, frequency, and severity, but assessing the impact of drought on vegetation is extremely challenging. This is because plants’ sensitivity to water deficits varies across species and ecosystems. 

    Terrer and Jiao are able to obtain a clearer picture of how drought is affecting plants by employing the latest generation of remote sensing observations, which offer images of the planet with incredible spatial and temporal resolution. Satellite products such as Sentinel, Landsat, and Planet can provide daily images from space with such high resolution that individual trees can be discerned. Along with the images and datasets from satellites, the team is using ground-based observations from meteorological data. They are also using the MIT SuperCloud at MIT Lincoln Laboratory to process and analyze all of the data sets. The J-WAFS project is among one of the first to leverage high-resolution data to quantitatively measure plant drought impacts in the United States with the hopes of expanding to a global assessment in the future.

    Assisting farmers and resource managers 

    Every week, the U.S. Drought Monitor provides a map of drought conditions in the United States. The map has zero resolution and is more of a drought recap or summary, unable to predict future drought scenarios. The lack of a comprehensive spatiotemporal evaluation of historic and future drought impacts on global vegetation productivity is detrimental to farmers both in the United States and worldwide.  

    Terrer and Jiao plan to generate metrics for plant water stress at an unprecedented resolution of 10-30 meters. This means that they will be able to provide drought monitoring maps at the scale of a typical U.S. farm, giving farmers more precise, useful data every one to two days. The team will use the information from the satellites to monitor plant growth and soil moisture, as well as the time lag of plant growth response to soil moisture. In this way, Terrer and Jiao say they will eventually be able to create a kind of “plant water stress forecast” that may be able to predict adverse impacts of drought four weeks in advance. “According to the current soil moisture and lagged response time, we hope to predict plant water stress in the future,” says Jiao. 

    The expected outcomes of this project will give farmers, land and water resource managers, and decision-makers more accurate data at the farm-specific level, allowing for better drought preparation, mitigation, and adaptation. “We expect to make our data open-access online, after we finish the project, so that farmers and other stakeholders can use the maps as tools,” says Jiao. 

    Terrer adds that the project “has the potential to help us better understand the future states of climate systems, and also identify the regional hot spots more likely to experience water crises at the national, state, local, and tribal government scales.” He also expects the project will enhance our understanding of global carbon-water-energy cycle responses to drought, with applications in determining climate change impacts on natural ecosystems as a whole. More

  • in

    Titanic robots make farming more sustainable

    There’s a lot riding on farmers’ ability to fight weeds, which can strangle crops and destroy yields. To protect crops, farmers have two options: They can spray herbicides that pollute the environment and harm human health, or they can hire more workers.

    Unfortunately, both choices are becoming less tenable. Herbicide resistance is a growing problem in crops around the world, while widespread labor shortages have hit the agricultural sector particularly hard.

    Now the startup FarmWise, co-founded by Sebastien Boyer SM ’16, is giving farmers a third option. The company has developed autonomous weeding robots that use artificial intelligence to cut out weeds while leaving crops untouched.

    The company’s first robot, fittingly called the Titan — picture a large tractor that makes use of a trailer in lieu of a driver’s seat — uses machine vision to distinguish weeds from crops including leafy greens, cauliflower, artichokes, and tomatoes while snipping weeds with sub-inch precision.

    About 15 Titans have been roaming the fields of 30 large farms in California and Arizona for the last few years, providing weeding as a service while being directed by an iPad. Last month, the company unveiled its newest robot, Vulcan, which is more lightweight and pulled by a tractor.

    “We have growing population, and we can’t expand the land or water we have, so we need to drastically increase the efficiency of the farming industry,” Boyer says. “I think AI and data are going to be major players in that journey.”

    Finding a road to impact

    Boyer came to MIT in 2014 and earned masters’ degrees in technology and policy as well as electrical engineering and computer science over the next two years.

    “What stood out is the passion that my classmates had for what they did — the drive and passion people had to change the world,” Boyer says.

    As part of his graduate work, Boyer researched machine learning and machine vision techniques, and he soon began exploring ways to apply those technologies to environmental problems. He received a small amount of funding from MIT Sandbox to further develop the idea.

    “That helped me make the decision to not take a real job,” Boyer recalls.

    Following graduation, he and FarmWise co-founder Thomas Palomares, a graduate of Stanford University whom Boyer met in his home country of France, began going to farmers’ markets, introducing themselves to small farmers and asking for tours of their farms. About one in three farmers were happy to show them around. From there they’d ask for referrals to larger farmers and service providers in the industry.

    “We realized agriculture is a large contributor of both emissions and, more broadly, to the negative impact of human activities on the environment,” Boyer says. “It also hasn’t been as disrupted by software, cloud computing, AI, and robotics as other industries. That combination really excites us.”

    Through their conversations, the founders learned herbicides are becoming less effective as weeds develop genetic resistance. The only alternative is to hire more workers, which itself was becoming more difficult for farmers.

    “Labor is extremely tight,” says Boyer, adding that bending over and weeding for 10 hours a day is one of the hardest jobs out there. “The labor supply is shrinking if not collapsing in the U.S., and it’s a worldwide trend. That has real environmental implications because of the tradeoff [between labor and herbicides].”

    The problem is especially acute for farmers of specialty crops, including many fruits, vegetables, and nuts, which grow on smaller farms than corn and soybean and each require slightly different growing practices, limiting the effectiveness of many technical and chemical solutions.

    “We don’t harvest corn by hand today, but we still harvest lettuces and nuts and apples by hand,” Boyer says.

    The Titan was built to complement field workers’ efforts to grow and maintain crops. An operator directs it using an iPad, walking alongside the machine and inspecting progress. Both the Titan and Vulcan are powered by an AI that directs hundreds of tiny blades to snip out weeds around each crop. The Vulcan is controlled directly from the tractor cab, where the operator has a touchscreen interface Boyer compares to those found in a Tesla.

    With more than 15,000 commercial hours under its belt, FarmWise hopes the data it collects can be used for more than just weeding in the near future.

    “It’s all about precision,” Boyer says. “We’re going to better understand what the plant needs and make smarter decisions for each one. That will bring us to a point where we can use the same amount of land, much less water, almost no chemicals, much less fertilizer, and still produce more food than we’re producing today. That’s the mission. That’s what excites me.”

    Weeding out farming challenges

    A customer recently told Boyer that without the Titan, he would have to switch all of his organic crops back to conventional because he couldn’t find enough workers.

    “That’s happening with a lot of customers,” Boyer says. “They have no choice but to rely on herbicides. Acres are staying organic because of our product, and conventional farms are reducing their use of herbicides.”

    Now FarmWise is expanding its database to support weeding for six to 12 new crops each year, and Boyer says adding new crops is getting easier and easier for its system.

    As early partners have sought to expand their deployments, Boyer says the only thing limiting the company’s growth is how fast it can build new robots. FarmWise’s new machines will begin being deployed later this year.

    Although the hulking Titan robots are the face of the company today, the founders hope to leverage the data they’ve collected to further improve farming operations.

    “The mission of the company is to turn AI into a tool that is as reliable and dependable as GPS is now in the farming industry,” Boyer says. “Twenty-five years ago, GPS was a very complicated technology. You had to connect to satellites and do some crazy computation to define your position. But a few companies brought GPS to a new level of reliability and simplicity. Today, every farmer in the world uses GPS. We think AI can have an even deeper impact than GPS has had on the farming industry, and we want to be the company that makes it available and easy to use for every farmer in the world.” More

  • in

    Professor Emeritus Richard Wurtman, influential figure in translational research, dies at 86

    Richard Wurtman, the Cecil H. Green Distinguished Professor Emeritus and a member of the MIT faculty for 44 years, died on Dec. 13. He was 86.

    Wurtman received an MD from Harvard Medical School in 1960 and trained at Massachusetts General Hospital before joining the laboratory of Nobel laureate Julius Axelrod at the National Institutes of Health in 1962. In 1967, MIT invited him to start a neurochemistry and neuropharmacology program in the Department of Nutrition and Food Science. In the early 1980s he joined the newly formed Department of Brain and Cognitive Sciences. Wurtman was also deeply involved in the National Institutes of Health-established Clinical Research Center at MIT, which he also directed for 25 years.

    His initial placement in Nutrition and Food Science was fortuitous, recalled Wurtman in a 2011 profile, because it “sensitized me to the fact that nutrients are chemicals the way drugs are chemicals. A compound like folic acid is a vitamin in foods, but when given alone in higher doses it becomes a drug that safeguards the developing nervous system.”

    Wurtman’s search for new biological properties and therapeutic uses of known molecules — hormones, nutrients, or existing pharmaceuticals — was highly fruitful. His research on the pineal gland, which started when he was a medical student, led to the discovery that melatonin, the hormone made by the gland, regulates sleep. 

    “Dick Wurtman was a pioneer in studying the role of neurotransmitters in the brain, and neuroendocrine regulation of normal and abnormal brain function,” says Newton Professor of Neuroscience Mriganka Sur, who served as head of the Department of Brain and Cognitive Sciences from 1997 to 2012. “His work on the impact of nutrition on neurotransmitters such as acetylcholine and on neuronal membrane synthesis laid the groundwork for later translational work on brain diseases such as Alzheimer’s disease.”

    Wurtman’s lab discovered that consuming carbohydrates increases tryptophan levels in the brain and consequently the production of the neurotransmitter serotonin. This led to a long collaboration with his wife Judith Wurtman, an MIT research affiliate, in which they found that carbohydrates were often consumed by individuals as a form of self-medication when they experienced changes in mood, such as late in the afternoon or when suffering from premenstrual syndrome (PMS). The Wurtmans’ research led to the development of Sarafem, the first drug for severe PMS, and a drink, PMS Escape, used for milder forms of this syndrome.

    To commercialize some of his findings, Wurtman founded Interneuron Pharmaceuticals in 1988; the company was renamed Indevus in 2002 and acquired by Endo Pharmaceuticals in 2009.

    Wurtman’s research advanced the idea that substrate availability, and not simply enzyme activity, can control metabolic processes in the brain. He discovered that the dietary availability of neurotransmitter precursors (e.g., acetylcholine, dopamine, and GABA) can increase their levels in the brain and modulate their metabolism. Moreover, he applied this concept to synaptic structural components such as brain phosphatides and found that dietary intake of three rate-limiting precursors — uridine, choline, and the omega-3 fatty acid DHA — led to increased brain phosphatide levels, increased dendritic spine density, and improved memory performance. These findings led to the development of Souvenaid, a specifically formulated multi-nutrient drink based on the three essential phosphatide precursors of Wurtman’s later research. It has been the subject of numerous clinical trials for Alzheimer’s disease, and, most recently, for age-related cognitive decline.

    “Dick Wurtman was a pioneer on studying how nutrients influence brain function,” says Li-Huei Tsai, Picower Professor of Neuroscience and director of The Picower Institute for Learning and Memory. “His nutrient clinical trial work and establishment of the MIT Clinical Research Center have been tremendously helpful for my own work on understanding how high doses of supplement choline could potentially help reduce certain Alzheimer’s risk, and our team’s development of clinical studies at MIT to test Alzheimer’s therapies.”

    “Dick’s legacy resides within the careers of hundreds of trainees and collaborators he launched or enhanced, the 1,000-plus published research articles, his numerous patent awards, and people who benefited from his therapeutic approaches,” says former postdoc Bertha Madras, now a professor of psychobiology at McLean Hospital and Harvard Medical School. “Yet, these quantitative metrics, legacies of research and mentoring, do not illustrate the charitable qualities of this remarkable man. I witnessed his deep intellect, boundless energy, enthusiasm, optimism, and generosity toward trainees, qualities that helped to sustain me during crests and troughs encountered in the adventures of a scientific career. Dr. Richard Wurtman was a creative, brilliant scientist, a mentor, a devoted husband to his beloved wife.”

    “Dick was an inspiration, a motivation, and a guide to all his students and colleagues in shaping thoughts to be precise and purposeful,” says Tony Nader PhD ’89, who did his doctoral research with Wurtman. “His rigorous scientific approach and the application of his findings have contributed to make life better. His legacy is huge.”

    Richard and Judith Wurtman have also made a lasting philanthropic impact at MIT. They endowed a professorship in the Department of Brain and Cognitive Sciences in honor of the late Institute Professor and provost Walter Rosenblith; the chair was held first by Ann Graybiel, who is now an Institute Professor; Nancy Kanwisher is the current Walter A. Rosenblith Professor of Cognitive Neuroscience. The Wurtmans have also been longtime supporters of MIT Hillel.

    Elazer R. Edelman, the Edward J. Poitras Professor in Medical Engineering and Science at MIT, professor of medicine at Harvard Medical School, and director of the MIT Institute for Medical Engineering and Science, recalls that Wurtman was also supportive of the Harvard-MIT Program in Health Sciences and Technology: “He changed our school and our world — he and Judith coupled immense charity with exceptional intellect and they made us all better for it.”

    Richard Wurtman is survived by his wife, Judith; daughter Rachael; son David and daughter-in-law Jean Chang; and grandchildren Dvora Toren, Yael Toren and Jacob Vider.  More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More

  • in

    Microparticles could help prevent vitamin A deficiency

    Vitamin A deficiency is the world’s leading cause of childhood blindness, and in severe cases, it can be fatal. About one-third of the global population of preschool-aged children suffer from this vitamin deficiency, which is most prevalent in sub-Saharan Africa and South Asia.

    MIT researchers have now developed a new way to fortify foods with vitamin A, which they hope could help to improve the health of millions of people around the world. In a new study, they showed that encapsulating vitamin A in a protective polymer prevents the nutrient from being broken down during cooking or storage.

    “Vitamin A is a very important micronutrient, but it’s an unstable molecule,” says Ana Jaklenec, a research scientist at MIT’s Koch Institute for Integrative Cancer Research. “We wanted to see if our encapsulated vitamin A could fortify a food vehicle like bouillon cubes or flour, throughout storage and cooking, and whether the vitamin A could remain biologically active and be absorbed.”

    In a small clinical trial, the researchers showed that when people ate bread fortified with encapsulated vitamin A, the bioavailability of the nutrient was similar to when they consumed vitamin A on its own. The technology has been licensed to two companies that hope to develop it for use in food products.

    “This is a study that our team is really excited about because it shows that everything we did in test tubes and animals works safely and effectively in humans,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. “We hope this opens the door for someday helping millions, if not billions, of people in the developing world.”

    Jaklenec and Langer are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. The paper’s lead author is former MIT postdoc Wen Tang, who is now an associate professor at South China University of Technology.

    Nutrient stability

    Vitamin A is critical not only for vision but also the functioning of the immune system and organs such as the heart and lungs. Efforts to add vitamin A to bread or other foods such as bouillon cubes, which are commonly consumed in West African countries, have been largely unsuccessful because the vitamin breaks down during storage or cooking.

    In a 2019 study, the MIT team showed that they could use a polymer called BMC to encapsulate nutrients, including iron, vitamin A, and several others. They showed that this protective coating improved the shelf life of the nutrients, and that people who consumed bread fortified with encapsulated iron were able to absorb the iron.

    BMC is classified by the FDA as “generally regarded as safe,” and is already used in coatings for drugs and dietary supplements. In the new study, the researchers focused on using this polymer to encapsulate vitamin A, a nutrient that is very sensitive to temperature and ultraviolet light.

    Using an industrial process known as a spinning disc process, the researchers mixed vitamin A with the polymer to form particles 100 to 200 microns in diameter. They also coated the particles with starch, which prevents them from sticking to each other.

    The researchers found that vitamin A encapsulated in the polymer particles were more resistant to degradation by intense light, high temperatures, or boiling water. Under those conditions, much more vitamin A remained active than when the vitamin A was free or when it was delivered in a form called VitA 250, which is currently the most stable form of vitamin A used for food fortification.

    The researchers also showed that the encapsulated particles could be easily incorporated into flour or bouillon cubes. To test how well they would survive long-term storage, the researchers exposed the cubes to harsh conditions, as recommended by the World Health Organization: 40 degrees Celsius (104 degrees Fahrenheit) and 75 percent humidity. Under those conditions, the encapsulated vitamin A was much more stable than other forms of vitamin A. 

    “The enhanced stability of vitamin A with our technology can ensure that the vitamin A-fortified food does provide the recommended daily uptake of vitamin A, even after long-term storage in a hot humidified environment, and cooking processes such as boiling or baking,” Tang says. “People who are suffering from vitamin A deficiency and want to get vitamin A through fortified food will benefit, without changing their daily routines, and without wondering how much vitamin A is still in the food.”

    Vitamin absorption

    When the researchers cooked their encapsulated particles and then fed them to animals, they found that 30 percent of the vitamin A was absorbed, the same as free uncooked vitamin A, compared to about 3 percent of free vitamin A that had been cooked.

    Working with Biofortis, a company that does dietary clinical testing, the researchers then evaluated how well vitamin A was absorbed in people who ate foods fortified with the particles. For this study, the researchers incorporated the particles into bread, then measured vitamin A levels in the blood over a 24-hour period after the bread was consumed. They found that when vitamin A was encapsulated in the BMC polymer, it was absorbed from the food at levels comparable to free vitamin A, indicating that it is readily released in bioactive form.

    Two companies have licensed the technology and are focusing on developing products fortified with vitamin A and other nutrients. A benefit corporation called Particles for Humanity, funded by the Bill and Melinda Gates Foundation, is working with partners in Africa to incorporate this technology into existing fortification efforts. Another company called VitaKey, founded by Jaklenec, Langer, and others, is working on using this approach to add nutrients to a variety of foods and beverages.

    The research was funded by the Bill and Melinda Gates Foundation. Other authors of the paper include Jia Zhuang, Aaron Anselmo, Xian Xu, Aranda Duan, Ruojie Zhang, James Sugarman, Yingying Zeng, Evan Rosenberg, Tyler Graf, Kevin McHugh, Stephany Tzeng, Adam Behrens, Lisa Freed, Lihong Jing, Surangi Jayawardena, Shelley Weinstock, Xiao Le, Christopher Sears, James Oxley, John Daristotle, and Joe Collins. More