More stories

  • in

    Promoting systemic change in the Middle East, the “MIT way”

    The Middle East is a region that is facing complicated challenges. MIT programs have been committed to building scalable methodologies through which students and the broader MIT community can learn and make an impact. These processes ensure programs work alongside others across cultures to support change aligned with their needs. Through MIT International Science and Technology Initiatives (MISTI), faculty and staff at the Institute continue to build opportunities to connect with and support the region.

    In this spirit, MISTI launched the Leaders Journey Workshop in 2021. This program partnered MIT students with Palestinian and Israeli alumni from three associate organizations: Middle East Entrepreneurs for Tomorrow (MEET), Our Generation Speaks (OGS), and Tech2Peace. Teams met monthly to engage with speakers and work with one another to explore the best ways to leverage science, technology, and entrepreneurship across borders.

    Building on the success of this workshop, the program piloted a for-credit course: SP.258 (MISTI: Middle East Cross-Border Development and Leadership) in fall 2021. The course involved engaging with subject matter experts through five mini-consulting projects in collaboration with regional stakeholders. Topics included climate, health care, and economic development. The course was co-instructed by associate director of the MIT Regional Entrepreneurship Acceleration Program (REAP) Sinan AbuShanab, managing director of MISTI programs in the Middle East David Dolev, and Kathleen Schwind ’19, with MIT CIS/ MISTI Research Affiliate Steven Koltai as lead mentor. The course also drew support from alumni mentors and regional industry partners.

    The course was developed during the height of the pandemic and thus successfully leveraged the intense culture of online engagement prevalent at the time by layering in-person coursework with strategic digital group engagement. Pedagogically, the structure was inspired by multiple MIT methodologies: MISTI preparation and training courses, Sloan Action Learning, REAP/REAL multi-party stakeholder model, the Media Lab Learning Initiative, and the multicultural framework of associate organizations.

    “We worked to develop a series of aims and a methodology that would enrich MIT students and their peers in the region and support the important efforts of Israelis and Palestinians to make systemic change,” said Dolev.

    During the on-campus sessions, MIT students explored the region’s political and historical complexities and the meaning of being a global leader and entrepreneur. Guest presenters included: Boston College Associate Professor Peter Krause (MIT Security Studies Program alumnus), Gilad Rosenzweig (MITdesignX), Ari Jacobovits (MIT-Africa), and Mollie Laffin-Rose Agbiboa (MIT-REAP). Group projects focused on topics that fell under three key regional verticals: water, health care, and economic development. The teams were given a technical or business challenge they were tasked with solving. These challenges were sourced directly from for-profit and nonprofit organizations in the region.

    “This was a unique opportunity for me to learn so much about the area I live in, work on a project together with people from the ‘other side,’ MIT students, and incredible mentors,” shared a participant from the region. “Furthermore, getting a glimpse of the world of MIT was a great experience for me.”

    For their final presentations, teams pitched their solutions, including their methodology for researching/addressing the problem, a description of solutions to be applied, what is needed to execute the idea itself, and potential challenges encountered. Teams received feedback and continued to deepen their experience in cross-cultural teamwork.

    “As an education manager, I needed guidance with these digital tools and how to approach them,” says an EcoPeace representative. “The MIT program provided me with clear deliverables I can now implement in my team’s work.”

    “This course has broadened my knowledge of conflicts, relationships, and how geography plays an important role in the region,” says an MIT student participant. “Moving forward, I feel more confident working with business and organizations to develop solutions for problems in real time, using the skills I have to supplement the project work.”

    Layers of engagement with mentors, facilitators, and whole-team leadership ensured that participants gained project management experience, learning objectives were met, and professional development opportunities were available. Each team was assigned an MIT-MEET alumni mentor with whom they met throughout the course. Mentors coached the teams on methods for managing a client project and how to collaborate for successful completion. Joint sessions with MIT guest speakers deepened participants’ regional understanding of water, health care, economic development, and their importance in the region. Speakers included: Mohamed Aburawi, Phil Budden (MIT-REAP) Steven Koltai, Shari Loessberg, Dina Sherif (MIT Legatum Center, Greg Sixt (J-WAFS), and Shriya Srinivasan.

    “The program is unlike any other I’ve come across,” says one of the alumni mentors. “The chance for MIT students to work directly with peers from the region, to propose and create technical solutions to real problems on the ground, and partner with local organizations is an incredibly meaningful opportunity. I wish I had been able to participate in something like this when I was at MIT.”

    Each team also assigned a fellow group member as a facilitator, who served as the main point of contact for the team and oversaw project management: organizing workstreams, ensuring deadlines were met, and mediating any group disagreements. This model led to successful project outcomes and innovative suggestions.

    “The superb work of the MISTI group gave us a critical eye and made significant headway on a product that can hopefully be a game changer to over 150 Israeli and Palestinian organizations,” says a representative from Alliance for Middle East Peace (ALLMEP).

    Leadership team meetings included MIT staff and Israeli and Palestinian leadership of the partner organizations for discussing process, content, recent geopolitical developments, and how to adapt the class to the ongoing changing situation.

    “The topic of Palestine/Israel is contentious: globally, in the region, and also, at times, on the MIT campus,” says Dolev. “I myself have questioned how we can make a systemic impact with our partners from the region. How can we be side-by-side on that journey for the betterment of all? I have now seen first-hand how this multilayered model can work.”

    MIT International Science and Technology Initiatives (MISTI) is MIT’s hub for global experiences. MISTI’s unparalleled internship, research, teaching, and study abroad programs offer students unique experiences that bring MIT’s one-of-a-kind education model to life in countries around the world. MISTI programs are carefully designed to complement on-campus course work and research, and rigorous, country-specific preparation enables students to forge cultural connections and play a role in addressing important global challenges while abroad. Students come away from their experiences with invaluable perspectives that inform their education, career, and worldview. MISTI embodies MIT’s commitment to global engagement and prepares students to thrive in an increasingly interconnected world. More

  • in

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Four researchers with MIT ties — Juncal Arbelaiz, Xiangkun (Elvis) Cao, Sandya Subramanian, and Heather Zlotnick ’17 — have been honored with competitive Schmidt Science Fellowships.

    Created in 2017, the fellows program aims to bring together the world’s brightest minds “to solve society’s toughest challenges.”

    The four MIT-affiliated researchers are among 29 Schmidt Science Fellows from around the world who will receive postdoctoral support for either one or two years with an annual stipend of $100,000, along with individualized mentoring and participation in the program’s Global Meeting Series. The fellows will also have opportunities to engage with thought-leaders from science, business, policy, and society. According to the award announcement, the fellows are expected to pursue research that shifts from the focus of their PhDs, to help expand and enhance their futures as scientific leaders.

    Juncal Arbelaiz is a PhD candidate in applied mathematics at MIT, who is completing her doctorate this summer. Her doctoral research at MIT is advised by Ali Jadbabaie, the JR East Professor of Engineering and head of the Department of Civil and Environmental Engineering; Anette Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean of the School of Engineering; and Bassam Bamieh, professor of mechanical engineering and associate director of the Center for Control, Dynamical Systems, and Computation at the University of California at Santa Barbara. Arbelaiz’s research revolves around the design of optimal decentralized intelligence for spatially-distributed dynamical systems.

    “I cannot think of a better way to start my independent scientific career. I feel very excited and grateful for this opportunity,” says Arbelaiz. With her fellowship, she will enlist systems biology to explore how the nervous system encodes and processes sensory information to address future safety-critical artificial intelligence applications. “The Schmidt Science Fellowship will provide me with a unique opportunity to work at the intersection of biological and machine intelligence for two years and will be a steppingstone towards my longer-term objective of becoming a researcher in bio-inspired machine intelligence,” she says.

    Xiangkun (Elvis) Cao is currently a postdoc in the lab of T. Alan Hatton, the Ralph Landau Professor in Chemical Engineering, and an Impact Fellow at the MIT Climate and Sustainability Consortium. Cao received his PhD in mechanical engineering from Cornell University in 2021, during which he focused on microscopic precision in the simultaneous delivery of light and fluids by optofluidics, with advances relevant to health and sustainability applications. As a Schmidt Science Fellow, he plans to be co-advised by Hatton on carbon capture, and Ted Sargent, professor of chemistry at Northwestern University, on carbon utilization. Cao is passionate about integrated carbon capture and utilization (CCU) from molecular to process levels, machine learning to inspire smart CCU, and the nexus of technology, business, and policy for CCU.

    “The Schmidt Science Fellowship provides the perfect opportunity for me to work across disciplines to study integrated carbon capture and utilization from molecular to process levels,” Cao explains. “My vision is that by integrating carbon capture and utilization, we can concurrently make scientific discoveries and unlock economic opportunities while mitigating global climate change. This way, we can turn our carbon liability into an asset.”

    Sandya Subramanian, a 2021 PhD graduate of the Harvard-MIT Program in Health Sciences and Technology (HST) in the area of medical engineering and medical physics, is currently a postdoc at Stanford Data Science. She is focused on the topics of biomedical engineering, statistics, machine learning, neuroscience, and health care. Her research is on developing new technologies and methods to study the interactions between the brain, the autonomic nervous system, and the gut. “I’m extremely honored to receive the Schmidt Science Fellowship and to join the Schmidt community of leaders and scholars,” says Subramanian. “I’ve heard so much about the fellowship and the fact that it can open doors and give people confidence to pursue challenging or unique paths.”

    According to Subramanian, the autonomic nervous system and its interactions with other body systems are poorly understood but thought to be involved in several disorders, such as functional gastrointestinal disorders, Parkinson’s disease, diabetes, migraines, and eating disorders. The goal of her research is to improve our ability to monitor and quantify these physiologic processes. “I’m really interested in understanding how we can use physiological monitoring technologies to inform clinical decision-making, especially around the autonomic nervous system, and I look forward to continuing the work that I’ve recently started at Stanford as Schmidt Science Fellow,” she says. “A huge thank you to all of the mentors, colleagues, friends, and leaders I had the pleasure of meeting and working with at HST and MIT; I couldn’t have done this without everything I learned there.”

    Hannah Zlotnick ’17 attended MIT for her undergraduate studies, majoring in biological engineering with a minor in mechanical engineering. At MIT, Zlotnick was a student-athlete on the women’s varsity soccer team, a UROP student in Alan Grodzinsky’s laboratory, and a member of Pi Beta Phi. For her PhD, Zlotnick attended the University of Pennsylvania, and worked in Robert Mauck’s laboratory within the departments of Bioengineering and Orthopaedic Surgery.

    Zlotnick’s PhD research focused on harnessing remote forces, such as magnetism or gravity, to enhance engineered cartilage and osteochondral repair both in vitro and in large animal models. Zlotnick now plans to pivot to the field of biofabrication to create tissue models of the knee joint to assess potential therapeutics for osteoarthritis. “I am humbled to be a part of the Schmidt Science Fellows community, and excited to venture into the field of biofabrication,” Zlotnick says. “Hopefully this work uncovers new therapies for patients with inflammatory joint diseases.” More

  • in

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Amy Moran-Thomas, the Alfred Henry and Jean Morrison Hayes Career Development Associate Professor of Anthropology, has received the 2021-22 Harold E. Edgerton Faculty Achievement Award in recognition of her “exceptional commitment to innovative and collaborative interdisciplinary approaches to resolving inequitable impacts on human health,” according to a statement by the  selection committee.A medical anthropologist, Moran-Thomas investigates linkages between human and environmental health, with a focus on health disparities. She is the author of the award-winning book “Traveling with Sugar: Chronicles of a Global Epidemic” (University of California Press, 2019), which frames the diabetes epidemic in Belize within the context of 500 years of colonialism.

    On human and planetary well-being Moran-Thomas “stands out in this field by bringing a humanistic approach into dialogue with environmental and science studies to investigate how bodily health is shaped by social well-being at the community level and further conditioned by localized planetary imbalances,” the selection committee’s statement said. “Professor Moran-Thomas shows how diabetes resides not only within human bodies but also across toxic environments, crumbling healthcare infrastructures, and stress-inducing economic inequalities.”Heather Paxson, the William R. Kenan, Jr. Professor of Anthropology and head of the MIT Anthropology program, calls Moran-Thomas “a fast-rising star in her field.” Paxson, who nominated Moran-Thomas for the award, adds, “She is also a highly effective teacher and student mentor, an engaged member of our Institute community, and a budding public intellectual.” A profound discovery for medical equity

    “Professor Moran-Thomas’s work has an extraordinarily profound and impactful reach,” according to the committee, which highlighted a widely read 2020 essay in Boston Review in which Moran-Thomas revealed that the fingertip pulse oximeter — a key tool in monitoring the effects of respiratory distress due to Covid-19 and other illness — gives misleading readings with darkly complected skin. This essay inspired a subsequent medical research study and ultimately led to an alert from the U.S. Food and Drug Administration spotlighting the limitations of pulse oximeters.

    The selection committee further lauded Moran-Thomas for her pedagogy, including her work developing the new subject 21A.311 (The Social Lives of Medical Objects). She was also commended for her service, notably her work on the MIT Climate Action Advisory Committee and with the Social and Ethical Responsibilities of Computing group within MIT’s Schwarzman College of Computing.

    Moran-Thomas earned her bachelor’s degree in literature from American University and her PhD in anthropology from Princeton University. She joined MIT Anthropology in 2015, following postdocs at the Woodrow Institute for Public and International Affairs and at Brown University’s Cogut Humanities Center. She was promoted to associate professor without tenure in 2019.

    The annual Edgerton Faculty Award, established in 1982 as a tribute to Institute Professor Emeritus Harold E. Edgerton, honors achievement in research, teaching, and service by a nontenured member of the faculty.The 2019-20 Edgerton Award Selection Committee was chaired by T.L. Taylor, a professor of Comparative Media Studies/Writing. Other members were Geoffrey Beach, a professor in the Department of Materials Science and Engineering; Mircea Dinca, the W.M. Keck Professor of Energy in the Department of Chemistry; Hazhir Rahmandad, an associate professor of system dynamics in the Sloan School of Management; and Rafi Segal, an associate professor in the Department of Architecture.

    Story prepared by MIT SHASS CommunicationsSenior Writer: Kathryn O’NeillEditorial and Design Director: Emily Hiestand More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    The power of economics to explain and shape the world

    Nobel Prize-winning economist Esther Duflo sympathizes with students who have no interest in her field. She was such a student herself — until an undergraduate research post gave her the chance to learn first-hand that economists address many of the major issues facing human and planetary well-being.“Most people have a wrong view of what economics is. They just see economists on television discussing what’s going to happen to the stock market,” says Duflo, the Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics. “But what people do in the field is very broad. Economists grapple with the real world and with the complexity that goes with it.”

    That’s why this year Duflo has teamed up with Professor Abhijit Banerjee to offer 14.009 (Economics and Society’s Greatest Problems), a first-year discovery subject — a class type designed to give undergraduates a low-pressure, high-impact way to explore a field. In this case, they are exploring the range of issues that economists engage with every day: the economic dimensions of climate change, international trade, racism, justice, education, poverty, health care, social preferences, and economic growth are just a few of the topics the class covers.“We think it’s pretty important that the first exposure to economics is via issues,” Duflo says. “If you first get exposed to economics via models, these models necessarily have to be very simplified, and then students get the idea that economics is a simplistic view of the world that can’t explain much.”Arguably, Duflo and Banerjee have been disproving that view throughout their careers. In 2003, the pair founded MIT’s Abdul Latif Jameel Poverty Action Lab, a leading antipoverty research network that provides scientific evidence on what methods actually work to alleviate poverty — which enables governments and nongovernmental organizations to implement truly effective programs and social policies. And, in 2019 they won the Nobel Prize in economics (together with Michael Kremer of the University of Chicago) for their innovative work applying laboratory-style randomized, controlled trials to research a wide range of topics implicated in global poverty.“Super cool”

    First-year Jean Billa, one of the students in 14.009, says, “Economics isn’t just about how money flows, but about how people react to certain events. That was an interesting discovery for me.”

    It’s also precisely the lesson Banerjee and Duflo hoped students would take away from 14.009, a class that centers on weekly in-person discussions of the professors’ recorded lectures — many of which align with chapters in Banerjee and Duflo’s book “Good Economics for Hard Times” (Public Affairs, 2019).Classes typically start with a poll in which the roughly 100 enrolled students can register their views on that week’s topic. Then, students get to discuss the issue, says senior Dina Atia, teaching assistant for the class. Noting that she finds it “super cool” that Nobelists are teaching MIT’s first-year students, Atia points out that both Duflo and Banerjee have also made themselves available to chat with students after class. “They’re definitely extending themselves,” she says.“We want the students to get excited about economics so they want to know more,” says Banerjee, the Ford Foundation International Professor of Economics, “because this is a field that can help us address some of the biggest problems society faces.” Using natural experiments to test theories

    Early in the term, for example, the topic was migration. In the lecture, Duflo points out that migration policies are often impacted by the fear that unskilled migrants will overwhelm a region, taking jobs from residents and demanding social services. Yet, migrant flows in normal years represent just 3 percent of the world population. “There is no flood. There is no vast movement of migrants,” she says.Duflo then explains that economists were able to learn a lot about migration thanks to a “natural experiment,” the Mariel boat lift. This 1980 event brought roughly 125,000 unskilled Cubans to Florida over a matter a months, enabling economists to study the impacts of a sudden wave of migration. Duflo says a look at real wages before and after the migration showed no significant impacts.“It was interesting to see that most theories about immigrants were not justified,” Billa says. “That was a real-life situation, and the results showed that even a massive wave of immigration didn’t change work in the city [Miami].”

    Question assumptions, find the facts in dataSince this is a broad survey course, there is always more to unpack. The goal, faculty say, is simply to help students understand the power of economics to explain and shape the world. “We are going so fast from topic to topic, I don’t expect them to retain all the information,” Duflo says. Instead, students are expected to gain an appreciation for a way of thinking. “Economics is about questioning everything — questioning assumptions you don’t even know are assumptions and being sophisticated about looking at data to uncover the facts.”To add impact, Duflo says she and Banerjee tie lessons to current events and dive more deeply into a few economic studies. One class, for example, focused on the unequal burden the Covid-19 pandemic has placed on different demographic groups and referenced research by Harvard University professor Marcella Alsan, who won a MacArthur Fellowship this fall for her work studying the impact of racism on health disparities.

    Duflo also revealed that at the beginning of the pandemic, she suspected that mistrust of the health-care system could prevent Black Americans from taking certain measures to protect themselves from the virus. What she discovered when she researched the topic, however, was that political considerations outweighed racial influences as a predictor of behavior. “The lesson for you is, it’s good to question your assumptions,” she told the class.“Students should ideally understand, by the end of class, why it’s important to ask questions and what they can teach us about the effectiveness of policy and economic theory,” Banerjee says. “We want people to discover the range of economics and to understand how economists look at problems.”

    Story by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    Institute Professor Paula Hammond named to White House science council

    Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

    The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

    “For me, this is an exciting opportunity,” Hammond says. “I have always been interested in considering how science can solve important problems in our community, in our country, and globally. It’s very meaningful for me to have a chance to have an advisory role at that level.”

    Hammond is one of 30 members named to the council, which is co-chaired by Frances Arnold, a professor at Caltech, and Maria Zuber, MIT’s vice president for research.

    “Paula is an extraordinary engineer, teacher, and colleague, and President Biden’s decision to appoint her to the council is an excellent one,” Zuber says. “I think about the work ahead of us — not just to restore science and technology to their proper place in policymaking, but also to make sure that they lead to real improvements in the lives of everyone in our country — and I can’t think of anyone better suited to the challenge than Paula.”

    Hammond, whose research as a chemical engineer touches on the fields of both medicine and energy, said she hopes to help address critical issues such as equal access to health care and efforts to mitigate climate change.

    “I’m very excited about the opportunities presented at the interface of engineering and health, and in particular, how we might be able to expand the benefits that we gain from our work to a broader set of communities, so that we’re able to address some of the disparities we see in health, which have been so obvious during the pandemic,” says Hammond, who is also a member of MIT’s Koch Institute for Integrative Cancer Research. “How we might be able to use everything from computational modeling and data science to technological innovation to equalize access to health is one area that I care a lot about.”

    Hammond’s research focuses on developing novel polymers and nanomaterials for a variety of applications in drug delivery, noninvasive imaging, solar cells, and battery technology. Using techniques for building polymers with highly controlled architectures, she has designed drug-delivering nanoparticles that can home in on tumors, as well as polymer films that dramatically improve the efficiency of methanol fuel cells.

    As an MIT faculty member and mentor to graduate students, Hammond has worked to increase opportunities for underrepresented minorities in science and engineering fields. That is a goal she also hopes to pursue in her new role.

    “There’s a lot of work to be done when we look at the low numbers of students of color who are actually going on to science and engineering fields,” she says. “When I think about my work related to increasing diversity in those areas, part of the reason I do it is because that’s where we gain excellence, and where we gain solutions and the foresight to work on the right problems. I also think that it’s important for there to be broad access to the power that science brings.”

    Hammond, who earned both her bachelor’s degree and PhD from MIT, has been a member of the faculty since 1995. She has been a full professor since 2006 and has chaired the Department of Chemical Engineering since 2015. Earlier this year, she was named an Institute Professor, MIT’s highest faculty honor. She is also one of only 25 people who have been elected to all three National Academies — Engineering, Science, and Medicine.

    She has previously served on the U.S. Secretary of Energy Scientific Advisory Board, the NIH Center for Scientific Review Advisory Council, and the Board of Directors of the American Institute of Chemical Engineers. She also chaired or co-chaired two committees that contributed landmark reports on gender and race at MIT: the Initiative for Faculty Race and Diversity, and the Academic and Organizational Relationships Working Group. More