More stories

  • in

    Solve at MIT 2023: Collaboration and climate efforts are at the forefront of social impact

    “The scale, complexity, the global nature of the problems we’re dealing with are so big that no single institution, industry, or country can deal with them alone,” MIT President Sally Kornbluth stated in her first remarks to the Solve community.

    Over 300 social impact leaders from around the world convened on MIT’s campus for Solve at MIT 2023 to celebrate the 2022 Solver class and to discuss some of the world’s greatest challenges and how we can tackle them with innovation, entrepreneurship, and technology.

    These challenges can be complicated and may even feel insurmountable, but Solve at MIT leaves us with the hope, tools, and connections needed to find solutions together.

    Hala Hanna, executive director of MIT Solve, shared what keeps her inspired and at the front line of social impact: “Optimism isn’t about looking away from the issues but looking right at them, believing we can create the solutions and putting in the work. So, anytime I need a dose of optimism, I look to the innovators we work with,” Hanna shared during the opening plenary, Unlocking our Collective Potential.

    Over the course of three days, more than 300 individuals from around the world convened to celebrate the 2022 Solver class, create partnerships that lead to progress, and address solutions to pressing world issues in real-time.

    Every technologist, philanthropist, investor, and innovator present at Solve at MIT left with their own takeaway, but three main themes seemed to underscore the overall discussions.

    Technology and innovation are as neutral as the makers

    Having bias is a natural part of what makes us human. However, being aware of our predispositions is necessary to transform our lived experiences into actionable solutions for others to benefit from. 

    We’ve largely learned that bias can be both unavoidable and applied almost instantly. Sangbae Kim, director of the Biomimetic Robotics Laboratory and professor of mechanical engineering at MIT, proved this through robotics demonstrations where attendees almost unanimously were more impressed with a back-flipping MIT robot compared to one walking in circles. As it turns out, it took one individual three days to program a robot to do a flip and over two weeks for a full team to program one to walk. “We judge through the knowledge and bias we have based on our lived experiences,” Kim pointed out.

    Bias and lived experiences don’t have to be bad things. The solutions we create based on our own lives are what matter. 

    2022 Solver Atif Javed, co-founder and executive director of Tarjimly, began translating for his grandmother as a child and learned about the struggles that come with being a refugee. This led him to develop a humanitarian language-translation application, which connects volunteer translators with immigrants, refugees, nongovernmental organizations (NGOs), and more, on demand. 

    Vanessa Castañeda Gill, 2022 Solver and co-founder and CEO of Social Cipher, transformed her personal experience with ADHD and autism to develop Ava, a video game empowering neuro-divergent youth and facilitating social-emotional learning.

    For Kelsey Wirth, co-founder and chair of Mothers Out Front, the experience of motherhood and the shared concerns for the well-being of children are what unite her with other moms. 

    Whitney Wolf Herd, founder and CEO of Bumble, shared that as a leader in technology and a person who witnessed toxic online spaces, she sees it as her responsibility to spearhead change. 

    During the plenary, “Bringing us Together or Tearing us Apart?” Wolf Herd asked, “What if we could use technology to be a force for positivity?” She shared her vision for equality and respect to be part of the next digital wave. She also called for technology leaders to join her to ensure “guardrails and ground rules” are in place to make sure this goal becomes a reality.

    Social innovation must be intersectional and intergenerational

    During Solve at MIT, industry leaders across sectors, cultures, ages, and expertise banded together to address pressing issues and to form relationships with innovators looking for support in real time.

    Adam Bly, founder and CEO of System Inc., discussed the interconnected nature of all things and why his organization is on a mission to show the links, “We’re seeing rising complexity in the systems that make up life on earth, and it impacts us individually and globally. The way we organize the information and data we need to make decisions about those systems [is highly] siloed and highly fragmented, and it impairs our ability to make decisions in the most systemic, holistic, rational way.”

    President and CEO of the National Resources Defense Council Manish Bapna shared his advocacy for cross-sector work: “Part of what I’ve seen really proliferate and expand in a good way over the past 10 to 15 years are collaborations involving startups in the private sector, governments, and NGOs. No single stakeholder or organization can solve the problem, but by coming together, they bring different perspectives and skills in ways that can create the innovation we need to see.”

    For a long time, STEM (science, technology, engineering, and math) were seen as the subjects that would resolve our complex issues, but as it turns out, art also holds a tremendous amount of power to transcend identity, borders, status, and concerns, to connect us all and aid us in global unity. Artists Beatie Wolfe, Norhan Bayomi, Aida Murad, and Nneka Jones showed us how to bring healing and awareness to topics like social and environmental injustice through their music, embroidery, and painting.

    The 2023 Solv[ED] Innovators, all age 24 or under, have solutions that are improving communication for individuals with hearing loss, transforming plastic waste into sustainable furniture, and protecting the Black birthing community, among other incredible feats.

    Kami Dar, co-founder and CEO of Uniti Networks, summarizes the value of interconnected problem-solving: “My favorite SDG [sustainable development goal] is SDG number 17— the power of partnership. Look for the adjacent problem-solvers and make sure we are not reinventing the wheel.”

    Relationships and the environment connect us all

    Solve is working to address global challenges on an ongoing basis connected to climate, economic prosperity, health, and learning. Many of these focus areas bleed into one another, but social justice and climate action served as a backdrop for many global issues addressed during Solve at MIT.

    “When we started addressing climate change, we saw it primarily as technical issues to bring down emissions … There’s inequality, there’s poverty, there are social tensions that are rising … We are not going to address climate change without addressing the social tensions that are embedded,” said Lewis Akenji, managing director of the Hot or Cool Institute. Akenji sees food, mobility, and housing as the most impactful areas to focus solutions on first.

    During the “Ensuring a Just Transition to Net Zero” plenary, Heather Clancy, vice president and editorial director at Greenbiz, asked panelists what lessons they have learned from their work. Janelle Knox Hayes, ​​professor of economic geography and planning at MIT, shared that listening to communities, especially front-line and Indigenous communities, is needed before deploying solutions to the energy crisis. “Climate work has this sense of urgency, like it rapidly has to be done … to do really engaged environmental justice work, we have to slow down and realize even before we begin, we need a long period of time to plan. But before we even do that, we have to rebuild relationships and trust and reciprocity … [This] will lead to better and longer-lasting solutions.”

    Hina Baloch, executive director and global head of climate change and sustainability strategy and communication at General Motors, asked Chéri Smith, founder of Indigenous Energy Initiative, to share her perspective on energy sovereignty as it relates to Indigenous communities. Smith shared, “Tribes can’t be sovereign if they’re relying on outside sources for their energy. We were founded to support the self-determination of tribes to revamp their energy systems and rebuild, construct, and maintain them themselves.”

    Smith shared an example of human and tribal-centered innovation in the making. Through the Biden administration’s national electronic vehicle (EV) initiative, Indigenous Energy Initiative and Native Sun Community Power Development will collaborate and create an inter-tribal EV charging network. “The last time we built out an electric grid, it deliberately skipped over tribal country. This time, we want to make sure that we not only have a seat at the table, but that we build out the tables and invite everyone to them,” said Smith.

    Solve at MIT led to meaningful discussions about climate change, intersectional and accessible innovation, and the power that human connection has to unite everyone. Entrepreneurship and social change are the paths forward. And although the challenges ahead of us can be daunting, with community, collaboration, and a healthy dose of bravery, global challenges will continue to be solved by agile impact entrepreneurs all around the world. 

    As Adrianne Haslet, a professional ballroom dancer and Boston Marathon bombing survivor, reminded attendees, “What will get you to the finish line is nothing compared to what got you to the start line.” More

  • in

    Four researchers with MIT ties earn 2023 Schmidt Science Fellowships

    Four researchers with ties to MIT have been named Schmidt Science Fellows this year. Lillian Chin ’17, SM ’19; Neil Dalvie PD ’22, PhD ’22; Suong Nguyen, and Yirui Zhang SM ’19, PhD ’23 are among the 32 exceptional early-career scientists worldwide chosen to receive the prestigious fellowships.

    “History provides powerful examples of what happens when scientists are given the freedom to ask big questions which can achieve real breakthroughs across disciplines,” says Wendy Schmidt, co-founder of Schmidt Futures and president of the Schmidt Family Foundation. “Schmidt Science Fellows are tackling climate destruction, discovering new drugs against disease, developing novel materials, using machine learning to understand the drivers of human health, and much more. This new cohort will add to this legacy in applying scientific discovery to improve human health and opportunity, and preserve and restore essential planetary systems.”

    Schmidt Futures is a philanthropic initiative that brings talented people together in networks to prove out their ideas and solve hard problems in science and society. Schmidt Science Fellows receive a stipend of $100,000 a year for up to two years of postdoctoral research in a discipline different from their PhD at a world-leading lab anywhere across the globe.

    Lillian Chin ’17, SM ’19 is currently pursuing her PhD in the Department of Electrical Engineering and Computer Science. Her research focuses on creating new materials for robots. By designing the geometry of a material, Chin creates new “meta-materials” that have different properties from the original. Using this technique, she has created robot balls that dramatically expand in volume and soft grippers that can work in dangerous environments. All of these robots are built out of a single material, letting the researchers 3D print them with extra internal features like channels. These channels help to measure the deformation of metamaterials, enabling Chin and her collaborators to create robots that are strong, can move, and sense their own shape, like muscles do.

    “I feel very honored to have been chosen for this fellowship,” says Chin. “I feel like I proposed a very risky pivot, since my background is only in engineering, with very limited exposure to neuroscience. I’m very excited to be given the opportunity to learn best practices for interacting with patients and be able to translate my knowledge from robotics to biology.”

    With the Schmidt Fellowship, Chin plans to pursue new frontiers for custom materials with internal sensors, which can measure force and deformation and can be placed anywhere within the material. “I want to use these materials to make tools for clinicians and neuroscientists to better understand how humans touch and grasp objects around them,” says Chin. “I’m especially interested in seeing how my materials could help in diagnosis motor-related diseases or improve rehab outcomes by providing the patient with feedback. This will help me create robots that have a better sense of touch and learn how to move objects around like humans do.”

    Neil Dalvie PD ’22, PhD ’22 is a graduate of the Department of Chemical Engineering, where he worked with Professor J. Christopher Love on manufacturing of therapeutic proteins. Dalvie developed molecular biology techniques for manufacturing high-quality proteins in yeast, which enables rapid testing of new products and low-cost manufacturing and large scales. During the pandemic, he led a team that applied these learnings to develop a Covid-19 vaccine that was deployed in multiple low-income countries. After graduating, Dalvie wanted to apply the precision biological engineering that is routinely deployed in medicinal manufacturing to other large-scale bioprocesses.

    “It’s rare for scientists to cross large technical gaps after so many years of specific training to get a PhD — you get comfy being an expert in your field,” says Dalvie. “I was definitely intimidated by the giant leap from vaccine manufacturing to the natural rock cycle. The fellowship has allowed me to dive into the new field by removing immediate pressure to publish or find my next job. I am excited for what commonalities we will find between biomanufacturing and biogeochemistry.”

    As a Schmidt Science Fellow, Dalvie will work with Professor Pamela Silver at Harvard Medical School on engineering microorganisms for enhanced rock weathering and carbon sequestration to combat climate change. They are applying modern molecular biology to enhance natural biogeochemical processes at gigaton scales.

    Suong (Su) Nguyen, a postdoctoral researcher in Professor Jeremiah Johnson’s lab in the Department of Chemistry, earned her PhD from Princeton University, where she developed light-driven, catalytic methodologies for organic synthesis, biomass valorization, plastic waste recycling, and functionalization of quantum sensing materials.

    As a Schmidt Science fellow, Nguyen will pivot from organic chemistry to nanomaterials. Biological systems are able to synthesize macromolecules with precise structure essential for their biological function. Scientists have long dreamed of achieving similar control over synthetic materials, but existing methods are inefficient and limited in scope. Nguyen hopes to develop new strategies to achieve such high level of control over the structure and properties of nanomaterials and explore their potential for use in therapeutic applications.

    “I feel extremely honored and grateful to receive the Schmidt Science Fellowship,” says Nguyen. “The fellowship will provide me with a unique opportunity to engage with scientists from a very wide range of research backgrounds. I believe this will significantly shape the research objectives for my future career.”

    Yirui Zhang SM ’19, PhD ’22 is a graduate of the Department of Mechanical Engineering. Zhang’s research focuses on electrochemical energy storage and conversion, including lithium-ion batteries and electrocatalysis. She has developed in situ spectroscopy and electrochemical methods to probe the electrode-electrolyte interface, understand the interfacial molecular structures, and unravel the fundamental thermodynamics and kinetics of (electro)chemical reactions in energy storage. Further, she has leveraged the physical chemistry of liquids and tuned the molecular structures at the interface to improve the stability and kinetics of electrochemical reactions. 

    “I am honored and thrilled to have been named a Schmidt Science Fellow,” says Zhang. “The fellowship will not only provide me with the unique opportunity to broaden my scientific perspectives and pursue pivoting research, but also create a lifelong network for us to collaborate across diverse fields and become scientific and societal thought leaders. I look forward to pushing the boundaries of my research and advancing technologies to tackle global challenges in energy storage and health care with interdisciplinary efforts!”

    As a Schmidt Science Fellow, Zhang will work across disciplines and pivot to biosensing. She plans to combine spectroscopy, electrokinetics, and machine learning to develop a fast and cost-effective technique for monitoring and understanding infectious disease. The innovations will benefit next-generation point-of-care medical devices and wastewater-based epidemiology to provide timely diagnosis and help protect humans against deadly infections and antimicrobial resistance. More

  • in

    Sensing with purpose

    Fadel Adib never expected that science would get him into the White House, but in August 2015 the MIT graduate student found himself demonstrating his research to the president of the United States.

    Adib, fellow grad student Zachary Kabelac, and their advisor, Dina Katabi, showcased a wireless device that uses Wi-Fi signals to track an individual’s movements.

    As President Barack Obama looked on, Adib walked back and forth across the floor of the Oval Office, collapsed onto the carpet to demonstrate the device’s ability to monitor falls, and then sat still so Katabi could explain to the president how the device was measuring his breathing and heart rate.

    “Zach started laughing because he could see that my heart rate was 110 as I was demoing the device to the president. I was stressed about it, but it was so exciting. I had poured a lot of blood, sweat, and tears into that project,” Adib recalls.

    For Adib, the White House demo was an unexpected — and unforgettable — culmination of a research project he had launched four years earlier when he began his graduate training at MIT. Now, as a newly tenured associate professor in the Department of Electrical Engineering and Computer Science and the Media Lab, he keeps building off that work. Adib, the Doherty Chair of Ocean Utilization, seeks to develop wireless technology that can sense the physical world in ways that were not possible before.

    In his Signal Kinetics group, Adib and his students apply knowledge and creativity to global problems like climate change and access to health care. They are using wireless devices for contactless physiological sensing, such as measuring someone’s stress level using Wi-Fi signals. The team is also developing battery-free underwater cameras that could explore uncharted regions of the oceans, tracking pollution and the effects of climate change. And they are combining computer vision and radio frequency identification (RFID) technology to build robots that find hidden items, to streamline factory and warehouse operations and, ultimately, alleviate supply chain bottlenecks.

    While these areas may seem quite different, each time they launch a new project, the researchers uncover common threads that tie the disciplines together, Adib says.

    “When we operate in a new field, we get to learn. Every time you are at a new boundary, in a sense you are also like a kid, trying to understand these different languages, bring them together, and invent something,” he says.

    A science-minded child

    A love of learning has driven Adib since he was a young child growing up in Tripoli on the coast of Lebanon. He had been interested in math and science for as long as he could remember, and had boundless energy and insatiable curiosity as a child.

    “When my mother wanted me to slow down, she would give me a puzzle to solve,” he recalls.

    By the time Adib started college at the American University of Beirut, he knew he wanted to study computer engineering and had his sights set on MIT for graduate school.

    Seeking to kick-start his future studies, Adib reached out to several MIT faculty members to ask about summer internships. He received a response from the first person he contacted. Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic, interviewed him and accepted him for a position. He immersed himself in the lab work and, as the end of summer approached, Katabi encouraged him to apply for grad school at MIT and join her lab.

    “To me, that was a shock because I felt this imposter syndrome. I thought I was moving like a turtle with my research, but I did not realize that with research itself, because you are at the boundary of human knowledge, you are expected to progress iteratively and slowly,” he says.

    As an MIT grad student, he began contributing to a number of projects. But his passion for invention pushed him to embark into unexplored territory. Adib had an idea: Could he use Wi-Fi to see through walls?

    “It was a crazy idea at the time, but my advisor let me work on it, even though it was not something the group had been working on at all before. We both thought it was an exciting idea,” he says.

    As Wi-Fi signals travel in space, a small part of the signal passes through walls — the same way light passes through windows — and is then reflected by whatever is on the other side. Adib wanted to use these signals to “see” what people on the other side of a wall were doing.

    Discovering new applications

    There were a lot of ups and downs (“I’d say many more downs than ups at the beginning”), but Adib made progress. First, he and his teammates were able to detect people on the other side of a wall, then they could determine their exact location. Almost by accident, he discovered that the device could be used to monitor someone’s breathing.

    “I remember we were nearing a deadline and my friend Zach and I were working on the device, using it to track people on the other side of the wall. I asked him to hold still, and then I started to see him appearing and disappearing over and over again. I thought, could this be his breathing?” Adib says.

    Eventually, they enabled their Wi-Fi device to monitor heart rate and other vital signs. The technology was spun out into a startup, which presented Adib with a conundrum once he finished his PhD — whether to join the startup or pursue a career in academia.

    He decided to become a professor because he wanted to dig deeper into the realm of invention. But after living through the winter of 2014-2015, when nearly 109 inches of snow fell on Boston (a record), Adib was ready for a change of scenery and a warmer climate. He applied to universities all over the United States, and while he had some tempting offers, Adib ultimately realized he didn’t want to leave MIT. He joined the MIT faculty as an assistant professor in 2016 and was named associate professor in 2020.

    “When I first came here as an intern, even though I was thousands of miles from Lebanon, I felt at home. And the reason for that was the people. This geekiness — this embrace of intellect — that is something I find to be beautiful about MIT,” he says.

    He’s thrilled to work with brilliant people who are also passionate about problem-solving. The members of his research group are diverse, and they each bring unique perspectives to the table, which Adib says is vital to encourage the intellectual back-and-forth that drives their work.

    Diving into a new project

    For Adib, research is exploration. Take his work on oceans, for instance. He wanted to make an impact on climate change, and after exploring the problem, he and his students decided to build a battery-free underwater camera.

    Adib learned that the ocean, which covers 70 percent of the planet, plays the single largest role in the Earth’s climate system. Yet more than 95 percent of it remains unexplored. That seemed like a problem the Signal Kinetics group could help solve, he says.

    But diving into this research area was no easy task. Adib studies Wi-Fi systems, but Wi-Fi does not work underwater. And it is difficult to recharge a battery once it is deployed in the ocean, making it hard to build an autonomous underwater robot that can do large-scale sensing.

    So, the team borrowed from other disciplines, building an underwater camera that uses acoustics to power its equipment and capture and transmit images.

    “We had to use piezoelectric materials, which come from materials science, to develop transducers, which come from oceanography, and then on top of that we had to marry these things with technology from RF known as backscatter,” he says. “The biggest challenge becomes getting these things to gel together. How do you decode these languages across fields?”

    It’s a challenge that continues to motivate Adib as he and his students tackle problems that are too big for one discipline.

    He’s excited by the possibility of using his undersea wireless imaging technology to explore distant planets. These same tools could also enhance aquaculture, which could help eradicate food insecurity, or support other emerging industries.

    To Adib, the possibilities seem endless.

    “With each project, we discover something new, and that opens up a whole new world to explore. The biggest driver of our work in the future will be what we think is impossible, but that we could make possible,” he says. More

  • in

    New MIT internships expand research opportunities in Africa

    With new support from the Office of the Associate Provost for International Activities, MIT International Science and Technology Initiatives (MISTI) and the MIT-Africa program are expanding internship opportunities for MIT students at universities and leading academic research centers in Africa. This past summer, MISTI supported 10 MIT student interns at African universities, significantly more than in any previous year.

    “These internships are an opportunity to better merge the research ecosystem of MIT with academia-based research systems in Africa,” says Evan Lieberman, the Total Professor of Political Science and Contemporary Africa and faculty director for MISTI.

    For decades, MISTI has helped MIT students to learn and explore through international experiential learning opportunities and internships in industries like health care, education, agriculture, and energy. MISTI’s MIT-Africa Seed Fund supports collaborative research between MIT faculty and Africa-based researchers, and the new student research internship opportunities are part of a broader vision for deeper engagement between MIT and research institutions across the African continent.

    While Africa is home to 12.5 percent of the world’s population, it generates less than 1 percent of scientific research output in the form of academic journal publications, according to the African Academy of Sciences. Research internships are one way that MIT can build mutually beneficial partnerships across Africa’s research ecosystem, to advance knowledge and spawn innovation in fields important to MIT and its African counterparts, including health care, biotechnology, urban planning, sustainable energy, and education.

    Ari Jacobovits, managing director of MIT-Africa, notes that the new internships provide additional funding to the lab hosting the MIT intern, enabling them to hire a counterpart student research intern from the local university. This support can make the internships more financially feasible for host institutions and helps to grow the research pipeline.

    With the support of MIT, State University of Zanzibar (SUZA) lecturers Raya Ahmada and Abubakar Bakar were able to hire local students to work alongside MIT graduate students Mel Isidor and Rajan Hoyle. Together the students collaborated over a summer on a mapping project designed to plan and protect Zanzibar’s coastal economy.

    “It’s been really exciting to work with research peers in a setting where we can all learn alongside one another and develop this project together,” says Hoyle.

    Using low-cost drone technology, the students and their local counterparts worked to create detailed maps of Zanzibar to support community planning around resilience projects designed to combat coastal flooding and deforestation and assess climate-related impacts to seaweed farming activities. 

    “I really appreciated learning about how engagement happens in this particular context and how community members understand local environmental challenges and conditions based on research and lived experience,” says Isidor. “This is beneficial for us whether we’re working in an international context or in the United States.”

    For biology major Shaida Nishat, her internship at the University of Cape Town allowed her to work in a vital sphere of public health and provided her with the chance to work with a diverse, international team headed by Associate Professor Salome Maswine, head of the global surgery division and a widely-renowned expert in global surgery, a multidisciplinary field in the sphere of global health focused on improved and equitable surgical outcomes.

    “It broadened my perspective as to how an effort like global surgery ties so many nations together through a common goal that would benefit them all,” says Nishat, who plans to pursue a career in public health.

    For computer science sophomore Antonio L. Ortiz Bigio, the MISTI research internship in Africa was an incomparable experience, culturally and professionally. Bigio interned at the Robotics Autonomous Intelligence and Learning Laboratory at the University of Witwatersrand in Johannesburg, led by Professor Benjamin Rosman, where he developed software to enable a robot to play chess. The experience has inspired Bigio to continue to pursue robotics and machine learning.

    Participating faculty at the host institutions welcomed their MIT interns, and were impressed by their capabilities. Both Rosman and Maswime described their MIT interns as hard-working and valued team members, who had helped to advance their own work.  

    Building strong global partnerships, whether through faculty research, student internships, or other initiatives, takes time and cultivation, explains Jacobovits. Each successful collaboration helps to seed future exchanges and builds interest at MIT and peer institutions in creative partnerships. As MIT continues to deepen its connections to institutions and researchers across Africa, says Jacobovits, “students like Shaida, Rajan, Mel, and Antonio are really effective ambassadors in building those networks.” More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    Promoting systemic change in the Middle East, the “MIT way”

    The Middle East is a region that is facing complicated challenges. MIT programs have been committed to building scalable methodologies through which students and the broader MIT community can learn and make an impact. These processes ensure programs work alongside others across cultures to support change aligned with their needs. Through MIT International Science and Technology Initiatives (MISTI), faculty and staff at the Institute continue to build opportunities to connect with and support the region.

    In this spirit, MISTI launched the Leaders Journey Workshop in 2021. This program partnered MIT students with Palestinian and Israeli alumni from three associate organizations: Middle East Entrepreneurs for Tomorrow (MEET), Our Generation Speaks (OGS), and Tech2Peace. Teams met monthly to engage with speakers and work with one another to explore the best ways to leverage science, technology, and entrepreneurship across borders.

    Building on the success of this workshop, the program piloted a for-credit course: SP.258 (MISTI: Middle East Cross-Border Development and Leadership) in fall 2021. The course involved engaging with subject matter experts through five mini-consulting projects in collaboration with regional stakeholders. Topics included climate, health care, and economic development. The course was co-instructed by associate director of the MIT Regional Entrepreneurship Acceleration Program (REAP) Sinan AbuShanab, managing director of MISTI programs in the Middle East David Dolev, and Kathleen Schwind ’19, with MIT CIS/ MISTI Research Affiliate Steven Koltai as lead mentor. The course also drew support from alumni mentors and regional industry partners.

    The course was developed during the height of the pandemic and thus successfully leveraged the intense culture of online engagement prevalent at the time by layering in-person coursework with strategic digital group engagement. Pedagogically, the structure was inspired by multiple MIT methodologies: MISTI preparation and training courses, Sloan Action Learning, REAP/REAL multi-party stakeholder model, the Media Lab Learning Initiative, and the multicultural framework of associate organizations.

    “We worked to develop a series of aims and a methodology that would enrich MIT students and their peers in the region and support the important efforts of Israelis and Palestinians to make systemic change,” said Dolev.

    During the on-campus sessions, MIT students explored the region’s political and historical complexities and the meaning of being a global leader and entrepreneur. Guest presenters included: Boston College Associate Professor Peter Krause (MIT Security Studies Program alumnus), Gilad Rosenzweig (MITdesignX), Ari Jacobovits (MIT-Africa), and Mollie Laffin-Rose Agbiboa (MIT-REAP). Group projects focused on topics that fell under three key regional verticals: water, health care, and economic development. The teams were given a technical or business challenge they were tasked with solving. These challenges were sourced directly from for-profit and nonprofit organizations in the region.

    “This was a unique opportunity for me to learn so much about the area I live in, work on a project together with people from the ‘other side,’ MIT students, and incredible mentors,” shared a participant from the region. “Furthermore, getting a glimpse of the world of MIT was a great experience for me.”

    For their final presentations, teams pitched their solutions, including their methodology for researching/addressing the problem, a description of solutions to be applied, what is needed to execute the idea itself, and potential challenges encountered. Teams received feedback and continued to deepen their experience in cross-cultural teamwork.

    “As an education manager, I needed guidance with these digital tools and how to approach them,” says an EcoPeace representative. “The MIT program provided me with clear deliverables I can now implement in my team’s work.”

    “This course has broadened my knowledge of conflicts, relationships, and how geography plays an important role in the region,” says an MIT student participant. “Moving forward, I feel more confident working with business and organizations to develop solutions for problems in real time, using the skills I have to supplement the project work.”

    Layers of engagement with mentors, facilitators, and whole-team leadership ensured that participants gained project management experience, learning objectives were met, and professional development opportunities were available. Each team was assigned an MIT-MEET alumni mentor with whom they met throughout the course. Mentors coached the teams on methods for managing a client project and how to collaborate for successful completion. Joint sessions with MIT guest speakers deepened participants’ regional understanding of water, health care, economic development, and their importance in the region. Speakers included: Mohamed Aburawi, Phil Budden (MIT-REAP) Steven Koltai, Shari Loessberg, Dina Sherif (MIT Legatum Center, Greg Sixt (J-WAFS), and Shriya Srinivasan.

    “The program is unlike any other I’ve come across,” says one of the alumni mentors. “The chance for MIT students to work directly with peers from the region, to propose and create technical solutions to real problems on the ground, and partner with local organizations is an incredibly meaningful opportunity. I wish I had been able to participate in something like this when I was at MIT.”

    Each team also assigned a fellow group member as a facilitator, who served as the main point of contact for the team and oversaw project management: organizing workstreams, ensuring deadlines were met, and mediating any group disagreements. This model led to successful project outcomes and innovative suggestions.

    “The superb work of the MISTI group gave us a critical eye and made significant headway on a product that can hopefully be a game changer to over 150 Israeli and Palestinian organizations,” says a representative from Alliance for Middle East Peace (ALLMEP).

    Leadership team meetings included MIT staff and Israeli and Palestinian leadership of the partner organizations for discussing process, content, recent geopolitical developments, and how to adapt the class to the ongoing changing situation.

    “The topic of Palestine/Israel is contentious: globally, in the region, and also, at times, on the MIT campus,” says Dolev. “I myself have questioned how we can make a systemic impact with our partners from the region. How can we be side-by-side on that journey for the betterment of all? I have now seen first-hand how this multilayered model can work.”

    MIT International Science and Technology Initiatives (MISTI) is MIT’s hub for global experiences. MISTI’s unparalleled internship, research, teaching, and study abroad programs offer students unique experiences that bring MIT’s one-of-a-kind education model to life in countries around the world. MISTI programs are carefully designed to complement on-campus course work and research, and rigorous, country-specific preparation enables students to forge cultural connections and play a role in addressing important global challenges while abroad. Students come away from their experiences with invaluable perspectives that inform their education, career, and worldview. MISTI embodies MIT’s commitment to global engagement and prepares students to thrive in an increasingly interconnected world. More

  • in

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Four researchers with MIT ties — Juncal Arbelaiz, Xiangkun (Elvis) Cao, Sandya Subramanian, and Heather Zlotnick ’17 — have been honored with competitive Schmidt Science Fellowships.

    Created in 2017, the fellows program aims to bring together the world’s brightest minds “to solve society’s toughest challenges.”

    The four MIT-affiliated researchers are among 29 Schmidt Science Fellows from around the world who will receive postdoctoral support for either one or two years with an annual stipend of $100,000, along with individualized mentoring and participation in the program’s Global Meeting Series. The fellows will also have opportunities to engage with thought-leaders from science, business, policy, and society. According to the award announcement, the fellows are expected to pursue research that shifts from the focus of their PhDs, to help expand and enhance their futures as scientific leaders.

    Juncal Arbelaiz is a PhD candidate in applied mathematics at MIT, who is completing her doctorate this summer. Her doctoral research at MIT is advised by Ali Jadbabaie, the JR East Professor of Engineering and head of the Department of Civil and Environmental Engineering; Anette Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean of the School of Engineering; and Bassam Bamieh, professor of mechanical engineering and associate director of the Center for Control, Dynamical Systems, and Computation at the University of California at Santa Barbara. Arbelaiz’s research revolves around the design of optimal decentralized intelligence for spatially-distributed dynamical systems.

    “I cannot think of a better way to start my independent scientific career. I feel very excited and grateful for this opportunity,” says Arbelaiz. With her fellowship, she will enlist systems biology to explore how the nervous system encodes and processes sensory information to address future safety-critical artificial intelligence applications. “The Schmidt Science Fellowship will provide me with a unique opportunity to work at the intersection of biological and machine intelligence for two years and will be a steppingstone towards my longer-term objective of becoming a researcher in bio-inspired machine intelligence,” she says.

    Xiangkun (Elvis) Cao is currently a postdoc in the lab of T. Alan Hatton, the Ralph Landau Professor in Chemical Engineering, and an Impact Fellow at the MIT Climate and Sustainability Consortium. Cao received his PhD in mechanical engineering from Cornell University in 2021, during which he focused on microscopic precision in the simultaneous delivery of light and fluids by optofluidics, with advances relevant to health and sustainability applications. As a Schmidt Science Fellow, he plans to be co-advised by Hatton on carbon capture, and Ted Sargent, professor of chemistry at Northwestern University, on carbon utilization. Cao is passionate about integrated carbon capture and utilization (CCU) from molecular to process levels, machine learning to inspire smart CCU, and the nexus of technology, business, and policy for CCU.

    “The Schmidt Science Fellowship provides the perfect opportunity for me to work across disciplines to study integrated carbon capture and utilization from molecular to process levels,” Cao explains. “My vision is that by integrating carbon capture and utilization, we can concurrently make scientific discoveries and unlock economic opportunities while mitigating global climate change. This way, we can turn our carbon liability into an asset.”

    Sandya Subramanian, a 2021 PhD graduate of the Harvard-MIT Program in Health Sciences and Technology (HST) in the area of medical engineering and medical physics, is currently a postdoc at Stanford Data Science. She is focused on the topics of biomedical engineering, statistics, machine learning, neuroscience, and health care. Her research is on developing new technologies and methods to study the interactions between the brain, the autonomic nervous system, and the gut. “I’m extremely honored to receive the Schmidt Science Fellowship and to join the Schmidt community of leaders and scholars,” says Subramanian. “I’ve heard so much about the fellowship and the fact that it can open doors and give people confidence to pursue challenging or unique paths.”

    According to Subramanian, the autonomic nervous system and its interactions with other body systems are poorly understood but thought to be involved in several disorders, such as functional gastrointestinal disorders, Parkinson’s disease, diabetes, migraines, and eating disorders. The goal of her research is to improve our ability to monitor and quantify these physiologic processes. “I’m really interested in understanding how we can use physiological monitoring technologies to inform clinical decision-making, especially around the autonomic nervous system, and I look forward to continuing the work that I’ve recently started at Stanford as Schmidt Science Fellow,” she says. “A huge thank you to all of the mentors, colleagues, friends, and leaders I had the pleasure of meeting and working with at HST and MIT; I couldn’t have done this without everything I learned there.”

    Hannah Zlotnick ’17 attended MIT for her undergraduate studies, majoring in biological engineering with a minor in mechanical engineering. At MIT, Zlotnick was a student-athlete on the women’s varsity soccer team, a UROP student in Alan Grodzinsky’s laboratory, and a member of Pi Beta Phi. For her PhD, Zlotnick attended the University of Pennsylvania, and worked in Robert Mauck’s laboratory within the departments of Bioengineering and Orthopaedic Surgery.

    Zlotnick’s PhD research focused on harnessing remote forces, such as magnetism or gravity, to enhance engineered cartilage and osteochondral repair both in vitro and in large animal models. Zlotnick now plans to pivot to the field of biofabrication to create tissue models of the knee joint to assess potential therapeutics for osteoarthritis. “I am humbled to be a part of the Schmidt Science Fellows community, and excited to venture into the field of biofabrication,” Zlotnick says. “Hopefully this work uncovers new therapies for patients with inflammatory joint diseases.” More

  • in

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Amy Moran-Thomas, the Alfred Henry and Jean Morrison Hayes Career Development Associate Professor of Anthropology, has received the 2021-22 Harold E. Edgerton Faculty Achievement Award in recognition of her “exceptional commitment to innovative and collaborative interdisciplinary approaches to resolving inequitable impacts on human health,” according to a statement by the  selection committee.A medical anthropologist, Moran-Thomas investigates linkages between human and environmental health, with a focus on health disparities. She is the author of the award-winning book “Traveling with Sugar: Chronicles of a Global Epidemic” (University of California Press, 2019), which frames the diabetes epidemic in Belize within the context of 500 years of colonialism.

    On human and planetary well-being Moran-Thomas “stands out in this field by bringing a humanistic approach into dialogue with environmental and science studies to investigate how bodily health is shaped by social well-being at the community level and further conditioned by localized planetary imbalances,” the selection committee’s statement said. “Professor Moran-Thomas shows how diabetes resides not only within human bodies but also across toxic environments, crumbling healthcare infrastructures, and stress-inducing economic inequalities.”Heather Paxson, the William R. Kenan, Jr. Professor of Anthropology and head of the MIT Anthropology program, calls Moran-Thomas “a fast-rising star in her field.” Paxson, who nominated Moran-Thomas for the award, adds, “She is also a highly effective teacher and student mentor, an engaged member of our Institute community, and a budding public intellectual.” A profound discovery for medical equity

    “Professor Moran-Thomas’s work has an extraordinarily profound and impactful reach,” according to the committee, which highlighted a widely read 2020 essay in Boston Review in which Moran-Thomas revealed that the fingertip pulse oximeter — a key tool in monitoring the effects of respiratory distress due to Covid-19 and other illness — gives misleading readings with darkly complected skin. This essay inspired a subsequent medical research study and ultimately led to an alert from the U.S. Food and Drug Administration spotlighting the limitations of pulse oximeters.

    The selection committee further lauded Moran-Thomas for her pedagogy, including her work developing the new subject 21A.311 (The Social Lives of Medical Objects). She was also commended for her service, notably her work on the MIT Climate Action Advisory Committee and with the Social and Ethical Responsibilities of Computing group within MIT’s Schwarzman College of Computing.

    Moran-Thomas earned her bachelor’s degree in literature from American University and her PhD in anthropology from Princeton University. She joined MIT Anthropology in 2015, following postdocs at the Woodrow Institute for Public and International Affairs and at Brown University’s Cogut Humanities Center. She was promoted to associate professor without tenure in 2019.

    The annual Edgerton Faculty Award, established in 1982 as a tribute to Institute Professor Emeritus Harold E. Edgerton, honors achievement in research, teaching, and service by a nontenured member of the faculty.The 2019-20 Edgerton Award Selection Committee was chaired by T.L. Taylor, a professor of Comparative Media Studies/Writing. Other members were Geoffrey Beach, a professor in the Department of Materials Science and Engineering; Mircea Dinca, the W.M. Keck Professor of Energy in the Department of Chemistry; Hazhir Rahmandad, an associate professor of system dynamics in the Sloan School of Management; and Rafi Segal, an associate professor in the Department of Architecture.

    Story prepared by MIT SHASS CommunicationsSenior Writer: Kathryn O’NeillEditorial and Design Director: Emily Hiestand More