More stories

  • in

    On batteries, teaching, and world peace

    Over his long career as an electrochemist and professor, Donald Sadoway has earned an impressive variety of honors, from being named one of Time magazine’s 100 most influential people in 2012 to appearing on “The Colbert Report,” where he talked about “renewable energy and world peace,” according to Comedy Central.

    What does he personally consider to be his top achievements?

    “That’s easy,” he says immediately. “For teaching, it’s 3.091,” the MIT course on solid-state chemistry he led for some 18 years. An MIT core requirement, 3.091 is also one of the largest classes at the Institute. In 2003 it was the largest, with 630 students. Sadoway, who retires this year after 45 years in the Department of Materials Science and Engineering, estimates that over the years he’s taught the course to some 10,000 undergraduates.

    A passion for teaching

    Along the way he turned the class into an MIT favorite, complete with music, art, and literature. “I brought in all that enrichment because I knew that 95 percent of the students in that room weren’t going to major in anything chemical and this might be the last class they’d take in the subject. But it’s a requirement. So they’re 18 years old, they’re very smart, and many of them are very bored. You have to find a hook [to reach them]. And I did.”

    In 1995, Sadoway was named a Margaret MacVicar Faculty Fellow, an honor that recognizes outstanding classroom teaching at the Institute. Among the communications in support of his nomination:

    “His contributions are enormous and the class is in rapt attention from beginning to end. His lectures are highly articulate yet animated and he has uncommon grace and style. I was awed by his ability to introduce playful and creative elements into a core lecture…”

    Bill Gates would agree. In the early 2000s Sadoway’s lectures were shared with the world through OpenCourseWare, the web-based publication of MIT course materials. Gates was so inspired by the lectures that he asked to meet with Sadoway to learn more about his research. (Sadoway initially ignored Gates’ email because he thought his account had been hacked by MIT pranksters.)

    Research breakthroughs

    Teaching is not Sadoway’s only passion. He’s also proud of his accomplishments in electrochemistry. The discipline that involves electron transfer reactions is key to everything from batteries to the primary extraction of metals like aluminum and magnesium. “It’s quite wide-ranging,” says the John F. Elliott Professor Emeritus of Materials Chemistry.

    Sadoway’s contributions include two battery breakthroughs. First came the liquid metal battery, which could enable the large-scale storage of renewable energy. “That represents a huge step forward in the transition to green energy,” said António Campinos, president of the European Patent Office, earlier this year when Sadoway won the 2022 European Inventor Award for the invention in the category for Non-European Patent Office Countries.

    On “The Colbert Report,” Sadoway alluded to that work when he told Stephen Colbert that electrochemistry is the key to world peace. Why? Because it could lead to a battery capable of storing energy from the sun when the sun doesn’t shine and otherwise make renewables an important part of the clean energy mix. And that in turn could “plummet the price of petroleum and depose dictators all over the world without one shot being fired,” he recently recalled.

    The liquid metal battery is the focus of Ambri, one of six companies based on Sadoway’s inventions. Bill Gates was the first funder of the company, which formed in 2010 and aims to install its first battery soon. That battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Then, in August of this year, Sadoway and colleagues published a paper in Nature about “one of the first new battery chemistries in 30 years,” Sadoway says. “I wanted to invent something that was better, much better,” than the expensive lithium-ion batteries used in, for example, today’s electric cars.

    That battery is the focus of Avanti, one of three Sadoway companies formed just last year. The other two are Pure Lithium, to commercialize his inventions related to that element, and Sadoway Labs. The latter, a nonprofit, is essentially “a space to try radical innovations. We’re gonna start working on wild ideas.”

    Another focus of Sadoway’s research: green steel. Steelmaking produces huge amounts of greenhouse gases. Enter Boston Metal, another Sadoway company. This one is developing a new approach to producing steel based on research begun some 25 years ago. Unlike the current technology for producing steel, the Boston Metal approach — molten oxide electrolysis — does not use the element at the root of steel’s problems: carbon. The principal byproduct of the new system? Oxygen.

    In 2012, Sadoway gave a TED talk to 2,000 people on the liquid metal battery. He believes that that talk, which has now been seen by almost 2.5 million people, led to the wider publicity of his work — and science overall — on “The Colbert Report” and elsewhere. “The moral here is that if you step out of your comfort zone, you might be surprised at what can happen,” he concludes.

    Colleagues’ reflections

    “I met Don in 2006 when I was working for the iron and steel industry in Europe on ways to reduce greenhouse gas emissions from the production of those materials,” says Antoine Allanore, professor of metallurgy, Department of Materials Science and Engineering. “He was the same Don Sadoway that you see in recordings of his lectures: very elegant, very charismatic, and passionate about the technical solutions and underlying science of the process we were all investigating; electrolysis. A few years later, when I decided to pursue an academic career, I contacted Don and became a postdoctoral associate in his lab. That ultimately led to my becoming an MIT professor. People don’t believe me, but before I came to MIT the only thing I knew about the Institute was that Noam Chomsky was there … and Don Sadoway. And I felt, that’s a great place to be. And I stayed because I saw the exceptional things that can be accomplished at MIT and Don is the perfect example of that.”

    “I had the joy of meeting Don when I first arrived on the MIT campus in 1994,” recalls Felice Frankel, research scientist in the MIT departments of Chemical Engineering and Mechanical Engineering. “I didn’t have to talk him into the idea that researchers needed to take their images and graphics more seriously.  He got it — that it wasn’t just about pretty pictures. He was an important part of our five-year National Science Foundation project — Picturing to Learn — to bring that concept into the classroom. How lucky that was for me!”

    “Don has been a friend and mentor since we met in 1995 when I was an MIT senior,” says Luis Ortiz, co-founder and chief executive officer, Avanti Battery Co. “One story that is emblematic of Don’s insistence on excellence is from when he and I met with Bill Gates about the challenges in addressing climate change and how batteries could be the linchpin in solving them. I suggested that we create our presentation in PowerPoint [Microsoft software]. Don balked. He insisted that we present using Keynote on his MacBook Air, because ‘it looks so much better.’ I was incredulous that he wanted to walk into that venue exclusively using Apple products. Of course, he won the argument, but not without my admonition that there had better not be even a blip of an issue. In the meeting room, Microsoft’s former chief technology officer asked Don if he needed anything to hook up to the screen, ‘we have all those dongles.’ Don declined, but gave me that knowing look and whispered, ‘You see, they know, too.’ I ate my crow and we had a great long conversation without any issues.”

    “I remember when I first started working with Don on the liquid metal battery project at MIT, after I had chosen it as the topic for my master’s of engineering thesis,” adds David Bradwell, co-founder and chief technology officer, Ambri. “I was a wide-eyed graduate student, sitting in his office, amongst his art deco decorations, unique furniture, and historical and stylistic infographics, and from our first meeting, I could see Don’s passion for coming up with new and creative, yet practical scientific ideas, and for working on hard problems, in service of society. Don’s approaches always appear to be unconventional — wanting to stand out in a crowd, take the path less trodden, both based on his ideas, and his sense of style. It’s been an amazing journey working with him over the past decade-and-a-half, and I remain excited to see what other new, unconventional ideas, he can bring to this world.” More

  • in

    Advancing the energy transition amidst global crises

    “The past six years have been the warmest on the planet, and our track record on climate change mitigation is drastically short of what it needs to be,” said Robert C. Armstrong, MIT Energy Initiative (MITEI) director and the Chevron Professor of Chemical Engineering, introducing MITEI’s 15th Annual Research Conference.

    At the symposium, participants from academia, industry, and finance acknowledged the deepening difficulties of decarbonizing a world rocked by geopolitical conflicts and suffering from supply chain disruptions, energy insecurity, inflation, and a persistent pandemic. In spite of this grim backdrop, the conference offered evidence of significant progress in the energy transition. Researchers provided glimpses of a low-carbon future, presenting advances in such areas as long-duration energy storage, carbon capture, and renewable technologies.

    In his keynote remarks, Ernest J. Moniz, the Cecil and Ida Green Professor of Physics and Engineering Systems Emeritus, founding director of MITEI, and former U.S. secretary of energy, highlighted “four areas that have materially changed in the last year” that could shake up, and possibly accelerate, efforts to address climate change.

    Extreme weather seems to be propelling the public and policy makers of both U.S. parties toward “convergence … at least in recognition of the challenge,” Moniz said. He perceives a growing consensus that climate goals will require — in diminishing order of certainty — firm (always-on) power to complement renewable energy sources, a fuel (such as hydrogen) flowing alongside electricity, and removal of atmospheric carbon dioxide (CO2).

    Russia’s invasion of Ukraine, with its “weaponization of natural gas” and global energy impacts, underscores the idea that climate, energy security, and geopolitics “are now more or less recognized widely as one conversation.” Moniz pointed as well to new U.S. laws on climate change and infrastructure that will amplify the role of science and technology and “address the drive to technological dominance by China.”

    The rapid transformation of energy systems will require a comprehensive industrial policy, Moniz said. Government and industry must select and rapidly develop low-carbon fuels, firm power sources (possibly including nuclear power), CO2 removal systems, and long-duration energy storage technologies. “We will need to make progress on all fronts literally in this decade to come close to our goals for climate change mitigation,” he concluded.

    Global cooperation?

    Over two days, conference participants delved into many of the issues Moniz raised. In one of the first panels, scholars pondered whether the international community could forge a coordinated climate change response. The United States’ rift with China, especially over technology trade policies, loomed large.

    “Hatred of China is a bipartisan hobby and passion, but a blanket approach isn’t right, even for the sake of national security,” said Yasheng Huang, the Epoch Foundation Professor of Global Economics and Management at the MIT Sloan School of Management. “Although the United States and China working together would have huge effects for both countries, it is politically unpalatable in the short term,” said F. Taylor Fravel, the Arthur and Ruth Sloan Professor of Political Science and director of the MIT Security Studies Program. John E. Parsons, deputy director for research at the MIT Center for Energy and Environmental Policy Research, suggested that the United States should use this moment “to get our own act together … and start doing things,” such as building nuclear power plants in a cost-effective way.

    Debating carbon removal

    Several panels took up the matter of carbon emissions and the most promising technologies for contending with them. Charles Harvey, MIT professor of civil and environmental engineering, and Howard Herzog, a senior research engineer at MITEI, set the stage early, debating whether capturing carbon was essential to reaching net-zero targets.

    “I have no trouble getting to net zero without carbon capture and storage,” said David Keith, the Gordon McKay Professor of Applied Physics at Harvard University, in a subsequent roundtable. Carbon capture seems more risky to Keith than solar geoengineering, which involves injecting sulfur into the stratosphere to offset CO2 and its heat-trapping impacts.

    There are new ways of moving carbon from where it’s a problem to where it’s safer. Kripa K. Varanasi, MIT professor of mechanical engineering, described a process for modulating the pH of ocean water to remove CO2. Timothy Krysiek, managing director for Equinor Ventures, talked about construction of a 900-kilometer pipeline transporting CO2 from northern Germany to a large-scale storage site located in Norwegian waters 3,000 meters below the seabed. “We can use these offshore Norwegian assets as a giant carbon sink for Europe,” he said.

    A startup showcase featured additional approaches to the carbon challenge. Mantel, which received MITEI Seed Fund money, is developing molten salt material to capture carbon for long-term storage or for use in generating electricity. Verdox has come up with an electrochemical process for capturing dilute CO2 from the atmosphere.

    But while much of the global warming discussion focuses on CO2, other greenhouse gases are menacing. Another panel discussed measuring and mitigating these pollutants. “Methane has 82 times more warming power than CO2 from the point of emission,” said Desirée L. Plata, MIT associate professor of civil and environmental engineering. “Cutting methane is the strongest lever we have to slow climate change in the next 25 years — really the only lever.”

    Steven Hamburg, chief scientist and senior vice president of the Environmental Defense Fund, cautioned that emission of hydrogen molecules into the atmosphere can cause increases in other greenhouse gases such as methane, ozone, and water vapor. As researchers and industry turn to hydrogen as a fuel or as a feedstock for commercial processes, “we will need to minimize leakage … or risk increasing warming,” he said.

    Supply chains, markets, and new energy ventures

    In panels on energy storage and the clean energy supply chain, there were interesting discussions of challenges ahead. High-density energy materials such as lithium, cobalt, nickel, copper, and vanadium for grid-scale energy storage, electric vehicles (EVs), and other clean energy technologies, can be difficult to source. “These often come from water-stressed regions, and we need to be super thoughtful about environmental stresses,” said Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. She also noted that in light of the explosive growth in demand for metals such as lithium, recycling EVs won’t be of much help. “The amount of material coming back from end-of-life batteries is minor,” she said, until EVs are much further along in their adoption cycle.

    Arvind Sanger, founder and managing partner of Geosphere Capital, said that the United States should be developing its own rare earths and minerals, although gaining the know-how will take time, and overcoming “NIMBYism” (not in my backyard-ism) is a challenge. Sanger emphasized that we must continue to use “denser sources of energy” to catalyze the energy transition over the next decade. In particular, Sanger noted that “for every transition technology, steel is needed,” and steel is made in furnaces that use coal and natural gas. “It’s completely woolly-headed to think we can just go to a zero-fossil fuel future in a hurry,” he said.

    The topic of power markets occupied another panel, which focused on ways to ensure the distribution of reliable and affordable zero-carbon energy. Integrating intermittent resources such as wind and solar into the grid requires a suite of retail markets and new digital tools, said Anuradha Annaswamy, director of MIT’s Active-Adaptive Control Laboratory. Tim Schittekatte, a postdoc at the MIT Sloan School of Management, proposed auctions as a way of insuring consumers against periods of high market costs.

    Another panel described the very different investment needs of new energy startups, such as longer research and development phases. Hooisweng Ow, technology principal at Eni Next LLC Ventures, which is developing drilling technology for geothermal energy, recommends joint development and partnerships to reduce risk. Michael Kearney SM ’11, PhD ’19, SM ’19 is a partner at The Engine, a venture firm built by MIT investing in path-breaking technology to solve the toughest challenges in climate and other problems. Kearney believes the emergence of new technologies and markets will bring on “a labor transition on an order of magnitude never seen before in this country,” he said. “Workforce development is not a natural zone for startups … and this will have to change.”

    Supporting the global South

    The opportunities and challenges of the energy transition look quite different in the developing world. In conversation with Robert Armstrong, Luhut Binsar Pandjaitan, the coordinating minister for maritime affairs and investment of the Republic of Indonesia, reported that his “nation is rich with solar, wind, and energy transition minerals like nickel and copper,” but cannot on its own tackle developing renewable energy or reducing carbon emissions and improving grid infrastructure. “Education is a top priority, and we are very far behind in high technologies,” he said. “We need help and support from MIT to achieve our target,” he said.

    Technologies that could springboard Indonesia and other nations of the global South toward their climate goals are emerging in MITEI-supported projects and at young companies MITEI helped spawn. Among the promising innovations unveiled at the conference are new materials and designs for cooling buildings in hot climates and reducing the environmental costs of construction, and a sponge-like substance that passively sucks moisture out of the air to lower the energy required for running air conditioners in humid climates.

    Other ideas on the move from lab to market have great potential for industrialized nations as well, such as a computational framework for maximizing the energy output of ocean-based wind farms; a process for using ammonia as a renewable fuel with no CO2 emissions; long-duration energy storage derived from the oxidation of iron; and a laser-based method for unlocking geothermal steam to drive power plants. More

  • in

    Methane research takes on new urgency at MIT

    One of the most notable climate change provisions in the 2022 Inflation Reduction Act is the first U.S. federal tax on a greenhouse gas (GHG). That the fee targets methane (CH4), rather than carbon dioxide (CO2), emissions is indicative of the urgency the scientific community has placed on reducing this short-lived but powerful gas. Methane persists in the air about 12 years — compared to more than 1,000 years for CO2 — yet it immediately causes about 120 times more warming upon release. The gas is responsible for at least a quarter of today’s gross warming. 

    “Methane has a disproportionate effect on near-term warming,” says Desiree Plata, the director of MIT Methane Network. “CH4 does more damage than CO2 no matter how long you run the clock. By removing methane, we could potentially avoid critical climate tipping points.” 

    Because GHGs have a runaway effect on climate, reductions made now will have a far greater impact than the same reductions made in the future. Cutting methane emissions will slow the thawing of permafrost, which could otherwise lead to massive methane releases, as well as reduce increasing emissions from wetlands.  

    “The goal of MIT Methane Network is to reduce methane emissions by 45 percent by 2030, which would save up to 0.5 degree C of warming by 2100,” says Plata, an associate professor of civil and environmental engineering at MIT and director of the Plata Lab. “When you consider that governments are trying for a 1.5-degree reduction of all GHGs by 2100, this is a big deal.” 

    Under normal concentrations, methane, like CO2, poses no health risks. Yet methane assists in the creation of high levels of ozone. In the lower atmosphere, ozone is a key component of air pollution, which leads to “higher rates of asthma and increased emergency room visits,” says Plata. 

    Methane-related projects at the Plata Lab include a filter made of zeolite — the same clay-like material used in cat litter — designed to convert methane into CO2 at dairy farms and coal mines. At first glance, the technology would appear to be a bit of a hard sell, since it converts one GHG into another. Yet the zeolite filter’s low carbon and dollar costs, combined with the disproportionate warming impact of methane, make it a potential game-changer.

    The sense of urgency about methane has been amplified by recent studies that show humans are generating far more methane emissions than previously estimated, and that the rates are rising rapidly. Exactly how much methane is in the air is uncertain. Current methods for measuring atmospheric methane, such as ground, drone, and satellite sensors, “are not readily abundant and do not always agree with each other,” says Plata.  

    The Plata Lab is collaborating with Tim Swager in the MIT Department of Chemistry to develop low-cost methane sensors. “We are developing chemiresisitive sensors that cost about a dollar that you could place near energy infrastructure to back-calculate where leaks are coming from,” says Plata.  

    The researchers are working on improving the accuracy of the sensors using machine learning techniques and are planning to integrate internet-of-things technology to transmit alerts. Plata and Swager are not alone in focusing on data collection: the Inflation Reduction Act adds significant funding for methane sensor research. 

    Other research at the Plata Lab includes the development of nanomaterials and heterogeneous catalysis techniques for environmental applications. The lab also explores mitigation solutions for industrial waste, particularly those related to the energy transition. Plata is the co-founder of an lithium-ion battery recycling startup called Nth Cycle. 

    On a more fundamental level, the Plata Lab is exploring how to develop products with environmental and social sustainability in mind. “Our overarching mission is to change the way that we invent materials and processes so that environmental objectives are incorporated along with traditional performance and cost metrics,” says Plata. “It is important to do that rigorous assessment early in the design process.”

    Play video

    MIT amps up methane research 

    The MIT Methane Network brings together 26 researchers from MIT along with representatives of other institutions “that are dedicated to the idea that we can reduce methane levels in our lifetime,” says Plata. The organization supports research such as Plata’s zeolite and sensor projects, as well as designing pipeline-fixing robots, developing methane-based fuels for clean hydrogen, and researching the capture and conversion of methane into liquid chemical precursors for pharmaceuticals and plastics. Other members are researching policies to encourage more sustainable agriculture and land use, as well as methane-related social justice initiatives. 

    “Methane is an especially difficult problem because it comes from all over the place,” says Plata. A recent Global Carbon Project study estimated that half of methane emissions are caused by humans. This is led by waste and agriculture (28 percent), including cow and sheep belching, rice paddies, and landfills.  

    Fossil fuels represent 18 percent of the total budget. Of this, about 63 percent is derived from oil and gas production and pipelines, 33 percent from coal mining activities, and 5 percent from industry and transportation. Human-caused biomass burning, primarily from slash-and-burn agriculture, emits about 4 percent of the global total.  

    The other half of the methane budget includes natural methane emissions from wetlands (20 percent) and other natural sources (30 percent). The latter includes permafrost melting and natural biomass burning, such as forest fires started by lightning.  

    With increases in global warming and population, the line between anthropogenic and natural causes is getting fuzzier. “Human activities are accelerating natural emissions,” says Plata. “Climate change increases the release of methane from wetlands and permafrost and leads to larger forest and peat fires.”  

    The calculations can get complicated. For example, wetlands provide benefits from CO2 capture, biological diversity, and sea level rise resiliency that more than compensate for methane releases. Meanwhile, draining swamps for development increases emissions. 

    Over 100 nations have signed onto the U.N.’s Global Methane Pledge to reduce at least 30 percent of anthropogenic emissions within the next 10 years. The U.N. report estimates that this goal can be achieved using proven technologies and that about 60 percent of these reductions can be accomplished at low cost. 

    Much of the savings would come from greater efficiencies in fossil fuel extraction, processing, and delivery. The methane fees in the Inflation Reduction Act are primarily focused on encouraging fossil fuel companies to accelerate ongoing efforts to cap old wells, flare off excess emissions, and tighten pipeline connections.  

    Fossil fuel companies have already made far greater pledges to reduce methane than they have with CO2, which is central to their business. This is due, in part, to the potential savings, as well as in preparation for methane regulations expected from the Environmental Protection Agency in late 2022. The regulations build upon existing EPA oversight of drilling operations, and will likely be exempt from the U.S. Supreme Court’s ruling that limits the federal government’s ability to regulate GHGs. 

    Zeolite filter targets methane in dairy and coal 

    The “low-hanging fruit” of gas stream mitigation addresses most of the 20 percent of total methane emissions in which the gas is released in sufficiently high concentrations for flaring. Plata’s zeolite filter aims to address the thornier challenge of reducing the 80 percent of non-flammable dilute emissions. 

    Plata found inspiration in decades-old catalysis research for turning methane into methanol. One strategy has been to use an abundant, low-cost aluminosilicate clay called zeolite.  

    “The methanol creation process is challenging because you need to separate a liquid, and it has very low efficiency,” says Plata. “Yet zeolite can be very efficient at converting methane into CO2, and it is much easier because it does not require liquid separation. Converting methane to CO2 sounds like a bad thing, but there is a major anti-warming benefit. And because methane is much more dilute than CO2, the relative CO2 contribution is minuscule.”  

    Using zeolite to create methanol requires highly concentrated methane, high temperatures and pressures, and industrial processing conditions. Yet Plata’s process, which dopes the zeolite with copper, operates in the presence of oxygen at much lower temperatures under typical pressures. “We let the methane proceed the way it wants from a thermodynamic perspective from methane to methanol down to CO2,” says Plata. 

    Researchers around the world are working on other dilute methane removal technologies. Projects include spraying iron salt aerosols into sea air where they react with natural chlorine or bromine radicals, thereby capturing methane. Most of these geoengineering solutions, however, are difficult to measure and would require massive scale to make a difference.  

    Plata is focusing her zeolite filters on environments where concentrations are high, but not so high as to be flammable. “We are trying to scale zeolite into filters that you could snap onto the side of a cross-ventilation fan in a dairy barn or in a ventilation air shaft in a coal mine,” says Plata. “For every packet of air we bring in, we take a lot of methane out, so we get more bang for our buck.”  

    The major challenge is creating a filter that can handle high flow rates without getting clogged or falling apart. Dairy barn air handlers can push air at up to 5,000 cubic feet per minute and coal mine handlers can approach 500,000 CFM. 

    Plata is exploring engineering options including fluidized bed reactors with floating catalyst particles. Another filter solution, based in part on catalytic converters, features “higher-order geometric structures where you have a porous material with a long path length where the gas can interact with the catalyst,” says Plata. “This avoids the challenge with fluidized beds of containing catalyst particles in the reactor. Instead, they are fixed within a structured material.”  

    Competing technologies for removing methane from mine shafts “operate at temperatures of 1,000 to 1,200 degrees C, requiring a lot of energy and risking explosion,” says Plata. “Our technology avoids safety concerns by operating at 300 to 400 degrees C. It reduces energy use and provides more tractable deployment costs.” 

    Potentially, energy and dollar costs could be further reduced in coal mines by capturing the heat generated by the conversion process. “In coal mines, you have enrichments above a half-percent methane, but below the 4 percent flammability threshold,” says Plata. “The excess heat from the process could be used to generate electricity using off-the-shelf converters.” 

    Plata’s dairy barn research is funded by the Gerstner Family Foundation and the coal mining project by the U.S. Department of Energy. “The DOE would like us to spin out the technology for scale-up within three years,” says Plata. “We cannot guarantee we will hit that goal, but we are trying to develop this as quickly as possible. Our society needs to start reducing methane emissions now.”  More

  • in

    Coordinating climate and air-quality policies to improve public health

    As America’s largest investment to fight climate change, the Inflation Reduction Act positions the country to reduce its greenhouse gas emissions by an estimated 40 percent below 2005 levels by 2030. But as it edges the United States closer to achieving its international climate commitment, the legislation is also expected to yield significant — and more immediate — improvements in the nation’s health. If successful in accelerating the transition from fossil fuels to clean energy alternatives, the IRA will sharply reduce atmospheric concentrations of fine particulates known to exacerbate respiratory and cardiovascular disease and cause premature deaths, along with other air pollutants that degrade human health. One recent study shows that eliminating air pollution from fossil fuels in the contiguous United States would prevent more than 50,000 premature deaths and avoid more than $600 billion in health costs each year.

    While national climate policies such as those advanced by the IRA can simultaneously help mitigate climate change and improve air quality, their results may vary widely when it comes to improving public health. That’s because the potential health benefits associated with air quality improvements are much greater in some regions and economic sectors than in others. Those benefits can be maximized, however, through a prudent combination of climate and air-quality policies.

    Several past studies have evaluated the likely health impacts of various policy combinations, but their usefulness has been limited due to a reliance on a small set of standard policy scenarios. More versatile tools are needed to model a wide range of climate and air-quality policy combinations and assess their collective effects on air quality and human health. Now researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Institute for Data, Systems and Society (IDSS) have developed a publicly available, flexible scenario tool that does just that.

    In a study published in the journal Geoscientific Model Development, the MIT team introduces its Tool for Air Pollution Scenarios (TAPS), which can be used to estimate the likely air-quality and health outcomes of a wide range of climate and air-quality policies at the regional, sectoral, and fuel-based level. 

    “This tool can help integrate the siloed sustainability issues of air pollution and climate action,” says the study’s lead author William Atkinson, who recently served as a Biogen Graduate Fellow and research assistant at the IDSS Technology and Policy Program’s (TPP) Research to Policy Engagement Initiative. “Climate action does not guarantee a clean air future, and vice versa — but the issues have similar sources that imply shared solutions if done right.”

    The study’s initial application of TAPS shows that with current air-quality policies and near-term Paris Agreement climate pledges alone, short-term pollution reductions give way to long-term increases — given the expected growth of emissions-intensive industrial and agricultural processes in developing regions. More ambitious climate and air-quality policies could be complementary, each reducing different pollutants substantially to give tremendous near- and long-term health benefits worldwide.

    “The significance of this work is that we can more confidently identify the long-term emission reduction strategies that also support air quality improvements,” says MIT Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “This is a win-win for setting climate targets that are also healthy targets.”

    TAPS projects air quality and health outcomes based on three integrated components: a recent global inventory of detailed emissions resulting from human activities (e.g., fossil fuel combustion, land-use change, industrial processes); multiple scenarios of emissions-generating human activities between now and the year 2100, produced by the MIT Economic Projection and Policy Analysis model; and emissions intensity (emissions per unit of activity) scenarios based on recent data from the Greenhouse Gas and Air Pollution Interactions and Synergies model.

    “We see the climate crisis as a health crisis, and believe that evidence-based approaches are key to making the most of this historic investment in the future, particularly for vulnerable communities,” says Johanna Jobin, global head of corporate reputation and responsibility at Biogen. “The scientific community has spoken with unanimity and alarm that not all climate-related actions deliver equal health benefits. We’re proud of our collaboration with the MIT Joint Program to develop this tool that can be used to bridge research-to-policy gaps, support policy decisions to promote health among vulnerable communities, and train the next generation of scientists and leaders for far-reaching impact.”

    The tool can inform decision-makers about a wide range of climate and air-quality policies. Policy scenarios can be applied to specific regions, sectors, or fuels to investigate policy combinations at a more granular level, or to target short-term actions with high-impact benefits.

    TAPS could be further developed to account for additional emissions sources and trends.

    “Our new tool could be used to examine a large range of both climate and air quality scenarios. As the framework is expanded, we can add detail for specific regions, as well as additional pollutants such as air toxics,” says study supervising co-author Noelle Selin, professor at IDSS and the MIT Department of Earth, Atmospheric and Planetary Sciences, and director of TPP.    

    This research was supported by the U.S. Environmental Protection Agency and its Science to Achieve Results (STAR) program; Biogen; TPP’s Leading Technology and Policy Initiative; and TPP’s Research to Policy Engagement Initiative. More

  • in

    3 Questions: Blue hydrogen and the world’s energy systems

    In the past several years, hydrogen energy has increasingly become a more central aspect of the clean energy transition. Hydrogen can produce clean, on-demand energy that could complement variable renewable energy sources such as wind and solar power. That being said, pathways for deploying hydrogen at scale have yet to be fully explored. In particular, the optimal form of hydrogen production remains in question.

    MIT Energy Initiative Research Scientist Emre Gençer and researchers from a wide range of global academic and research institutions recently published “On the climate impacts of blue hydrogen production,” a comprehensive life-cycle assessment analysis of blue hydrogen, a term referring to natural gas-based hydrogen production with carbon capture and storage. Here, Gençer describes blue hydrogen and the role that hydrogen will play more broadly in decarbonizing the world’s energy systems.

    Q: What are the differences between gray, green, and blue hydrogen?

    A: Though hydrogen does not generate any emissions directly when it is used, hydrogen production can have a huge environmental impact. Colors of hydrogen are increasingly used to distinguish different production methods and as a proxy to represent the associated environmental impact. Today, close to 95 percent of hydrogen production comes from fossil resources. As a result, the carbon dioxide (CO2) emissions from hydrogen production are quite high. Gray, black, and brown hydrogen refer to fossil-based production. Gray is the most common form of production and comes from natural gas, or methane, using steam methane reformation but without capturing CO2.

    There are two ways to move toward cleaner hydrogen production. One is applying carbon capture and storage to the fossil fuel-based hydrogen production processes. Natural gas-based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. The second way to produce cleaner hydrogen is by using electricity to produce hydrogen via electrolysis. In this case, the source of the electricity determines the environmental impact of the hydrogen, with the lowest impact being achieved when electricity is generated from renewable sources, such as wind and solar. This is known as green hydrogen.

    Q: What insights have you gleaned with a life cycle assessment (LCA) of blue hydrogen and other low-carbon energy systems?

    A: Mitigating climate change requires significant decarbonization of the global economy. Accurate estimation of cumulative greenhouse gas (GHG) emissions and its reduction pathways is critical irrespective of the source of emissions. An LCA approach allows the quantification of the environmental life cycle of a commercial product, process, or service impact with all the stages (cradle-to-grave). The LCA-based comparison of alternative energy pathways, fuel options, etc., provides an apples-to-apples comparison of low-carbon energy choices. In the context of low-carbon hydrogen, it is essential to understand the GHG impact of supply chain options. Depending on the production method, contribution of life-cycle stages to the total emissions might vary. For example, with natural gas–based hydrogen production, emissions associated with production and transport of natural gas might be a significant contributor based on its leakage and flaring rates. If these rates are not precisely accounted for, the environmental impact of blue hydrogen can be underestimated. However, the same rationale is also true for electricity-based hydrogen production. If the electricity is not supplied from low-
carbon sources such as wind, solar, or nuclear, the carbon intensity of hydrogen can be significantly underestimated. In the case of nuclear, there are also other environmental impact considerations.

    An LCA approach — if performed with consistent system boundaries — can provide an accurate environmental impact comparison. It should also be noted that these estimations can only be as good as the assumptions and correlations used unless they are supported by measurements. 

    Q: What conditions are needed to make blue hydrogen production most effective, and how can it complement other decarbonization pathways?

    A: Hydrogen is considered one of the key vectors for the decarbonization of hard-to-abate sectors such as heavy-duty transportation. Currently, more than 95 percent of global hydrogen production is fossil-fuel based. In the next decade, massive amounts of hydrogen must be produced to meet this anticipated demand. It is very hard, if not impossible, to meet this demand without leveraging existing production assets. The immediate and relatively cost-effective option is to retrofit existing plants with carbon capture and storage (blue hydrogen).

    The environmental impact of blue hydrogen may vary over large ranges but depends on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates, combined with natural gas supply featuring low methane emissions, substantially reduces GHG emissions compared to conventional natural gas reforming. Under these conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Cracking the carbon removal challenge

    By most measures, MIT chemical engineering spinoff Verdox has been enjoying an exceptional year. The carbon capture and removal startup, launched in 2019, announced $80 million in funding in February from a group of investors that included Bill Gates’ Breakthrough Energy Ventures. Then, in April — after recognition as one of the year’s top energy pioneers by Bloomberg New Energy Finance — the company and partner Carbfix won a $1 million XPRIZE Carbon Removal milestone award. This was the first round in the Musk Foundation’s four-year, $100 million-competition, the largest prize offered in history.

    “While our core technology has been validated by the significant improvement of performance metrics, this external recognition further verifies our vision,” says Sahag Voskian SM ’15, PhD ’19, co-founder and chief technology officer at Verdox. “It shows that the path we’ve chosen is the right one.”

    The search for viable carbon capture technologies has intensified in recent years, as scientific models show with increasing certainty that any hope of avoiding catastrophic climate change means limiting CO2 concentrations below 450 parts per million by 2100. Alternative energies will only get humankind so far, and a vast removal of CO2 will be an important tool in the race to remove the gas from the atmosphere.

    Voskian began developing the company’s cost-effective and scalable technology for carbon capture in the lab of T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering at MIT. “It feels exciting to see ideas move from the lab to potential commercial production,” says Hatton, a co-founder of the company and scientific advisor, adding that Verdox has speedily overcome the initial technical hiccups encountered by many early phase companies. “This recognition enhances the credibility of what we’re doing, and really validates our approach.”

    At the heart of this approach is technology Voskian describes as “elegant and efficient.” Most attempts to grab carbon from an exhaust flow or from air itself require a great deal of energy. Voskian and Hatton came up with a design whose electrochemistry makes carbon capture appear nearly effortless. Their invention is a kind of battery: conductive electrodes coated with a compound called polyanthraquinone, which has a natural chemical attraction to carbon dioxide under certain conditions, and no affinity for CO2 when these conditions are relaxed. When activated by a low-level electrical current, the battery charges, reacting with passing molecules of CO2 and pulling them onto its surface. Once the battery becomes saturated, the CO2 can be released with a flip of voltage as a pure gas stream.

    “We showed that our technology works in a wide range of CO2 concentrations, from the 20 percent or higher found in cement and steel industry exhaust streams, down to the very diffuse 0.04 percent in air itself,” says Hatton. Climate change science suggests that removing CO2 directly from air “is an important component of the whole mitigation strategy,” he adds.

    “This was an academic breakthrough,” says Brian Baynes PhD ’04, CEO and co-founder of Verdox. Baynes, a chemical engineering alumnus and a former associate of Hatton’s, has many startups to his name, and a history as a venture capitalist and mentor to young entrepreneurs. When he first encountered Hatton and Voskian’s research in 2018, he was “impressed that their technology showed it could reduce energy consumption for certain kinds of carbon capture by 70 percent compared to other technologies,” he says. “I was encouraged and impressed by this low-energy footprint, and recommended that they start a company.”

    Neither Hatton nor Voskian had commercialized a product before, so they asked Baynes to help them get going. “I normally decline these requests, because the costs are generally greater than the upside,” Baynes says. “But this innovation had the potential to move the needle on climate change, and I saw it as a rare opportunity.”

    The Verdox team has no illusions about the challenge ahead. “The scale of the problem is enormous,” says Voskian. “Our technology must be in a position to capture mega- and gigatons of CO2 from air and emission sources.” Indeed, the International Panel on Climate Change estimates the world must remove 10 gigatons of CO2 per year by 2050 in order to keep global temperature rise under 2 degrees Celsius.

    To scale up successfully and at a pace that could meet the world’s climate challenge, Verdox must become “a business that works in a technoeconomic sense,” as Baynes puts it. This means, for instance, ensuring its carbon capture system offers clear and competitive cost benefits when deployed. Not a problem, says Voskian: “Our technology, because it uses electric energy, can be easily integrated into the grid, working with solar and wind on a plug-and-play basis.” The Verdox team believes their carbon footprint will beat that of competitors by orders of magnitude.

    The company is pushing past a series of technical obstacles as it ramps up: enabling the carbon capture battery to run hundreds of thousands of cycles before its performance wanes, and enhancing the polyanthraquinone chemistry so that the device is even more selective for CO2.

    After hurtling past critical milestones, Verdox is now working with its first announced commercial client: Norwegian aluminum company Hydro, which aims to eliminate CO2 from the exhaust of its smelters as it transitions to zero-carbon production.

    Verdox is also developing systems that can efficiently pull CO2 out of ambient air. “We’re designing units that would look like rows and rows of big fans that bring the air into boxes containing our batteries,” he says. Such approaches might prove especially useful in locations such as airfields, where there are higher-than-normal concentrations of CO2 emissions present.

    All this captured carbon needs to go somewhere. With XPRIZE partner Carbfix, which has a decade-old, proven method for mineralizing captured CO2 and depositing it in deep underground caverns, Verdox will have a final resting place for CO2 that cannot immediately be reused for industrial applications such as new fuels or construction materials.

    With its clients and partners, the team appears well-positioned for the next round of the carbon removal XPRIZE competition, which will award up to $50 million to the group that best demonstrates a working solution at a scale of at least 1,000 tons removed per year, and can present a viable blueprint for scaling to gigatons of removal per year.

    Can Verdox meaningfully reduce the planet’s growing CO2 burden? Voskian is sure of it. “Going at our current momentum, and seeing the world embrace carbon capture, this is the right path forward,” he says. “With our partners, deploying manufacturing facilities on a global scale, we will make a dent in the problem in our lifetime.” More

  • in

    A lasting — and valuable — legacy

    Betar Gallant, MIT associate professor and Class of 1922 Career Development Chair in Mechanical Engineering, grew up in a curious, independently minded family. Her mother had multiple jobs over the years, including in urban planning and in the geospatial field. Her father, although formally trained in English, read textbooks of all kinds from cover to cover, taught himself numerous technical fields including engineering, and worked successfully in them. When Gallant was very young, she and her father did science experiments in the basement.

    It wasn’t until she was in her teenage years, though, that she says she got drawn into science. Her father, who had fallen ill five years before, died when Gallant was 16, and while grieving, “when I was missing him the most,” she started to look at what had captivated her father.

    “I started to take a deeper interest in the things he had spent his life working on as a way to feel closer to him in his absence,” Gallant says. “I spent a few long months one summer looking through some of the things he had worked on, and found myself reading physics textbooks. That was enough, and I was hooked.”

    The love for independently finding and understanding solutions, that she had apparently inherited from her parents, eventually took her to the professional love of her life: electrochemistry.

    As an undergraduate at MIT, Gallant did an Undergraduate Research Opportunities Program project with Professor Yang Shao-Horn’s research group that went from her sophomore year through her senior thesis. This was Gallant’s first official exposure to electrochemistry.

    “When I met Yang, she showed me very quickly how challenging and enriching electrochemistry can be, and there was real conviction and excitement in how she and her group members talked about research,” Gallant says. “It was totally eye-opening, and I’m fortunate that she was a (relatively rare) electrochemist in a mechanical engineering department, or else I likely would not have been able to go down that road.”

    Play video

    Gallant earned three degrees at MIT (’08, SM ’10, and PhD ’13). Before joining the MIT faculty in 2016, she was a Kavli Nanoscience Institute Prize Postdoctoral Fellow at Caltech in the Division of Chemistry and Chemical Engineering.

    Her passion for electrochemistry is enormous. “Electrons are just dazzling — they power so much of our everyday world, and are the key to a renewable future,” she says, explaining that despite electrons’ amazing potential, isolated electrons cannot be stored and produced on demand, because “nature doesn’t allow excessive amounts of charge imbalances to accumulate.”

    Electrons can, however, be stored on molecules, in bonds and in metal ions or nonmetal centers that are able to lose and gain electrons — as long as positive charge transfers occur to accommodate the electrons.

    “Here’s where chemistry rears its head,” Gallant says. “What types of molecules or materials can behave in this way? How do we store as much charge as possible while making the weight and volume as low as possible?”

    Gallant points out that early battery developers using lithium and ions built a technology that “has arguably shaped our modern world more than any other.

    “If you look at some early papers, the concepts of how a lithium-ion battery or a lithium metal anode worked were sketched out by hand — they had been deduced to be true, before the field even had the tools to prove all the mechanisms were actually occurring — yet even now, those ideas are still turning out to be right!”

    Gallant says, “that’s because if you truly understand the basic principles of electrochemistry, you can start to intuit how systems will behave. Once you can do that, you can really begin to engineer better materials and devices.”

    Truly her father’s daughter, Gallant’s emphasis is on independently finding solutions.

    “Ultimately, it’s a race to have the best mental models,” she says. “A great lab and lots of funding and personnel to run it are very nice, but the most valuable tools in the toolbox are solid mental models and a way of thinking about electrochemistry, which is actually very personalized depending on the researcher.”

    She says one project with immediate impact that’s coming out of her Gallant Energy and Carbon Conversion Lab relates to primary (non-rechargeable) battery work that she and her team are working to commercialize. It involves injecting new electrochemically active electrolytes into leading high-energy batteries as they’re being assembled. Replacing a conventional electrolyte with the new chemistry decreases the normally inactive weight of the battery and boosts the energy substantially, Gallant says. One important application of such batteries would be for medical devices such as pacemakers.

    “If you can extend lifetime, you’re talking about longer times between invasive replacement surgeries, which really affects patient quality of life,” she says.

    Gallant’s team is also leading efforts to enable higher-energy rechargeable lithium-ion batteries for electric vehicles. Key to a step-change in energy, and therefore driving range, is to use a lithium metal anode in place of graphite. Lithium metal is highly reactive, however, with all battery electrolytes, and its interface needs to be stabilized in ways that still elude researchers. Gallant’s team is developing design guidelines for such interfaces, and for next-generation electrolytes to form and sustain these interfaces. Gallant says that applying the technology to that purpose and commercializing it would be “a bit longer-term, but I believe this change to lithium anodes will happen, and it’s just a matter of when.”

    About six years ago, when Gallant founded her lab, she and her team started introducing carbon dioxide into batteries as a way to experiment with electrochemical conversion of the greenhouse gas. She says they realized that batteries do not present the best practical technology to mitigate CO2, but their experimentation did open up new paths to carbon capture and conversion. “That work allowed us to think creatively, and we started to realize that there is tremendous potential to manipulate CO2 reactions by carefully designing the electrochemical environment.” That led her team to the idea of conducting electrochemical transformations on CO2 from a captured state bound to a capture sorbent, replacing the energy-intense regeneration step of today’s capture processes and streamlining the process.  

    “Now we’re seeing other researchers working on that, too, and taking this idea in exciting directions — it’s a very challenging and very rich topic,” she says.

    Gallant has won awards including an MIT Bose Fellowship, the Army Research Office Young Investigator Award, the Scialog Fellowship in Energy Storage and in Negative Emissions Science, a CAREER award from the National Science Foundation, the Ruth and Joel Spira Award for Distinguished Teaching at MIT, the Electrochemical Society (ECS) Battery Division Early Career award, and an ECS-Toyota Young Investigator Award.

    These days, Gallant does some of her best thinking while brainstorming with her research group members and with her husband, who is also an academic. She says being a professor at MIT means she has “a queue of things to think about,” but she sometimes gets awarded with a revelation.

    “My brain gets overloaded because I can’t think through everything instantaneously; ideas have to get in line! So there’s a lot going on in the background at all times,” she say. “I don’t know how it works, but sometimes I’ll be going for a walk or doing something else, and an idea breaks through. Those are the fun ones.” More

  • in

    3Q: How MIT is working to reduce carbon emissions on our campus

    Fast Forward: MIT’s Climate Action Plan for the Decade, launched in May 2021, charges MIT to eliminate its direct carbon emissions by 2050. Setting an interim goal of net zero emissions by 2026 is an important step to getting there. Joe Higgins, vice president for campus services and stewardship, speaks here about the coordinated, multi-team effort underway to address the Institute’s carbon-reduction goals, the challenges and opportunities in getting there, and creating a blueprint for a carbon-free campus in 2050.

    Q: The Fast Forward plan laid out specific goals for MIT to address its own carbon footprint. What has been the strategy to tackle these priorities?

    A: The launch of the Fast Forward Climate Action Plan empowered teams at MIT to expand the scope of our carbon reduction tasks beyond the work we’ve been doing to date. The on-campus activities called for in the plan range from substantially expanding our electric vehicle infrastructure on campus, to increasing our rooftop solar installations, to setting impact goals for food, water, and waste systems. Another strategy utilizes artificial intelligence to further reduce energy consumption and emissions from our buildings. When fully implemented, these systems will adjust a building’s temperature setpoints throughout the day while maintaining occupant comfort, and will use occupancy data, weather forecasts, and carbon intensity projections from the grid to make more efficient use of energy. 

    We have tremendous momentum right now thanks to the progress made over the past decade by our teams — which include planners, designers, engineers, construction managers, and sustainability and operations experts. Since 2014, our efforts to advance energy efficiency and incorporate renewable energy have reduced net emissions on campus by 20% (from a 2014 baseline) despite significant campus growth. One of our current goals is to further reduce energy use in high-intensity research buildings — 20 of our campus buildings consume more than 50% of our energy. To reduce energy usage in these buildings we have major energy retrofit projects in design or in planning for buildings 32, 46, 68, 76, E14, and E25, and we expect this work will reduce overall MIT emissions by an additional 10 to 15%.

    Q: The Fast Forward plan acknowledges the challenges we face in our efforts to reach our campus emission reduction goals, in part due to the current state of New England’s electrical grid. How does MIT’s district energy system factor into our approach? 

    A: MIT’s district energy system is a network of underground pipes and power lines that moves energy from the Central Utilities Plant (CUP) around to the vast majority of Institute buildings to provide electricity, heating, and air conditioning. Using a closed-loop, central-source system like this enables MIT to operate more efficiently by using less energy to heat and cool its buildings and labs, and by maintaining better load control to accommodate seasonal variations in peak demand.

    When the new MIT campus was built in Cambridge in 1916, it included a centralized state-of-the-art steam and electrical power plant that would service the campus buildings. This central district energy approach allowed MIT to avoid having individual furnaces in each building and to easily incorporate progressively cleaner fuel sources campus-wide over the years. After starting with coal as a primary energy source, MIT transitioned to fuel oil, then to natural gas, and then to cogeneration in 1995 — and each step has made the campus more energy efficient. Our continuous investment in a centralized infrastructure has facilitated our ability to improve energy efficiency while adding capacity; as new technologies become available, we can implement them across the entire campus. Our district energy system is very adaptable to seasonal variations in demand for cooling, heating and electricity, and builds upon decades of centralized investments in energy-efficient infrastructure.

    This past year, MIT completed a major upgrade of the district energy system whereby the majority of buildings on campus now benefit from the most advanced cogeneration technology for combined heating, cooling, and power delivery. This system generates electrical power that produces 15 to 25% less carbon than the current New England grid. We also have the ability to export power during times when the grid is most stressed, which contributes to the resiliency of local energy systems. On the flip side, any time the grid is a cleaner option, MIT is able to import a higher amount of electricity from the utility by distributing this energy through our centralized system. In fact, it’s important to note that we have the ability to import 100% of our electrical energy from the grid as it becomes cleaner. We anticipate that this will happen as the next major wave of technology innovation unfolds and the abundance of offshore wind and other renewable resources increases as anticipated by the end of this decade. As the grid gets greener, our adaptable district energy system will bring us closer to meeting our decarbonization goals.

    MIT’s ability to adapt its system and use new technologies is crucial right now as we work in collaboration with faculty, students, industry experts, peer institutions, and the cities of Cambridge and Boston to evaluate various strategies, opportunities, and constraints. In terms of evolving into a next-generation district energy system, we are reviewing options such as electric steam boilers and industrial-scale heat pumps, thermal batteries, geothermal exchange, micro-reactors, bio-based fuels, and green hydrogen produced from renewable energy. We are preparing to incorporate the most beneficial technologies into a blueprint that will get us to our 2050 goal.

    Q: What is MIT doing in the near term to reach the carbon-reduction goals of the climate action plan?

    A: In the near term, we are exploring several options, including enabling large-scale renewable energy projects and investing in verified carbon offset projects that reduce, avoid, or sequester carbon. In 2016, MIT joined a power purchase agreement (PPA) partnership that enabled the construction of a 650-acre solar farm in North Carolina and resulted in the early retirement of a nearby coal plant. We’ve documented a huge emissions savings from this, and we’re exploring how to do something similar on a much larger scale with a broader group of partners. As we seek out collaborative opportunities that enable the development of new renewable energy sources, we hope to provide a model for other institutions and organizations, as the original PPA did. Because PPAs accelerate the de-carbonization of regional electricity grids, they can have an enormous and far-reaching impact. We see these partnerships as an important component of achieving net zero emissions on campus as well as accelerating the de-carbonization of regional power grids — a transformation that must take place to reach zero emissions by 2050.

    Other near-term initiatives include enabling community solar power projects in Massachusetts to support the state’s renewable energy goals and provide opportunities for more property owners (municipalities, businesses, homeowners, etc.) to purchase affordable renewable energy. MIT is engaged with three of these projects; one of them is in operation today in Middleton, and the two others are scheduled to be built soon on Cape Cod.

    We’re joining the commonwealth and its cities, its organizations and utility providers on an unprecedented journey — the global transition to a clean energy system. Along the way, everything is going to change as technologies and the grid continue to evolve. Our focus is on both the near term and the future, as we plan a path into the next energy era. More