More stories

  • in

    Predicting building emissions across the US

    The United States is entering a building boom. Between 2017 and 2050, it will build the equivalent of New York City 20 times over. Yet, to meet climate targets, the nation must also significantly reduce the greenhouse gas (GHG) emissions of its buildings, which comprise 27 percent of the nation’s total emissions.

    A team of current and former MIT Concrete Sustainability Hub (CSHub) researchers is addressing these conflicting demands with the aim of giving policymakers the tools and information to act. They have detailed the results of their collaboration in a recent paper in the journal Applied Energy that projects emissions for all buildings across the United States under two GHG reduction scenarios.

    Their paper found that “embodied” emissions — those from materials production and construction — would represent around a quarter of emissions between 2016 and 2050 despite extensive construction.

    Further, many regions would have varying priorities for GHG reductions; some, like the West, would benefit most from reductions to embodied emissions, while others, like parts of the Midwest, would see the greatest payoff from interventions to emissions from energy consumption. If these regional priorities were addressed aggressively, building sector emissions could be reduced by around 30 percent between 2016 and 2050.

    Quantifying contradictions

    Modern buildings are far more complex — and efficient — than their predecessors. Due to new technologies and more stringent building codes, they can offer lower energy consumption and operational emissions. And yet, more-efficient materials and improved construction standards can also generate greater embodied emissions.

    Concrete, in many ways, epitomizes this tradeoff. Though its durability can minimize energy-intensive repairs over a building’s operational life, the scale of its production means that it contributes to a large proportion of the embodied impacts in the building sector.

    As such, the team centered GHG reductions for concrete in its analysis.

    “We took a bottom-up approach, developing reference designs based on a set of residential and commercial building models,” explains Ehsan Vahidi, an assistant professor at the University of Nevada at Reno and a former CSHub postdoc. “These designs were differentiated by roof and slab insulation, HVAC efficiency, and construction materials — chiefly concrete and wood.”

    After measuring the operational and embodied GHG emissions for each reference design, the team scaled up their results to the county level and then national level based on building stock forecasts. This allowed them to estimate the emissions of the entire building sector between 2016 and 2050.

    To understand how various interventions could cut GHG emissions, researchers ran two different scenarios — a “projected” and an “ambitious” scenario — through their framework.

    The projected scenario corresponded to current trends. It assumed grid decarbonization would follow Energy Information Administration predictions; the widespread adoption of new energy codes; efficiency improvement of lighting and appliances; and, for concrete, the implementation of 50 percent low-carbon cements and binders in all new concrete construction and the adoption of full carbon capture, storage, and utilization (CCUS) of all cement and concrete emissions.

    “Our ambitious scenario was intended to reflect a future where more aggressive actions are taken to reduce GHG emissions and achieve the targets,” says Vahidi. “Therefore, the ambitious scenario took these same strategies [of the projected scenario] but featured more aggressive targets for their implementation.”

    For instance, it assumed a 33 percent reduction in grid emissions by 2050 and moved the projected deadlines for lighting and appliances and thermal insulation forward by five and 10 years, respectively. Concrete decarbonization occurred far more quickly as well.

    Reductions and variations

    The extensive growth forecast for the U.S. building sector will inevitably generate a sizable number of emissions. But how much can this figure be minimized?

    Without the implementation of any GHG reduction strategies, the team found that the building sector would emit 62 gigatons CO2 equivalent between 2016 and 2050. That’s comparable to the emissions generated from 156 trillion passenger vehicle miles traveled.

    But both GHG reduction scenarios could cut the emissions from this unmitigated, business-as-usual scenario significantly.

    Under the projected scenario, emissions would fall to 45 gigatons CO2 equivalent — a 27 percent decrease over the analysis period. The ambitious scenario would offer a further 6 percent reduction over the projected scenario, reaching 40 gigatons CO2 equivalent — like removing around 55 trillion passenger vehicle miles from the road over the period.

    “In both scenarios, the largest contributor to reductions was the greening of the energy grid,” notes Vahidi. “Other notable opportunities for reductions were from increasing the efficiency of lighting, HVAC, and appliances. Combined, these four attributes contributed to 85 percent of the emissions over the analysis period. Improvements to them offered the greatest potential emissions reductions.”

    The remaining attributes, such as thermal insulation and low-carbon concrete, had a smaller impact on emissions and, consequently, offered smaller reduction opportunities. That’s because these two attributes were only applied to new construction in the analysis, which was outnumbered by existing structures throughout the period.

    The disparities in impact between strategies aimed at new and existing structures underscore a broader finding: Despite extensive construction over the period, embodied emissions would comprise just 23 percent of cumulative emissions between 2016 and 2050, with the remainder coming primarily from operation.  

    “This is a consequence of existing structures far outnumbering new structures,” explains Jasmina Burek, a CSHub postdoc and an incoming assistant professor at the University of Massachusetts Lowell. “The operational emissions generated by all new and existing structures between 2016 and 2050 will always greatly exceed the embodied emissions of new structures at any given time, even as buildings become more efficient and the grid gets greener.”

    Yet the emissions reductions from both scenarios were not distributed evenly across the entire country. The team identified several regional variations that could have implications for how policymakers must act to reduce building sector emissions.

    “We found that western regions in the United States would see the greatest reduction opportunities from interventions to residential emissions, which would constitute 90 percent of the region’s total emissions over the analysis period,” says Vahidi.

    The predominance of residential emissions stems from the region’s ongoing population surge and its subsequent growth in housing stock. Proposed solutions would include CCUS and low-carbon binders for concrete production, and improvements to energy codes aimed at residential buildings.

    As with the West, ideal solutions for the Southeast would include CCUS, low-carbon binders, and improved energy codes.

    “In the case of Southeastern regions, interventions should equally target commercial and residential buildings, which we found were split more evenly among the building stock,” explains Burek. “Due to the stringent energy codes in both regions, interventions to operational emissions were less impactful than those to embodied emissions.”

    Much of the Midwest saw the inverse outcome. Its energy mix remains one of the most carbon-intensive in the nation and improvements to energy efficiency and the grid would have a large payoff — particularly in Missouri, Kansas, and Colorado.

    New England and California would see the smallest reductions. As their already-strict energy codes would limit further operational reductions, opportunities to reduce embodied emissions would be the most impactful.

    This tremendous regional variation uncovered by the MIT team is in many ways a reflection of the great demographic and geographic diversity of the nation as a whole. And there are still further variables to consider.

    In addition to GHG emissions, future research could consider other environmental impacts, like water consumption and air quality. Other mitigation strategies to consider include longer building lifespans, retrofitting, rooftop solar, and recycling and reuse.

    In this sense, their findings represent the lower bounds of what is possible in the building sector. And even if further improvements are ultimately possible, they’ve shown that regional variation will invariably inform those environmental impact reductions.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Concrete’s role in reducing building and pavement emissions

    Encountering concrete is a common, even routine, occurrence. And that’s exactly what makes concrete exceptional.

    As the most consumed material after water, concrete is indispensable to the many essential systems — from roads to buildings — in which it is used.

    But due to its extensive use, concrete production also contributes to around 1 percent of emissions in the United States and remains one of several carbon-intensive industries globally. Tackling climate change, then, will mean reducing the environmental impacts of concrete, even as its use continues to increase.

    In a new paper in the Proceedings of the National Academy of Sciences, a team of current and former researchers at the MIT Concrete Sustainability Hub (CSHub) outlines how this can be achieved.

    They present an extensive life-cycle assessment of the building and pavements sectors that estimates how greenhouse gas (GHG) reduction strategies — including those for concrete and cement — could minimize the cumulative emissions of each sector and how those reductions would compare to national GHG reduction targets. 

    The team found that, if reduction strategies were implemented, the emissions for pavements and buildings between 2016 and 2050 could fall by up to 65 percent and 57 percent, respectively, even if concrete use accelerated greatly over that period. These are close to U.S. reduction targets set as part of the Paris Climate Accords. The solutions considered would also enable concrete production for both sectors to attain carbon neutrality by 2050.

    Despite continued grid decarbonization and increases in fuel efficiency, they found that the vast majority of the GHG emissions from new buildings and pavements during this period would derive from operational energy consumption rather than so-called embodied emissions — emissions from materials production and construction.

    Sources and solutions

    The consumption of concrete, due to its versatility, durability, constructability, and role in economic development, has been projected to increase around the world.

    While it is essential to consider the embodied impacts of ongoing concrete production, it is equally essential to place these initial impacts in the context of the material’s life cycle.

    Due to concrete’s unique attributes, it can influence the long-term sustainability performance of the systems in which it is used. Concrete pavements, for instance, can reduce vehicle fuel consumption, while concrete structures can endure hazards without needing energy- and materials-intensive repairs.

    Concrete’s impacts, then, are as complex as the material itself — a carefully proportioned mixture of cement powder, water, sand, and aggregates. Untangling concrete’s contribution to the operational and embodied impacts of buildings and pavements is essential for planning GHG reductions in both sectors.

    Set of scenarios

    In their paper, CSHub researchers forecast the potential greenhouse gas emissions from the building and pavements sectors as numerous emissions reduction strategies were introduced between 2016 and 2050.

    Since both of these sectors are immense and rapidly evolving, modeling them required an intricate framework.

    “We don’t have details on every building and pavement in the United States,” explains Randolph Kirchain, a research scientist at the Materials Research Laboratory and co-director of CSHub.

    “As such, we began by developing reference designs, which are intended to be representative of current and future buildings and pavements. These were adapted to be appropriate for 14 different climate zones in the United States and then distributed across the U.S. based on data from the U.S. Census and the Federal Highway Administration”

    To reflect the complexity of these systems, their models had to have the highest resolutions possible.

    “In the pavements sector, we collected the current stock of the U.S. network based on high-precision 10-mile segments, along with the surface conditions, traffic, thickness, lane width, and number of lanes for each segment,” says Hessam AzariJafari, a postdoc at CSHub and a co-author on the paper.

    “To model future paving actions over the analysis period, we assumed four climate conditions; four road types; asphalt, concrete, and composite pavement structures; as well as major, minor, and reconstruction paving actions specified for each climate condition.”

    Using this framework, they analyzed a “projected” and an “ambitious” scenario of reduction strategies and system attributes for buildings and pavements over the 34-year analysis period. The scenarios were defined by the timing and intensity of GHG reduction strategies.

    As its name might suggest, the projected scenario reflected current trends. For the building sector, solutions encompassed expected grid decarbonization and improvements to building codes and energy efficiency that are currently being implemented across the country. For pavements, the sole projected solution was improvements to vehicle fuel economy. That’s because as vehicle efficiency continues to increase, excess vehicle emissions due to poor road quality will also decrease.

    Both the projected scenarios for buildings and pavements featured the gradual introduction of low-carbon concrete strategies, such as recycled content, carbon capture in cement production, and the use of captured carbon to produce aggregates and cure concrete.

    “In the ambitious scenario,” explains Kirchain, “we went beyond projected trends and explored reasonable changes that exceed current policies and [industry] commitments.”

    Here, the building sector strategies were the same, but implemented more aggressively. The pavements sector also abided by more aggressive targets and incorporated several novel strategies, including investing more to yield smoother roads, selectively applying concrete overlays to produce stiffer pavements, and introducing more reflective pavements — which can change the Earth’s energy balance by sending more energy out of the atmosphere.

    Results

    As the grid becomes greener and new homes and buildings become more efficient, many experts have predicted the operational impacts of new construction projects to shrink in comparison to their embodied emissions.

    “What our life-cycle assessment found,” says Jeremy Gregory, the executive director of the MIT Climate Consortium and the lead author on the paper, “is that [this prediction] isn’t necessarily the case.”

    “Instead, we found that more than 80 percent of the total emissions from new buildings and pavements between 2016 and 2050 would derive from their operation.”

    In fact, the study found that operations will create the majority of emissions through 2050 unless all energy sources — electrical and thermal — are carbon-neutral by 2040. This suggests that ambitious interventions to the electricity grid and other sources of operational emissions can have the greatest impact.

    Their predictions for emissions reductions generated additional insights.  

    For the building sector, they found that the projected scenario would lead to a reduction of 49 percent compared to 2016 levels, and that the ambitious scenario provided a 57 percent reduction.

    As most buildings during the analysis period were existing rather than new, energy consumption dominated emissions in both scenarios. Consequently, decarbonizing the electricity grid and improving the efficiency of appliances and lighting led to the greatest improvements for buildings, they found.

    In contrast to the building sector, the pavements scenarios had a sizeable gulf between outcomes: the projected scenario led to only a 14 percent reduction while the ambitious scenario had a 65 percent reduction — enough to meet U.S. Paris Accord targets for that sector. This gulf derives from the lack of GHG reduction strategies being pursued under current projections.

    “The gap between the pavement scenarios shows that we need to be more proactive in managing the GHG impacts from pavements,” explains Kirchain. “There is tremendous potential, but seeing those gains requires action now.”

    These gains from both ambitious scenarios could occur even as concrete use tripled over the analysis period in comparison to the projected scenarios — a reflection of not only concrete’s growing demand but its potential role in decarbonizing both sectors.

    Though only one of their reduction scenarios (the ambitious pavement scenario) met the Paris Accord targets, that doesn’t preclude the achievement of those targets: many other opportunities exist.

    “In this study, we focused on mainly embodied reductions for concrete,” explains Gregory. “But other construction materials could receive similar treatment.

    “Further reductions could also come from retrofitting existing buildings and by designing structures with durability, hazard resilience, and adaptability in mind in order to minimize the need for reconstruction.”

    This study answers a paradox in the field of sustainability. For the world to become more equitable, more development is necessary. And yet, that very same development may portend greater emissions.

    The MIT team found that isn’t necessarily the case. Even as America continues to use more concrete, the benefits of the material itself and the interventions made to it can make climate targets more achievable.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking

    The California Air Resources Board has adopted a regulation that requires truck and engine manufacturers to reduce the nitrogen oxide (NOx) emissions from new heavy-duty trucks by 90 percent starting in 2027. NOx from heavy-duty trucks is one of the main sources of air pollution, creating smog and threatening respiratory health. This regulation requires the largest air pollution cuts in California in more than a decade. How can manufacturers achieve this aggressive goal efficiently and affordably?

    Daniel Cohn, a research scientist at the MIT Energy Initiative, and Leslie Bromberg, a principal research scientist at the MIT Plasma Science and Fusion Center, have been working on a high-efficiency, gasoline-ethanol engine that is cleaner and more cost-effective than existing diesel engine technologies. Here, Cohn explains the flexible-fuel engine approach and why it may be the most realistic solution — in the near term — to help California meet its stringent vehicle emission reduction goals. The research was sponsored by the Arthur Samberg MIT Energy Innovation fund.

    Q. How does your high-efficiency, flexible-fuel gasoline engine technology work?

    A. Our goal is to provide an affordable solution for heavy-duty vehicle (HDV) engines to emit low levels of nitrogen oxide (NOx) emissions that would meet California’s NOx regulations, while also quick-starting gasoline-consumption reductions in a substantial fraction of the HDV fleet.

    Presently, large trucks and other HDVs generally use diesel engines. The main reason for this is because of their high efficiency, which reduces fuel cost — a key factor for commercial trucks (especially long-haul trucks) because of the large number of miles that are driven. However, the NOx emissions from these diesel-powered vehicles are around 10 times greater than those from spark-ignition engines powered by gasoline or ethanol.

    Spark-ignition gasoline engines are primarily used in cars and light trucks (light-duty vehicles), which employ a three-way catalyst exhaust treatment system (generally referred to as a catalytic converter) that reduces vehicle NOx emissions by at least 98 percent and at a modest cost. The use of this highly effective exhaust treatment system is enabled by the capability of spark-ignition engines to be operated at a stoichiometric air/fuel ratio (where the amount of air matches what is needed for complete combustion of the fuel).

    Diesel engines do not operate with stoichiometric air/fuel ratios, making it much more difficult to reduce NOx emissions. Their state-of-the-art exhaust treatment system is much more complex and expensive than catalytic converters, and even with it, vehicles produce NOx emissions around 10 times higher than spark-ignition engine vehicles. Consequently, it is very challenging for diesel engines to further reduce their NOx emissions to meet the new California regulations.

    Our approach uses spark-ignition engines that can be powered by gasoline, ethanol, or mixtures of gasoline and ethanol as a substitute for diesel engines in HDVs. Gasoline has the attractive feature of being widely available and having a comparable or lower cost than diesel fuel. In addition, presently available ethanol in the U.S. produces up to 40 percent less greenhouse gas (GHG) emissions than diesel fuel or gasoline and has a widely available distribution system.

    To make gasoline- and/or ethanol-powered spark-ignition engine HDVs attractive for widespread HDV applications, we developed ways to make spark-ignition engines more efficient, so their fuel costs are more palatable to owners of heavy-duty trucks. Our approach provides diesel-like high efficiency and high power in gasoline-powered engines by using various methods to prevent engine knock (unwanted self-ignition that can damage the engine) in spark-ignition gasoline engines. This enables greater levels of turbocharging and use of higher engine compression ratios. These features provide high efficiency, comparable to that provided by diesel engines. Plus, when the engine is powered by ethanol, the required knock resistance is provided by the intrinsic high knock resistance of the fuel itself. 

    Q. What are the major challenges to implementing your technology in California?

    A. California has always been the pioneer in air pollutant control, with states such as Washington, Oregon, and New York often following suit. As the most populous state, California has a lot of sway — it’s a trendsetter. What happens in California has an impact on the rest of the United States.

    The main challenge to implementation of our technology is the argument that a better internal combustion engine technology is not needed because battery-powered HDVs — particularly long-haul trucks — can play the required role in reducing NOx and GHG emissions by 2035. We think that substantial market penetration of battery electric vehicles (BEV) in this vehicle sector will take a considerably longer time. In contrast to light-duty vehicles, there has been very little penetration of battery power into the HDV fleet, especially in long-haul trucks, which are the largest users of diesel fuel. One reason for this is that long-haul trucks using battery power face the challenge of reduced cargo capability due to substantial battery weight. Another challenge is the substantially longer charging time for BEVs compared to that of most present HDVs.

    Hydrogen-powered trucks using fuel cells have also been proposed as an alternative to BEV trucks, which might limit interest in adopting improved internal combustion engines. However, hydrogen-powered trucks face the formidable challenges of producing zero GHG hydrogen at affordable cost, as well as the cost of storage and transportation of hydrogen. At present the high purity hydrogen needed for fuel cells is generally very expensive.

    Q. How does your idea compare overall to battery-powered and hydrogen-powered HDVs? And how will you persuade people that it is an attractive pathway to follow?

    A. Our design uses existing propulsion systems and can operate on existing liquid fuels, and for these reasons, in the near term, it will be economically attractive to the operators of long-haul trucks. In fact, it can even be a lower-cost option than diesel power because of the significantly less-expensive exhaust treatment and smaller-size engines for the same power and torque. This economic attractiveness could enable the large-scale market penetration that is needed to have a substantial impact on reducing air pollution. Alternatively, we think it could take at least 20 years longer for BEVs or hydrogen-powered vehicles to obtain the same level of market penetration.

    Our approach also uses existing corn-based ethanol, which can provide a greater near-term GHG reduction benefit than battery- or hydrogen-powered long-haul trucks. While the GHG reduction from using existing ethanol would initially be in the 20 percent to 40 percent range, the scale at which the market is penetrated in the near-term could be much greater than for BEV or hydrogen-powered vehicle technology. The overall impact in reducing GHGs could be considerably greater.

    Moreover, we see a migration path beyond 2030 where further reductions in GHG emissions from corn ethanol can be possible through carbon capture and sequestration of the carbon dioxide (CO2) that is produced during ethanol production. In this case, overall CO2 reductions could potentially be 80 percent or more. Technologies for producing ethanol (and methanol, another alcohol fuel) from waste at attractive costs are emerging, and can provide fuel with zero or negative GHG emissions. One pathway for providing a negative GHG impact is through finding alternatives to landfilling for waste disposal, as this method leads to potent methane GHG emissions. A negative GHG impact could also be obtained by converting biomass waste into clean fuel, since the biomass waste can be carbon neutral and CO2 from the production of the clean fuel can be captured and sequestered.

    In addition, our flex-fuel engine technology may be synergistically used as range extenders in plug-in hybrid HDVs, which use limited battery capacity and obviates the cargo capability reduction and fueling disadvantages of long-haul trucks powered by battery alone.

    With the growing threats from air pollution and global warming, our HDV solution is an increasingly important option for near-term reduction of air pollution and offers a faster start in reducing heavy-duty fleet GHG emissions. It also provides an attractive migration path for longer-term, larger GHG reductions from the HDV sector. More

  • in

    Making the case for hydrogen in a zero-carbon economy

    As the United States races to achieve its goal of zero-carbon electricity generation by 2035, energy providers are swiftly ramping up renewable resources such as solar and wind. But because these technologies churn out electrons only when the sun shines and the wind blows, they need backup from other energy sources, especially during seasons of high electric demand. Currently, plants burning fossil fuels, primarily natural gas, fill in the gaps.

    “As we move to more and more renewable penetration, this intermittency will make a greater impact on the electric power system,” says Emre Gençer, a research scientist at the MIT Energy Initiative (MITEI). That’s because grid operators will increasingly resort to fossil-fuel-based “peaker” plants that compensate for the intermittency of the variable renewable energy (VRE) sources of sun and wind. “If we’re to achieve zero-carbon electricity, we must replace all greenhouse gas-emitting sources,” Gençer says.

    Low- and zero-carbon alternatives to greenhouse-gas emitting peaker plants are in development, such as arrays of lithium-ion batteries and hydrogen power generation. But each of these evolving technologies comes with its own set of advantages and constraints, and it has proven difficult to frame the debate about these options in a way that’s useful for policymakers, investors, and utilities engaged in the clean energy transition.

    Now, Gençer and Drake D. Hernandez SM ’21 have come up with a model that makes it possible to pin down the pros and cons of these peaker-plant alternatives with greater precision. Their hybrid technological and economic analysis, based on a detailed inventory of California’s power system, was published online last month in Applied Energy. While their work focuses on the most cost-effective solutions for replacing peaker power plants, it also contains insights intended to contribute to the larger conversation about transforming energy systems.

    “Our study’s essential takeaway is that hydrogen-fired power generation can be the more economical option when compared to lithium-ion batteries — even today, when the costs of hydrogen production, transmission, and storage are very high,” says Hernandez, who worked on the study while a graduate research assistant for MITEI. Adds Gençer, “If there is a place for hydrogen in the cases we analyzed, that suggests there is a promising role for hydrogen to play in the energy transition.”

    Adding up the costs

    California serves as a stellar paradigm for a swiftly shifting power system. The state draws more than 20 percent of its electricity from solar and approximately 7 percent from wind, with more VRE coming online rapidly. This means its peaker plants already play a pivotal role, coming online each evening when the sun goes down or when events such as heat waves drive up electricity use for days at a time.

    “We looked at all the peaker plants in California,” recounts Gençer. “We wanted to know the cost of electricity if we replaced them with hydrogen-fired turbines or with lithium-ion batteries.” The researchers used a core metric called the levelized cost of electricity (LCOE) as a way of comparing the costs of different technologies to each other. LCOE measures the average total cost of building and operating a particular energy-generating asset per unit of total electricity generated over the hypothetical lifetime of that asset.

    Selecting 2019 as their base study year, the team looked at the costs of running natural gas-fired peaker plants, which they defined as plants operating 15 percent of the year in response to gaps in intermittent renewable electricity. In addition, they determined the amount of carbon dioxide released by these plants and the expense of abating these emissions. Much of this information was publicly available.

    Coming up with prices for replacing peaker plants with massive arrays of lithium-ion batteries was also relatively straightforward: “There are no technical limitations to lithium-ion, so you can build as many as you want; but they are super expensive in terms of their footprint for energy storage and the mining required to manufacture them,” says Gençer.

    But then came the hard part: nailing down the costs of hydrogen-fired electricity generation. “The most difficult thing is finding cost assumptions for new technologies,” says Hernandez. “You can’t do this through a literature review, so we had many conversations with equipment manufacturers and plant operators.”

    The team considered two different forms of hydrogen fuel to replace natural gas, one produced through electrolyzer facilities that convert water and electricity into hydrogen, and another that reforms natural gas, yielding hydrogen and carbon waste that can be captured to reduce emissions. They also ran the numbers on retrofitting natural gas plants to burn hydrogen as opposed to building entirely new facilities. Their model includes identification of likely locations throughout the state and expenses involved in constructing these facilities.

    The researchers spent months compiling a giant dataset before setting out on the task of analysis. The results from their modeling were clear: “Hydrogen can be a more cost-effective alternative to lithium-ion batteries for peaking operations on a power grid,” says Hernandez. In addition, notes Gençer, “While certain technologies worked better in particular locations, we found that on average, reforming hydrogen rather than electrolytic hydrogen turned out to be the cheapest option for replacing peaker plants.”

    A tool for energy investors

    When he began this project, Gençer admits he “wasn’t hopeful” about hydrogen replacing natural gas in peaker plants. “It was kind of shocking to see in our different scenarios that there was a place for hydrogen.” That’s because the overall price tag for converting a fossil-fuel based plant to one based on hydrogen is very high, and such conversions likely won’t take place until more sectors of the economy embrace hydrogen, whether as a fuel for transportation or for varied manufacturing and industrial purposes.

    A nascent hydrogen production infrastructure does exist, mainly in the production of ammonia for fertilizer. But enormous investments will be necessary to expand this framework to meet grid-scale needs, driven by purposeful incentives. “With any of the climate solutions proposed today, we will need a carbon tax or carbon pricing; otherwise nobody will switch to new technologies,” says Gençer.

    The researchers believe studies like theirs could help key energy stakeholders make better-informed decisions. To that end, they have integrated their analysis into SESAME, a life cycle and techno-economic assessment tool for a range of energy systems that was developed by MIT researchers. Users can leverage this sophisticated modeling environment to compare costs of energy storage and emissions from different technologies, for instance, or to determine whether it is cost-efficient to replace a natural gas-powered plant with one powered by hydrogen.

    “As utilities, industry, and investors look to decarbonize and achieve zero-emissions targets, they have to weigh the costs of investing in low-carbon technologies today against the potential impacts of climate change moving forward,” says Hernandez, who is currently a senior associate in the energy practice at Charles River Associates. Hydrogen, he believes, will become increasingly cost-competitive as its production costs decline and markets expand.

    A study group member of MITEI’s soon-to-be published Future of Storage study, Gençer knows that hydrogen alone will not usher in a zero-carbon future. But, he says, “Our research shows we need to seriously consider hydrogen in the energy transition, start thinking about key areas where hydrogen should be used, and start making the massive investments necessary.”

    Funding for this research was provided by MITEI’s Low-Carbon Energy Centers and Future of Storage study. More

  • in

    Countering climate change with cool pavements

    Pavements are an abundant urban surface, covering around 40 percent of American cities. But in addition to carrying traffic, they can also emit heat.

    Due to what’s called the urban heat island effect, densely built, impermeable surfaces like pavements can absorb solar radiation and warm up their surroundings by re-emitting that radiation as heat. This phenomenon poses a serious threat to cities. It increases air temperatures by up as much as 7 degrees Fahrenheit and contributes to health and environmental risks — risks that climate change will magnify.

    In response, researchers at the MIT Concrete Sustainability Hub (MIT CSHub) are studying how a surface that ordinarily heightens urban heat islands can instead lessen their intensity. Their research focuses on “cool pavements,” which reflect more solar radiation and emit less heat than conventional paving surfaces.

    A recent study by a team of current and former MIT CSHub researchers in the journal of Environmental Science and Technology outlines cool pavements and their implementation. The study found that they could lower air temperatures in Boston and Phoenix by up to 1.7 degrees Celsius (3 F) and 2.1 C (3.7 F), respectively. They would also reduce greenhouse gas emissions, cutting total emissions by up to 3 percent in Boston and 6 percent in Phoenix. Achieving these savings, however, requires that cool pavement strategies be selected according to the climate, traffic, and building configurations of each neighborhood.

    Cities like Los Angeles and Phoenix have already conducted sizeable experiments with cool pavements, but the technology is still not widely implemented. The CSHub team hopes their research can guide future cool paving projects to help cities cope with a changing climate.

    Scratching the surface

    It’s well known that darker surfaces get hotter in sunlight than lighter ones. Climate scientists use a metric called “albedo” to help describe this phenomenon.

    “Albedo is a measure of surface reflectivity,” explains Hessam AzariJafari, the paper’s lead author and a postdoc at the MIT CSHub. “Surfaces with low albedo absorb more light and tend to be darker, while high-albedo surfaces are brighter and reflect more light.”

    Albedo is central to cool pavements. Typical paving surfaces, like conventional asphalt, possess a low albedo and absorb more radiation and emit more heat. Cool pavements, however, have brighter materials that reflect more than three times as much radiation and, consequently, re-emit far less heat.

    “We can build cool pavements in many different ways,” says Randolph Kirchain, a researcher in the Materials Science Laboratory and co-director of the Concrete Sustainability Hub. “Brighter materials like concrete and lighter-colored aggregates offer higher albedo, while existing asphalt pavements can be made ‘cool’ through reflective coatings.”

    CSHub researchers considered these several options in a study of Boston and Phoenix. Their analysis considered different outcomes when concrete, reflective asphalt, and reflective concrete replaced conventional asphalt pavements — which make up more than 95 percent of pavements worldwide.

    Situational awareness

    For a comprehensive understanding of the environmental benefits of cool pavements in Boston and Phoenix, researchers had to look beyond just paving materials. That’s because in addition to lowering air temperatures, cool pavements exert direct and indirect impacts on climate change.  

    “The one direct impact is radiative forcing,” notes AzariJafari. “By reflecting radiation back into the atmosphere, cool pavements exert a radiative forcing, meaning that they change the Earth’s energy balance by sending more energy out of the atmosphere — similar to the polar ice caps.”

    Cool pavements also exert complex, indirect climate change impacts by altering energy use in adjacent buildings.

    “On the one hand, by lowering temperatures, cool pavements can reduce some need for AC [air conditioning] in the summer while increasing heating demand in the winter,” says AzariJafari. “Conversely, by reflecting light — called incident radiation — onto nearby buildings, cool pavements can warm structures up, which can increase AC usage in the summer and lower heating demand in the winter.”

    What’s more, albedo effects are only a portion of the overall life cycle impacts of a cool pavement. In fact, impacts from construction and materials extraction (referred to together as embodied impacts) and the use of the pavement both dominate the life cycle. The primary use phase impact of a pavement — apart from albedo effects  — is excess fuel consumption: Pavements with smooth surfaces and stiff structures cause less excess fuel consumption in the vehicles that drive on them.

    Assessing the climate-change impacts of cool pavements, then, is an intricate process — one involving many trade-offs. In their study, the researchers sought to analyze and measure them.

    A full reflection

    To determine the ideal implementation of cool pavements in Boston and Phoenix, researchers investigated the life cycle impacts of shifting from conventional asphalt pavements to three cool pavement options: reflective asphalt, concrete, and reflective concrete.

    To do this, they used coupled physical simulations to model buildings in thousands of hypothetical neighborhoods. Using this data, they then trained a neural network model to predict impacts based on building and neighborhood characteristics. With this tool in place, it was possible to estimate the impact of cool pavements for each of the thousands of roads and hundreds of thousands of buildings in Boston and Phoenix.

    In addition to albedo effects, they also looked at the embodied impacts for all pavement types and the effect of pavement type on vehicle excess fuel consumption due to surface qualities, stiffness, and deterioration rate.

    After assessing the life cycle impacts of each cool pavement type, the researchers calculated which material — conventional asphalt, reflective asphalt, concrete, and reflective concrete — benefited each neighborhood most. They found that while cool pavements were advantageous in Boston and Phoenix overall, the ideal materials varied greatly within and between both cities.

    “One benefit that was universal across neighborhood type and paving material, was the impact of radiative forcing,” notes AzariJafari. “This was particularly the case in areas with shorter, less-dense buildings, where the effect was most pronounced.”

    Unlike radiative forcing, however, changes to building energy demand differed by location. In Boston, cool pavements reduced energy demand as often as they increased it across all neighborhoods. In Phoenix, cool pavements had a negative impact on energy demand in most census tracts due to incident radiation. When factoring in radiative forcing, though, cool pavements ultimately had a net benefit.

    Only after considering embodied emissions and impacts on fuel consumption did the ideal pavement type manifest for each neighborhood. Once factoring in uncertainty over the life cycle, researchers found that reflective concrete pavements had the best results, proving optimal in 53 percent and 73 percent of the neighborhoods in Boston and Phoenix, respectively.

    Once again, uncertainties and variations were identified. In Boston, replacing conventional asphalt pavements with a cool option was always preferred, while in Phoenix concrete pavements — reflective or not — had better outcomes due to rigidity at high temperatures that minimized vehicle fuel consumption. And despite the dominance of concrete in Phoenix, in 17 percent of its neighborhoods all reflective paving options proved more or less as effective, while in 1 percent of cases, conventional pavements were actually superior.

    “Though the climate change impacts we studied have proven numerous and often at odds with each other, our conclusions are unambiguous: Cool pavements could offer immense climate change mitigation benefits for both cities,” says Kirchain.

    The improvements to air temperatures would be noticeable: the team found that cool pavements would lower peak summer air temperatures in Boston by 1.7 C (3 F) and in Phoenix by 2.1 C (3.7 F). The carbon dioxide emissions reductions would likewise be impressive. Boston would decrease its carbon dioxide emissions by as much as 3 percent over 50 years while reductions in Phoenix would reach 6 percent over the same period.

    This analysis is one of the most comprehensive studies of cool pavements to date — but there’s more to investigate. Just as with pavements, it’s also possible to adjust building albedo, which may result in changes to building energy demand. Intensive grid decarbonization and the introduction of low-carbon concrete mixtures may also alter the emissions generated by cool pavements.

    There’s still lots of ground to cover for the CSHub team. But by studying cool pavements, they’ve elevated a brilliant climate change solution and opened avenues for further research and future mitigation.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Global warming begets more warming, new paleoclimate study finds

    It is increasingly clear that the prolonged drought conditions, record-breaking heat, sustained wildfires, and frequent, more extreme storms experienced in recent years are a direct result of rising global temperatures brought on by humans’ addition of carbon dioxide to the atmosphere. And a new MIT study on extreme climate events in Earth’s ancient history suggests that today’s planet may become more volatile as it continues to warm.

    The study, appearing today in Science Advances, examines the paleoclimate record of the last 66 million years, during the Cenozoic era, which began shortly after the extinction of the dinosaurs. The scientists found that during this period, fluctuations in the Earth’s climate experienced a surprising “warming bias.” In other words, there were far more warming events — periods of prolonged global warming, lasting thousands to tens of thousands of years — than cooling events. What’s more, warming events tended to be more extreme, with greater shifts in temperature, than cooling events.

    The researchers say a possible explanation for this warming bias may lie in a “multiplier effect,” whereby a modest degree of warming — for instance from volcanoes releasing carbon dioxide into the atmosphere — naturally speeds up certain biological and chemical processes that enhance these fluctuations, leading, on average, to still more warming.

    Interestingly, the team observed that this warming bias disappeared about 5 million years ago, around the time when ice sheets started forming in the Northern Hemisphere. It’s unclear what effect the ice has had on the Earth’s response to climate shifts. But as today’s Arctic ice recedes, the new study suggests that a multiplier effect may kick back in, and the result may be a further amplification of human-induced global warming.

    “The Northern Hemisphere’s ice sheets are shrinking, and could potentially disappear as a long-term consequence of human actions” says the study’s lead author Constantin Arnscheidt, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Our research suggests that this may make the Earth’s climate fundamentally more susceptible to extreme, long-term global warming events such as those seen in the geologic past.”

    Arnscheidt’s study co-author is Daniel Rothman, professor of geophysics at MIT, and  co-founder and co-director of MIT’s Lorenz Center.

    A volatile push

    For their analysis, the team consulted large databases of sediments containing deep-sea benthic foraminifera — single-celled organisms that have been around for hundreds of millions of years and whose hard shells are preserved in sediments. The composition of these shells is affected by the ocean temperatures as organisms are growing; the shells are therefore considered a reliable proxy for the Earth’s ancient temperatures.

    For decades, scientists have analyzed the composition of these shells, collected from all over the world and dated to various time periods, to track how the Earth’s temperature has fluctuated over millions of years. 

    “When using these data to study extreme climate events, most studies have focused on individual large spikes in temperature, typically of a few degrees Celsius warming,” Arnscheidt says. “Instead, we tried to look at the overall statistics and consider all the fluctuations involved, rather than picking out the big ones.”

    The team first carried out a statistical analysis of the data and observed that, over the last 66 million years, the distribution of global temperature fluctuations didn’t resemble a standard bell curve, with symmetric tails representing an equal probability of extreme warm and extreme cool fluctuations. Instead, the curve was noticeably lopsided, skewed toward more warm than cool events. The curve also exhibited a noticeably longer tail, representing warm events that were more extreme, or of higher temperature, than the most extreme cold events.

    “This indicates there’s some sort of amplification relative to what you would otherwise have expected,” Arnscheidt says. “Everything’s pointing to something fundamental that’s causing this push, or bias toward warming events.”

    “It’s fair to say that the Earth system becomes more volatile, in a warming sense,” Rothman adds.

    A warming multiplier

    The team wondered whether this warming bias might have been a result of “multiplicative noise” in the climate-carbon cycle. Scientists have long understood that higher temperatures, up to a point, tend to speed up biological and chemical processes. Because the carbon cycle, which is a key driver of long-term climate fluctuations, is itself composed of such processes, increases in temperature may lead to larger fluctuations, biasing the system towards extreme warming events.

    In mathematics, there exists a set of equations that describes such general amplifying, or multiplicative effects. The researchers applied this multiplicative theory to their analysis to see whether the equations could predict the asymmetrical distribution, including the degree of its skew and the length of its tails.

    In the end, they found that the data, and the observed bias toward warming, could be explained by the multiplicative theory. In other words, it’s very likely that, over the last 66 million years, periods of modest warming were on average further enhanced by multiplier effects, such as the response of biological and chemical processes that further warmed the planet.

    As part of the study, the researchers also looked at the correlation between past warming events and changes in Earth’s orbit. Over hundreds of thousands of years, Earth’s orbit around the sun regularly becomes more or less elliptical. But scientists have wondered why many past warming events appeared to coincide with these changes, and why these events feature outsized warming compared with what the change in Earth’s orbit could have wrought on its own.

    So, Arnscheidt and Rothman incorporated the Earth’s orbital changes into the multiplicative model and their analysis of Earth’s temperature changes, and found that multiplier effects could predictably amplify, on average, the modest temperature rises due to changes in Earth’s orbit.

    “Climate warms and cools in synchrony with orbital changes, but the orbital cycles themselves would predict only modest changes in climate,” Rothman says. “But if we consider a multiplicative model, then modest warming, paired with this multiplier effect, can result in extreme events that tend to occur at the same time as these orbital changes.”

    “Humans are forcing the system in a new way,” Arnscheidt adds. “And this study is showing that, when we increase temperature, we’re likely going to interact with these natural, amplifying effects.”

    This research was supported, in part, by MIT’s School of Science. More

  • in

    Electrifying cars and light trucks to meet Paris climate goals

    On Aug. 5, the White House announced that it seeks to ensure that 50 percent of all new passenger vehicles sold in the United States by 2030 are powered by electricity. The purpose of this target is to enable the U.S to remain competitive with China in the growing electric vehicle (EV) market and meet its international climate commitments. Setting ambitious EV sales targets and transitioning to zero-carbon power sources in the United States and other nations could lead to significant reductions in carbon dioxide and other greenhouse gas emissions in the transportation sector and move the world closer to achieving the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius relative to preindustrial levels.

    At this time, electrification of the transportation sector is occurring primarily in private light-duty vehicles (LDVs). In 2020, the global EV fleet exceeded 10 million, but that’s a tiny fraction of the cars and light trucks on the road. How much of the LDV fleet will need to go electric to keep the Paris climate goal in play? 

    To help answer that question, researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Energy Initiative have assessed the potential impacts of global efforts to reduce carbon dioxide emissions on the evolution of LDV fleets over the next three decades.

    Using an enhanced version of the multi-region, multi-sector MIT Economic Projection and Policy Analysis (EPPA) model that includes a representation of the household transportation sector, they projected changes for the 2020-50 period in LDV fleet composition, carbon dioxide emissions, and related impacts for 18 different regions. Projections were generated under four increasingly ambitious climate mitigation scenarios: a “Reference” scenario based on current market trends and fuel efficiency policies, a “Paris Forever” scenario in which current Paris Agreement commitments (Nationally Determined Contributions, or NDCs) are maintained but not strengthened after 2030, a “Paris to 2 C” scenario in which decarbonization actions are enhanced to be consistent with capping global warming at 2 C, and an “Accelerated Actions” scenario the caps global warming at 1.5 C through much more aggressive emissions targets than the current NDCs.

    Based on projections spanning the first three scenarios, the researchers found that the global EV fleet will likely grow to about 95-105 million EVs by 2030, and 585-823 million EVs by 2050. In the Accelerated Actions scenario, global EV stock reaches more than 200 million vehicles in 2030, and more than 1 billion in 2050, accounting for two-thirds of the global LDV fleet. The research team also determined that EV uptake will likely grow but vary across regions over the 30-year study time frame, with China, the United States, and Europe remaining the largest markets. Finally, the researchers found that while EVs play a role in reducing oil use, a more substantial reduction in oil consumption comes from economy-wide carbon pricing. The results appear in a study in the journal Economics of Energy & Environmental Policy.

    “Our study shows that EVs can contribute significantly to reducing global carbon emissions at a manageable cost,” says MIT Joint Program Deputy Director and MIT Energy Initiative Senior Research Scientist Sergey Paltsev, the lead author. “We hope that our findings will help decision-makers to design efficient pathways to reduce emissions.”  

    To boost the EV share of the global LDV fleet, the study’s co-authors recommend more ambitious policies to mitigate climate change and decarbonize the electric grid. They also envision an “integrated system approach” to transportation that emphasizes making internal combustion engine vehicles more efficient, a long-term shift to low- and net-zero carbon fuels, and systemic efficiency improvements through digitalization, smart pricing, and multi-modal integration. While the study focuses on EV deployment, the authors also stress for the need for investment in all possible decarbonization options related to transportation, including enhancing public transportation, avoiding urban sprawl through strategic land-use planning, and reducing the use of private motorized transport by mode switching to walking, biking, and mass transit.

    This research is an extension of the authors’ contribution to the MIT Mobility of the Future study. More

  • in

    Reducing emissions by decarbonizing industry

    A critical challenge in meeting the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius is to vastly reduce carbon dioxide (CO2) and other greenhouse gas emissions generated by the most energy-intensive industries. According to a recent report by the International Energy Agency, these industries — cement, iron and steel, chemicals — account for about 20 percent of global CO2 emissions. Emissions from these industries are notoriously difficult to abate because, in addition to emissions associated with energy use, a significant portion of industrial emissions come from the process itself.

    For example, in the cement industry, about half the emissions come from the decomposition of limestone into lime and CO2. While a shift to zero-carbon energy sources such as solar or wind-powered electricity could lower CO2 emissions in the power sector, there are no easy substitutes for emissions-intensive industrial processes.

    Enter industrial carbon capture and storage (CCS). This technology, which extracts point-source carbon emissions and sequesters them underground, has the potential to remove up to 90-99 percent of CO2 emissions from an industrial facility, including both energy-related and process emissions. And that begs the question: Might CCS alone enable hard-to-abate industries to continue to grow while eliminating nearly all of the CO2 emissions they generate from the atmosphere?

    The answer is an unequivocal yes in a new study in the journal Applied Energy co-authored by researchers at the MIT Joint Program on the Science and Policy of Global Change, MIT Energy Initiative, and ExxonMobil.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model that represents different industrial CCS technology choices — and assuming that CCS is the only greenhouse gas emissions mitigation option available to hard-to-abate industries — the study assesses the long-term economic and environmental impacts of CCS deployment under a climate policy aimed at capping the rise in average global surface temperature at 2 C above preindustrial levels.

    The researchers find that absent industrial CCS deployment, the global costs of implementing the 2 C policy are higher by 12 percent in 2075 and 71 percent in 2100, relative to policy costs with CCS. They conclude that industrial CCS enables continued growth in the production and consumption of energy-intensive goods from hard-to-abate industries, along with dramatic reductions in the CO2 emissions they generate. Their projections show that as industrial CCS gains traction mid-century, this growth occurs globally as well as within geographical regions (primarily in China, Europe, and the United States) and the cement, iron and steel, and chemical sectors.

    “Because it can enable deep reductions in industrial emissions, industrial CCS is an essential mitigation option in the successful implementation of policies aligned with the Paris Agreement’s long-term climate targets,” says Sergey Paltsev, the study’s lead author and a deputy director of the MIT Joint Program and senior research scientist at the MIT Energy Initiative. “As the technology advances, our modeling approach offers decision-makers a pathway for projecting the deployment of industrial CCS across industries and regions.”

    But such advances will not take place without substantial, ongoing funding.

    “Sustained government policy support across decades will be needed if CCS is to realize its potential to promote the growth of energy-intensive industries and a stable climate,” says Howard Herzog, a co-author of the study and senior research engineer at the MIT Energy Initiative.

    The researchers also find that advanced CCS options such as cryogenic carbon capture (CCC), in which extracted CO2 is cooled to solid form using far less power than conventional coal- and gas-fired CCS technologies, could help expand the use of CCS in industrial settings through further production cost and emissions reductions.

    The study was supported by sponsors of the MIT Joint Program and by ExxonMobil through its membership in the MIT Energy Initiative. More