More stories

  • in

    Coordinating climate and air-quality policies to improve public health

    As America’s largest investment to fight climate change, the Inflation Reduction Act positions the country to reduce its greenhouse gas emissions by an estimated 40 percent below 2005 levels by 2030. But as it edges the United States closer to achieving its international climate commitment, the legislation is also expected to yield significant — and more immediate — improvements in the nation’s health. If successful in accelerating the transition from fossil fuels to clean energy alternatives, the IRA will sharply reduce atmospheric concentrations of fine particulates known to exacerbate respiratory and cardiovascular disease and cause premature deaths, along with other air pollutants that degrade human health. One recent study shows that eliminating air pollution from fossil fuels in the contiguous United States would prevent more than 50,000 premature deaths and avoid more than $600 billion in health costs each year.

    While national climate policies such as those advanced by the IRA can simultaneously help mitigate climate change and improve air quality, their results may vary widely when it comes to improving public health. That’s because the potential health benefits associated with air quality improvements are much greater in some regions and economic sectors than in others. Those benefits can be maximized, however, through a prudent combination of climate and air-quality policies.

    Several past studies have evaluated the likely health impacts of various policy combinations, but their usefulness has been limited due to a reliance on a small set of standard policy scenarios. More versatile tools are needed to model a wide range of climate and air-quality policy combinations and assess their collective effects on air quality and human health. Now researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Institute for Data, Systems and Society (IDSS) have developed a publicly available, flexible scenario tool that does just that.

    In a study published in the journal Geoscientific Model Development, the MIT team introduces its Tool for Air Pollution Scenarios (TAPS), which can be used to estimate the likely air-quality and health outcomes of a wide range of climate and air-quality policies at the regional, sectoral, and fuel-based level. 

    “This tool can help integrate the siloed sustainability issues of air pollution and climate action,” says the study’s lead author William Atkinson, who recently served as a Biogen Graduate Fellow and research assistant at the IDSS Technology and Policy Program’s (TPP) Research to Policy Engagement Initiative. “Climate action does not guarantee a clean air future, and vice versa — but the issues have similar sources that imply shared solutions if done right.”

    The study’s initial application of TAPS shows that with current air-quality policies and near-term Paris Agreement climate pledges alone, short-term pollution reductions give way to long-term increases — given the expected growth of emissions-intensive industrial and agricultural processes in developing regions. More ambitious climate and air-quality policies could be complementary, each reducing different pollutants substantially to give tremendous near- and long-term health benefits worldwide.

    “The significance of this work is that we can more confidently identify the long-term emission reduction strategies that also support air quality improvements,” says MIT Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “This is a win-win for setting climate targets that are also healthy targets.”

    TAPS projects air quality and health outcomes based on three integrated components: a recent global inventory of detailed emissions resulting from human activities (e.g., fossil fuel combustion, land-use change, industrial processes); multiple scenarios of emissions-generating human activities between now and the year 2100, produced by the MIT Economic Projection and Policy Analysis model; and emissions intensity (emissions per unit of activity) scenarios based on recent data from the Greenhouse Gas and Air Pollution Interactions and Synergies model.

    “We see the climate crisis as a health crisis, and believe that evidence-based approaches are key to making the most of this historic investment in the future, particularly for vulnerable communities,” says Johanna Jobin, global head of corporate reputation and responsibility at Biogen. “The scientific community has spoken with unanimity and alarm that not all climate-related actions deliver equal health benefits. We’re proud of our collaboration with the MIT Joint Program to develop this tool that can be used to bridge research-to-policy gaps, support policy decisions to promote health among vulnerable communities, and train the next generation of scientists and leaders for far-reaching impact.”

    The tool can inform decision-makers about a wide range of climate and air-quality policies. Policy scenarios can be applied to specific regions, sectors, or fuels to investigate policy combinations at a more granular level, or to target short-term actions with high-impact benefits.

    TAPS could be further developed to account for additional emissions sources and trends.

    “Our new tool could be used to examine a large range of both climate and air quality scenarios. As the framework is expanded, we can add detail for specific regions, as well as additional pollutants such as air toxics,” says study supervising co-author Noelle Selin, professor at IDSS and the MIT Department of Earth, Atmospheric and Planetary Sciences, and director of TPP.    

    This research was supported by the U.S. Environmental Protection Agency and its Science to Achieve Results (STAR) program; Biogen; TPP’s Leading Technology and Policy Initiative; and TPP’s Research to Policy Engagement Initiative. More

  • in

    3Q: Why Europe is so vulnerable to heat waves

    This year saw high-temperature records shattered across much of Europe, as crops withered in the fields due to widespread drought. Is this a harbinger of things to come as the Earth’s climate steadily warms up?

    Elfatih Eltahir, MIT professor of civil and environmental engineering and H. M. King Bhumibol Professor of Hydrology and Climate, and former doctoral student Alexandre Tuel PhD ’20 recently published a piece in the Bulletin of the Atomic Scientists describing how their research helps explain this anomalous European weather. The findings are based in part on analyses described in their book “Future Climate of the Mediterranean and Europe,” published earlier this year. MIT News asked the two authors to describe the dynamics behind these extreme weather events.

    Q: Was the European heat wave this summer anticipated based on existing climate models?

    Eltahir: Climate models project increasingly dry summers over Europe. This is especially true for the second half of the 21st century, and for southern Europe. Extreme dryness is often associated with hot conditions and heat waves, since any reduction in evaporation heats the soil and the air above it. In general, models agree in making such projections about European summers. However, understanding the physical mechanisms responsible for these projections is an active area of research.

    The same models that project dry summers over southern Europe also project dry winters over the neighboring Mediterranean Sea. In fact, the Mediterranean Sea stands out as one of the most significantly impacted regions — a literal “hot spot” — for winter droughts triggered by climate change. Again, until recently, the association between the projections of summer dryness over Europe and dry winters over the Mediterranean was not understood.

    In recent MIT doctoral research, carried out in the Department of Civil and Environmental Engineering, a hypothesis was developed to explain why the Mediterranean stands out as a hot spot for winter droughts under climate change. Further, the same theory offers a mechanistic understanding that connects the projections of dry summers over southern Europe and dry winters over the Mediterranean.

    What is exciting about the observed climate over Europe last summer is the fact that the observed drought started and developed with spatial and temporal patterns that are consistent with our proposed theory, and in particular the connection to the dry conditions observed over the Mediterranean during the previous winter.

    Q: What is it about the area around the Mediterranean basin that produces such unusual weather extremes?

    Eltahir: Multiple factors come together to cause extreme heat waves such as the one that Europe has experienced this summer, as well as previously, in 2003, 2015, 2018, 2019, and 2020. Among these, however, mutual influences between atmospheric dynamics and surface conditions, known as land-atmosphere feedbacks, seem to play a very important role.

    In the current climate, southern Europe is located in the transition zone between the dry subtropics (the Sahara Desert in North Africa) and the relatively wet midlatitudes (with a climate similar to that of the Pacific Northwest). High summertime temperatures tend to make the precipitation that falls to the ground evaporate quickly, and as a consequence soil moisture during summer is very dependent on springtime precipitation. A dry spring in Europe (such as the 2022 one) causes dry soils in late spring and early summer. This lack of surface water in turn limits surface evaporation during summer. Two important consequences follow: First, incoming radiative energy from the sun preferentially goes into increasing air temperature rather than evaporating water; and second, the inflow of water into air layers near the surface decreases, which makes the air drier and precipitation less likely. Combined, these two influences increase the likelihood of heat waves and droughts.

    Tuel: Through land-atmosphere feedbacks, dry springs provide a favorable environment for persistent warm and dry summers but are of course not enough to directly cause heat waves. A spark is required to ignite the fuel. In Europe and elsewhere, this spark is provided by large-scale atmospheric dynamics. If an anticyclone sets over an area with very dry soils, surface temperature can quickly shoot up as land-atmosphere feedbacks come into play, developing into a heat wave that can persist for weeks.

    The sensitivity to springtime precipitation makes southern Europe and the Mediterranean particularly prone to persistent summer heat waves. This will play an increasingly important role in the future, as spring precipitation is expected to decline, making scorching summers even more likely in this corner of the world. The decline in spring precipitation, which originates as an anomalously dry winter around the Mediterranean, is very robust across climate projections. Southern Europe and the Mediterranean really stand out from most other land areas, where precipitation will on average increase with global warming.

    In our work, we showed that this Mediterranean winter decline was driven by two independent factors: on the one hand, trends in the large-scale circulation, notably stationary atmospheric waves, and on the other hand, reduced warming of the Mediterranean Sea relative to the surrounding continents — a well-known feature of global warming. Both factors lead to increased surface air pressure and reduced precipitation over the Mediterranean and Southern Europe.

    Q: What can we expect over the coming decades in terms of the frequency and severity of these kinds of droughts, floods, and other extremes in European weather?

    Tuel: Climate models have long shown that the frequency and intensity of heat waves was bound to increase as the global climate warms, and Europe is no exception. The reason is simple: As the global temperature rises, the temperature distribution shifts toward higher values, and heat waves become more intense and more frequent. Southern Europe and the Mediterranean, however, will be hit particularly hard. The reason for this is related to the land-atmosphere feedbacks we just discussed. Winter precipitation over the Mediterranean and spring precipitation over southern Europe will decline significantly, which will lead to a decrease in early summer soil moisture over southern Europe and will push average summer temperatures even higher; the region will become a true climate change hot spot. In that sense, 2022 may really be a taste of the future. The succession of recent heat waves in Europe, however, suggests that things may be going faster than climate model projections imply. Decadal variability or badly understood trends in large-scale atmospheric dynamics may play a role here, though that is still debated. Another possibility is that climate models tend to underestimate the magnitude of land-atmosphere feedbacks and downplay the influence of dry soil moisture anomalies on summertime weather.

    Potential trends in floods are more difficult to assess because floods result from a multiplicity of factors, like extreme precipitation, soil moisture levels, or land cover. Extreme precipitation is generally expected to increase in most regions, but very high uncertainties remain, notably because extreme precipitation is highly dependent on atmospheric dynamics about which models do not always agree. What is almost certain is that with warming, the water content of the atmosphere increases (following a law of thermodynamics known as the Clausius-Clapeyron relationship). Thus, if the dynamics are favorable to precipitation, a lot more of it may fall in a warmer climate. Last year’s floods in Germany, for example, were triggered by unprecedented heavy rainfall which climate change made more likely. More

  • in

    Scientists chart how exercise affects the body

    Exercise is well-known to help people lose weight and avoid gaining it. However, identifying the cellular mechanisms that underlie this process has proven difficult because so many cells and tissues are involved.

    In a new study in mice that expands researchers’ understanding of how exercise and diet affect the body, MIT and Harvard Medical School researchers have mapped out many of the cells, genes, and cellular pathways that are modified by exercise or high-fat diet. The findings could offer potential targets for drugs that could help to enhance or mimic the benefits of exercise, the researchers say.

    “It is extremely important to understand the molecular mechanisms that are drivers of the beneficial effects of exercise and the detrimental effects of a high-fat diet, so that we can understand how we can intervene, and develop drugs that mimic the impact of exercise across multiple tissues,” says Manolis Kellis, a professor of computer science in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and a member of the Broad Institute of MIT and Harvard.

    The researchers studied mice with high-fat or normal diets, who were either sedentary or given the opportunity to exercise whenever they wanted. Using single-cell RNA sequencing, the researchers cataloged the responses of 53 types of cells found in skeletal muscle and two types of fatty tissue.

    “One of the general points that we found in our study, which is overwhelmingly clear, is how high-fat diets push all of these cells and systems in one way, and exercise seems to be pushing them nearly all in the opposite way,” Kellis says. “It says that exercise can really have a major effect throughout the body.”

    Kellis and Laurie Goodyear, a professor of medicine at Harvard Medical School and senior investigator at the Joslin Diabetes Center, are the senior authors of the study, which appears today in the journal Cell Metabolism. Jiekun Yang, a research scientist in MIT CSAIL; Maria Vamvini, an instructor of medicine at the Joslin Diabetes Center; and Pasquale Nigro, an instructor of medicine at the Joslin Diabetes Center, are the lead authors of the paper.

    The risks of obesity

    Obesity is a growing health problem around the world. In the United States, more than 40 percent of the population is considered obese, and nearly 75 percent is overweight. Being overweight is a risk factor for many diseases, including heart disease, cancer, Alzheimer’s disease, and even infectious diseases such as Covid-19.

    “Obesity, along with aging, is a global factor that contributes to every aspect of human health,” Kellis says.

    Several years ago, his lab performed a study on the FTO gene region, which has been strongly linked to obesity risk. In that 2015 study, the research team found that genes in this region control a pathway that prompts immature fat cells called progenitor adipocytes to either become fat-burning cells or fat-storing cells.

    That finding, which demonstrated a clear genetic component to obesity, motivated Kellis to begin looking at how exercise, a well-known behavioral intervention that can prevent obesity, might act on progenitor adipocytes at the cellular level.

    To explore that question, Kellis and his colleagues decided to perform single-cell RNA sequencing of three types of tissue — skeletal muscle, visceral white adipose tissue (found packed around internal organs, where it stores fat), and subcutaneous white adipose tissue (which is found under the skin and primarily burns fat).

    These tissues came from mice from four different experimental groups. For three weeks, two groups of mice were fed either a normal diet or a high-fat diet. For the next three weeks, each of those two groups were further divided into a sedentary group and an exercise group, which had continuous access to a treadmill.

    By analyzing tissues from those mice, the researchers were able to comprehensively catalog the genes that were activated or suppressed by exercise in 53 different cell types.

    The researchers found that in all three tissue types, mesenchymal stem cells (MSCs) appeared to control many of the diet and exercise-induced effects that they observed. MSCs are stem cells that can differentiate into other cell types, including fat cells and fibroblasts. In adipose tissue, the researchers found that a high-fat diet modulated MSCs’ capacity to differentiate into fat-storing cells, while exercise reversed this effect.

    In addition to promoting fat storage, the researchers found that a high-fat diet also stimulated MSCs to secrete factors that remodel the extracellular matrix (ECM) — a network of proteins and other molecules that surround and support cells and tissues in the body. This ECM remodeling helps provide structure for enlarged fat-storing cells and also creates a more inflammatory environment.

    “As the adipocytes become overloaded with lipids, there’s an extreme amount of stress, and that causes low-grade inflammation, which is systemic and preserved for a long time,” Kellis says. “That is one of the factors that is contributing to many of the adverse effects of obesity.”

    Circadian effects

    The researchers also found that high-fat diets and exercise had opposing effects on cellular pathways that control circadian rhythms — the 24-hour cycles that govern many functions, from sleep to body temperature, hormone release, and digestion. The study revealed that exercise boosts the expression of genes that regulate these rhythms, while a high-fat diet suppresses them.

    “There have been a lot of studies showing that when you eat during the day is extremely important in how you absorb the calories,” Kellis says. “The circadian rhythm connection is a very important one, and shows how obesity and exercise are in fact directly impacting that circadian rhythm in peripheral organs, which could act systemically on distal clocks and regulate stem cell functions and immunity.”

    The researchers then compared their results to a database of human genes that have been linked with metabolic traits. They found that two of the circadian rhythm genes they identified in this study, known as DBP and CDKN1A, have genetic variants that have been associated with a higher risk of obesity in humans.

    “These results help us see the translational values of these targets, and how we could potentially target specific biological processes in specific cell types,” Yang says.

    The researchers are now analyzing samples of small intestine, liver, and brain tissue from the mice in this study, to explore the effects of exercise and high-fat diets on those tissues. They are also conducting work with human volunteers to sample blood and biopsies and study similarities and differences between human and mouse physiology. They hope that their findings will help guide drug developers in designing drugs that might mimic some of the beneficial effects of exercise.

    “The message for everyone should be, eat a healthy diet and exercise if possible,” Kellis says. “For those for whom this is not possible, due to low access to healthy foods, or due to disabilities or other factors that prevent exercise, or simply lack of time to have a healthy diet or a healthy lifestyle, what this study says is that we now have a better handle on the pathways, the specific genes, and the specific molecular and cellular processes that we should be manipulating therapeutically.”

    The research was funded by the National Institutes of Health and the Novo Nordisk Research Center in Seattle. More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Study finds natural sources of air pollution exceed air quality guidelines in many regions

    Alongside climate change, air pollution is one of the biggest environmental threats to human health. Tiny particles known as particulate matter or PM2.5 (named for their diameter of just 2.5 micrometers or less) are a particularly hazardous type of pollutant. These particles are produced from a variety of sources, including wildfires and the burning of fossil fuels, and can enter our bloodstream, travel deep into our lungs, and cause respiratory and cardiovascular damage. Exposure to particulate matter is responsible for millions of premature deaths globally every year.

    In response to the increasing body of evidence on the detrimental effects of PM2.5, the World Health Organization (WHO) recently updated its air quality guidelines, lowering its recommended annual PM2.5 exposure guideline by 50 percent, from 10 micrograms per meter cubed (μm3) to 5 μm3. These updated guidelines signify an aggressive attempt to promote the regulation and reduction of anthropogenic emissions in order to improve global air quality.

    A new study by researchers in the MIT Department of Civil and Environmental Engineering explores if the updated air quality guideline of 5 μm3 is realistically attainable across different regions of the world, particularly if anthropogenic emissions are aggressively reduced. 

    The first question the researchers wanted to investigate was to what degree moving to a no-fossil-fuel future would help different regions meet this new air quality guideline.

    “The answer we found is that eliminating fossil-fuel emissions would improve air quality around the world, but while this would help some regions come into compliance with the WHO guidelines, for many other regions high contributions from natural sources would impede their ability to meet that target,” says senior author Colette Heald, the Germeshausen Professor in the MIT departments of Civil and Environmental Engineering, and Earth, Atmospheric and Planetary Sciences. 

    The study by Heald, Professor Jesse Kroll, and graduate students Sidhant Pai and Therese Carter, published June 6 in the journal Environmental Science and Technology Letters, finds that over 90 percent of the global population is currently exposed to average annual concentrations that are higher than the recommended guideline. The authors go on to demonstrate that over 50 percent of the world’s population would still be exposed to PM2.5 concentrations that exceed the new air quality guidelines, even in the absence of all anthropogenic emissions.

    This is due to the large natural sources of particulate matter — dust, sea salt, and organics from vegetation — that still exist in the atmosphere when anthropogenic emissions are removed from the air. 

    “If you live in parts of India or northern Africa that are exposed to large amounts of fine dust, it can be challenging to reduce PM2.5 exposures below the new guideline,” says Sidhant Pai, co-lead author and graduate student. “This study challenges us to rethink the value of different emissions abatement controls across different regions and suggests the need for a new generation of air quality metrics that can enable targeted decision-making.”

    The researchers conducted a series of model simulations to explore the viability of achieving the updated PM2.5 guidelines worldwide under different emissions reduction scenarios, using 2019 as a representative baseline year. 

    Their model simulations used a suite of different anthropogenic sources that could be turned on and off to study the contribution of a particular source. For instance, the researchers conducted a simulation that turned off all human-based emissions in order to determine the amount of PM2.5 pollution that could be attributed to natural and fire sources. By analyzing the chemical composition of the PM2.5 aerosol in the atmosphere (e.g., dust, sulfate, and black carbon), the researchers were also able to get a more accurate understanding of the most important PM2.5 sources in a particular region. For example, elevated PM2.5 concentrations in the Amazon were shown to predominantly consist of carbon-containing aerosols from sources like deforestation fires. Conversely, nitrogen-containing aerosols were prominent in Northern Europe, with large contributions from vehicles and fertilizer usage. The two regions would thus require very different policies and methods to improve their air quality. 

    “Analyzing particulate pollution across individual chemical species allows for mitigation and adaptation decisions that are specific to the region, as opposed to a one-size-fits-all approach, which can be challenging to execute without an understanding of the underlying importance of different sources,” says Pai. 

    When the WHO air quality guidelines were last updated in 2005, they had a significant impact on environmental policies. Scientists could look at an area that was not in compliance and suggest high-level solutions to improve the region’s air quality. But as the guidelines have tightened, globally-applicable solutions to manage and improve air quality are no longer as evident. 

    “Another benefit of speciating is that some of the particles have different toxicity properties that are correlated to health outcomes,” says Therese Carter, co-lead author and graduate student. “It’s an important area of research that this work can help motivate. Being able to separate out that piece of the puzzle can provide epidemiologists with more insights on the different toxicity levels and the impact of specific particles on human health.”

    The authors view these new findings as an opportunity to expand and iterate on the current guidelines.  

    “Routine and global measurements of the chemical composition of PM2.5 would give policymakers information on what interventions would most effectively improve air quality in any given location,” says Jesse Kroll, a professor in the MIT departments of Civil and Environmental Engineering and Chemical Engineering. “But it would also provide us with new insights into how different chemical species in PM2.5 affect human health.”

    “I hope that as we learn more about the health impacts of these different particles, our work and that of the broader atmospheric chemistry community can help inform strategies to reduce the pollutants that are most harmful to human health,” adds Heald. More

  • in

    Using soap to remove micropollutants from water

    Imagine millions of soapy sponges the size of human cells that can clean water by soaking up contaminants. This simplistic model is used to describe technology that MIT chemical engineers have recently developed to remove micropollutants from water — a concerning, worldwide problem.

    Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering, PhD student Devashish Pratap Gokhale, and undergraduate Ian Chen recently published their research on micropollutant removal in the journal ACS Applied Polymer Materials. The work is funded by MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).

    In spite of their low concentrations (about 0.01–100 micrograms per liter), micropollutants can be hazardous to the ecosystem and to human health. They come from a variety of sources and have been detected in almost all bodies of water, says Gokhale. Pharmaceuticals passing through people and animals, for example, can end up as micropollutants in the water supply. Others, like endocrine disruptor bisphenol A (BPA), can leach from plastics during industrial manufacturing. Pesticides, dyes, petrochemicals, and per-and polyfluoroalkyl substances, more commonly known as PFAS, are also examples of micropollutants, as are some heavy metals like lead and arsenic. These are just some of the kinds of micropollutants, all of which can be toxic to humans and animals over time, potentially causing cancer, organ damage, developmental defects, or other adverse effects.

    Micropollutants are numerous but since their collective mass is small, they are difficult to remove from water. Currently, the most common practice for removing micropollutants from water is activated carbon adsorption. In this process, water passes through a carbon filter, removing only 30 percent of micropollutants. Activated carbon requires high temperatures to produce and regenerate, requiring specialized equipment and consuming large amounts of energy. Reverse osmosis can also be used to remove micropollutants from water; however, “it doesn’t lead to good elimination of this class of molecules, because of both their concentration and their molecular structure,” explains Doyle.

    Inspired by soap

    When devising their solution for how to remove micropollutants from water, the MIT researchers were inspired by a common household cleaning supply — soap. Soap cleans everything from our hands and bodies to dirty dishes to clothes, so perhaps the chemistry of soap could also be applied to sanitizing water. Soap has molecules called surfactants which have both hydrophobic (water-hating) and hydrophilic (water-loving) components. When water comes in contact with soap, the hydrophobic parts of the surfactant stick together, assembling into spherical structures called micelles with the hydrophobic portions of the molecules in the interior. The hydrophobic micelle cores trap and help carry away oily substances like dirt. 

    Doyle’s lab synthesized micelle-laden hydrogel particles to essentially cleanse water. Gokhale explains that they used microfluidics which “involve processing fluids on very small, micron-like scales” to generate uniform polymeric hydrogel particles continuously and reproducibly. These hydrogels, which are porous and absorbent, incorporate a surfactant, a photoinitiator (a molecule that creates reactive species), and a cross-linking agent known as PEGDA. The surfactant assembles into micelles that are chemically bonded to the hydrogel using ultraviolet light. When water flows through this micro-particle system, micropollutants latch onto the micelles and separate from the water. The physical interaction used in the system is strong enough to pull micropollutants from water, but weak enough that the hydrogel particles can be separated from the micropollutants, restabilized, and reused. Lab testing shows that both the speed and extent of pollutant removal increase when the amount of surfactant incorporated into the hydrogels is increased.

    “We’ve shown that in terms of rate of pullout, which is what really matters when you scale this up for industrial use, that with our initial format, we can already outperform the activated carbon,” says Doyle. “We can actually regenerate these particles very easily at room temperature. Nearly 10 regeneration cycles with minimal change in performance,” he adds.

    Regeneration of the particles occurs by soaking the micelles in 90 percent ethanol, whereby “all the pollutants just come out of the particles and back into the ethanol” says Gokhale. Ethanol is biosafe at low concentrations, inexpensive, and combustible, allowing for safe and economically feasible disposal. The recycling of the hydrogel particles makes this technology sustainable, which is a large advantage over activated carbon. The hydrogels can also be tuned to any hydrophobic micropollutant, making this system a novel, flexible approach to water purification.

    Scaling up

    The team experimented in the lab using 2-naphthol, a micropollutant that is an organic pollutant of concern and known to be difficult to remove by using conventional water filtration methods. They hope to continue testing with real water samples. 

    “Right now, we spike one micropollutant into pure lab water. We’d like to get water samples from the natural environment, that we can study and look at experimentally,” says Doyle. 

    By using microfluidics to increase particle production, Doyle and his lab hope to make household-scale filters to be tested with real wastewater. They then anticipate scaling up to municipal water treatment or even industrial wastewater treatment. 

    The lab recently filed an international patent application for their hydrogel technology that uses immobilized micelles. They plan to continue this work by experimenting with different kinds of hydrogels for the removal of heavy metal contaminants like lead from water. 

    Societal impacts

    Funded by a 2019 J-WAFS seed grant that is currently ongoing, this research has the potential to improve the speed, precision, efficiency, and environmental sustainability of water purification systems across the world. 

    “I always wanted to do work which had a social impact, and I was also always interested in water, because I think it’s really cool,” says Gokhale. He notes, “it’s really interesting how water sort of fits into different kinds of fields … we have to consider the cultures of peoples, how we’re going to use this, and then just the equity of these water processes.” Originally from India, Gokhale says he’s seen places that have barely any water at all and others that have floods year after year. “There’s a lot of interesting work to be done, and I think it’s work in this area that’s really going to impact a lot of people’s lives in years to come,” Gokhale says.

    Doyle adds, “water is the most important thing, perhaps for the next decades to come, so it’s very fulfilling to work on something that is so important to the whole world.” More

  • in

    Progress toward a sustainable campus food system

    As part of MIT’s updated climate action plan, known as “Fast Forward,” Institute leadership committed to establishing a set of quantitative goals in 2022 related to food, water, and waste systems that advance MIT’s commitment to climate. Moving beyond the impact of campus energy systems, these newly proposed goals take a holistic view of the drivers of climate change and set the stage for new frontiers of collaborative climate work. “With the release of ‘Fast Forward,’ the MIT Office of Sustainability is setting out to partner with campus groups to study and quantify the climate impact of our campus food, while deeply considering the social, cultural, economic, and health aspects of a sustainable food system,” explains Susy Jones, senior sustainability project manager. 

    While “Fast Forward” is MIT’s first climate action plan to integrate the campus food system, the Division of Student Life (DSL) has long worked with dining vendors, MIT’s Office of Sustainability (MITOS), and other campus partners to advance a more sustainable, affordable, and equitable food system. Initiatives have ranged from increasing access to low-cost groceries on and around campus to sourcing sustainable coffee for campus cafes.

    Even with the complexities of operating during the pandemic, efforts in this area accelerated with the launch of new partnerships, support for local food industries, and even a food-startup incubator in the Stratton Student Center (Building W20). “Despite challenges posed by the pandemic, MIT Dining has been focused on positive change — driven in part by student input, alterations to the food landscape, and our ongoing goal to support a more sustainable and equitable campus food system,” says Mark Hayes, director of MIT Dining.

    New vendors on campus focus on healthy food systems

    For many, a fresh cup of coffee is a daily ritual. At MIT, that cup of coffee also offers an opportunity to make a more sustainable choice at the Forbes Family Café in the Stata Center (Building 32). The cafe now brews coffee by Dean’s Beans, a local roaster whose mission is to “prove that a for-profit business could create meaningful change through ethical business practices rooted in respect for the earth, the farmer, our co-workers, and the consumer.” The choice of Dean’s Beans — a certified B Corporation located in Orange, Massachusetts — as the new vendor in this space helps advance MIT’s commitment to sustainability. Businesses that achieve this certification meet rigorous social and environmental goals. “With choices like this, we’re taking big issues down to the campus level,” says Hayes. Dean’s Beans focuses on long-term producer relationships, organic shade-grown and bird-friendly coffee, a solar-powered roasting facility, and people-centered development programs. These practices contribute to healthier environments and habitats — benefiting farmers, soils, birds, pollinators, and more.

    Another innovative new food concept for the MIT community can be found down the street in the Stratton Student Center. The Launchpad, a nonprofit food business incubator created in partnership with CommonWealth Kitchen (CWK), debuted this fall in the second-floor Lobdell Food Court. It offers the MIT community more variety and healthy food options while also “advancing CWK’s and MIT’s mutual goal to support diverse, local start-up food businesses and to create a more just, equitable, and sustainable food economy,” according to DSL. Work on the Launchpad began in 2018, bringing together the Student Center Dining Concepts Working Group, comprising students from the Undergraduate Association, Graduate Student Council, DormCon, house dining chairs, and other students interested in dining and dining staff from the MITOS and DSL. Their goal was to re-envision dining options available in Lobdell to support local, diverse, and sustainable menus. “We’ve been nurturing a partnership with CommonWealth Kitchen for years and are excited to partner with them on a project that re-imagines the relationship between campus and local food systems,” says Jones. “And, of course, the vegetarian arepas are a highlight,” she adds.

    Local partnerships for sustainability

    The impacts of Covid-19 on local food businesses quickly came into focus in early 2020. For the New England fishing industry, this impact was acute — with restaurant closures, event cancellations, and disruptions in the global supply chain, fisheries suddenly found a dearth of markets for their catch, undermining their source of income. One way to address this confluence of challenges was for fisheries to expand into new markets where they may have had limited knowledge or experience.

    Enter MIT Sea Grant and MIT Dining. Supported in part by funding from the National Oceanic and Atmospheric Administration, MIT Sea Grant created the Covid-19 Rapid Response Program to develop new markets for local fisheries, including local food banks and direct sales to organizations including MIT. Though MIT Dining was stretched thin by the pandemic, the partnership offered a singular opportunity to support vital regional businesses and enhance menus in campus dining venues. “The stress level was unimaginable as more people were testing positive in the early days of the pandemic — it was the worst and most stressful time to do anything outside of what was completely necessary, and I get this phone call about chowder,” recalls Hayes. “Everyone is wearing two masks and standing six feet apart, but in about 15 seconds, I said to myself, ‘This is the exact time this needs to happen — in the middle of a pandemic when fishermen need support, families need support, people need support.’”

    Shortly after getting the call, Hayes and MIT Dining hosted a tasting event featuring “Small Boats, Big Taste Haddock Chowder,” developed through MIT Sea Grant’s work with the Cape Cod Commercial Fishermen’s Alliance, which helped independent fishermen stay on the water during Covid-19. The tasting event also offered students a break to stop by and sample the chowder, which later debuted and continues to be served at MIT dining halls. For Hayes, one success of the partnership was the agility it demonstrated. “We don’t know what the next crisis is going to be, but these experiences will make us stronger to handle the next moment when people need the food system to work,” he says.

    In addition to ready-made options for students, MIT Dining and partners have also been working to support students who prepare their own meals, collaborating with local businesses to provide students access to lower-cost and at-cost groceries and food products. The Food Security Action Team, convened by Senior Associate Dean for Student Support and Well-being David Randall and DSL Executive Director for Administration Peter Cummings, is focused on taking action, tracking, and updating the community on food security efforts. These efforts have included collaborating with the Daily Table, a new nonprofit community grocer in Central Square. The store now accepts TechCASH and recently worked with the committee to host an interactive food tour for students.

    Because food systems are so interdependent and partnerships are critical — on and off campus — Hayes says it’s important to continue to share and learn. “Sharing our stories is crucial because we can help strengthen networks of campuses, institutions, and businesses in New England to grow more sustainable food programs like these.” More

  • in

    MIT students explore food sustainability

    As students approached the homestretch of the fall semester, many were focused on completing final projects and preparing for exams. During this time of year, some students may neglect their well-being to the point of skipping meals. To help alleviate end-of-term stress and to give students a delicious study break, the Food Security Action Team recently offered a group of first-year students the opportunity to join a food tour of Daily Table, a new grocer located in Cambridge’s Central Square.

    Seventeen students along with staff from Student Financial Services, Office of the First Year, and the Office of Sustainability led the group from the steps of 77 Massachusetts Avenue a few blocks down the street to Daily Table in Central Square. As part of participating in the program, students were given a $25 TechCash gift card to shop for grocery items during the trip. To make things even more fun, MIT staff created a recipe challenge to encourage students to work together on making their own variation of quesadillas.

    Healthy, affordable, sustainable

    At Daily Table, students were greeted by Celia Grant, director of community engagement and programs from Daily Table, who led them through a tour of the space and highlighted the history and model of the grocery store, as well as some of its unique features. Founded by former Trader Joe’s president Doug Rauch in 2015, Daily Table operates three retail stores in Dorchester, Roxbury, and Central Square, and a commissary kitchen in the Boston metro area. Two more stores are in the works: one in Mattapan and another in Salem. For added convenience, Daily Table also offers free grocery delivery within a two-mile radius of its three locations.

    The Daily Table’s ethos is that delicious and wholesome food should be available, accessible, and affordable for everyone. To achieve these goals, Daily Table provides a wide selection of fresh produce, nutritious grocery staples, and made-from-scratch prepared grab-n-go foods at affordable prices. “All of our products meet strict nutritional guidelines for sodium and sugar so that customers can make food choices based on their diets, not based on price,” says Grant.

    In addition to a large network of farmers, manufacturers, and distributors who supply food to their stores, Daily Table often recovers and rescues perfectly good food that would have otherwise been sent to landfills. Surplus food, packaging and/or label changes, and items with close expiration dates are often discarded by larger grocery stores in the supply chain. But Daily Table steps in to break this cycle of waste and sell these products to customers at a much lower cost. 

    The pandemic has uncovered how difficult it can be for individuals and families to budget for necessities like utilities, rent, and even food. Daily Table seeks to create a more sustainable future by providing access to more well-balanced, nutritious food. “Even before the pandemic, it was challenging for families on limited incomes to meet the nutrition needs of their families. Post-pandemic, this challenge has now encompassed even more households, even those that have never before been challenged in this way,” says Grant. “As winter moves through, and inflation increases, the need for more affordable food and nutrition will rise. Daily Table is prepared to help meet those needs, and more.” 

    Food resources at MIT

    Downstairs at the Daily Table Central Square store, MIT staff members led a discussion about the components of a sustainable food system at MIT and beyond, shared advice on how to budget for food, and offered tips on how to make grocery shopping or cooking fun with fellow classmates and peers. “Shopping at Daily Table provides an experiential case study in solving for multiple goals at once — from the environmental impacts of food waste to healthy eating to affordability — an important framework to consider when tackling climate challenges.” says Susy Jones, senior sustainability project manager in the MIT Office of Sustainability.

    The group also discussed budgeting expenses, including food. “By taking students to the grocery store and providing some small but meaningful tips, we provided them the opportunity to put their learning into practice!” says Erica Aguiar, associate director for financial education in Student Financial Services. “We saw students taking a closer look at prices and even coming together to share groceries.”

    MIT senior and DormCon Dining Chair Ashley Holton shared her grocery shopping strategies with the group, and how she utilizes resources available at MIT. “Having a plan before you enter the grocery store is really important,” says Holton. “Not only does it save time, but it helps you avoid potentially getting more than what your budget allows for, while also making sure you get all the food you’ll need.”

    This program, along with many others, is part of MIT’s larger effort on fostering a more food-secure and sustainable campus for all students. Food Security Action Team members, including students, staff, and campus partners, are striving to achieve this goal by ensuring that there continues to be a well-organized and coordinated action around food security that can be implemented effectively each year. For example, to make shopping at Daily Table even easier, MIT has made it a priority to ensure the store accepts TechCash.

    No MIT student should go hungry due to lack of money or resources, and no student should feel like they need to be “really hungry” to ask for help. MIT offers several other resources to help students find the nutrition and other support they need. In addition, the Office of Student Wellbeing launched their DoingWell website, which offers programs and resources to help students prioritize their well-being by practicing healthy habits and getting support when they need it.

    “In my own cost-analysis comparison of staple grocery items of all the local grocery stores, no other store comes close to being able to offer what Daily Table does for the prices it does. It’s really remarkable to learn and experience just how Daily Table is changing the food system,” says Holton. “Its model is one of the many ways that will continue to foster a more food-secure community where everyone — including MIT students — can access affordable, nutritious food.” More