More stories

  • in

    Workshop explores new advanced materials for a growing world

    It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program. The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.Innovations in steel and concreteThe workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”Azarijafari emphasized  the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”Toward a resource-efficient microchip industryConsider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which  outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering. More

  • in

    Collaboration between MIT and GE Vernova aims to develop and scale sustainable energy systems

    MIT and GE Vernova today announced the creation of the MIT-GE Vernova Energy and Climate Alliance to help develop and scale sustainable energy systems across the globe.The alliance launches a five-year collaboration between MIT and GE Vernova, a global energy company that spun off from General Electric’s energy business in 2024. The endeavor will encompass research, education, and career opportunities for students, faculty, and staff across MIT’s five schools and the MIT Schwarzman College of Computing. It will focus on three main themes: decarbonization, electrification, and renewables acceleration.“This alliance will provide MIT students and researchers with a tremendous opportunity to work on energy solutions that could have real-world impact,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer and dean of the School of Engineering. “GE Vernova brings domain knowledge and expertise deploying these at scale. When our researchers develop new innovative technologies, GE Vernova is strongly positioned to bring them to global markets.”Through the alliance, GE Vernova is sponsoring research projects at MIT and providing philanthropic support for MIT research fellowships. The company will also engage with MIT’s community through participation in corporate membership programs and professional education.“It’s a privilege to combine forces with MIT’s world-class faculty and students as we work together to realize an optimistic, innovation-driven approach to solving the world’s most pressing challenges,” says Scott Strazik, GE Vernova CEO. “Through this alliance, we are proud to be able to help drive new technologies while at the same time inspire future leaders to play a meaningful role in deploying technology to improve the planet at companies like GE Vernova.”“This alliance embodies the spirit of the MIT Climate Project — combining cutting-edge research, a shared drive to tackle today’s toughest energy challenges, and a deep sense of optimism about what we can achieve together,” says Sally Kornbluth, president of MIT. “With the combined strengths of MIT and GE Vernova, we have a unique opportunity to make transformative progress in the flagship areas of electrification, decarbonization, and renewables acceleration.”The alliance, comprising a $50 million commitment, will operate within MIT’s Office of Innovation and Strategy. It will fund approximately 12 annual research projects relating to the three themes, as well as three master’s student projects in MIT’s Technology and Policy Program. The research projects will address challenges like developing and storing clean energy, as well as the creation of robust system architectures that help sustainable energy sources like solar, wind, advanced nuclear reactors, green hydrogen, and more compete with carbon-emitting sources.The projects will be selected by a joint steering committee composed of representatives from MIT and GE Vernova, following an annual Institute-wide call for proposals.The collaboration will also create approximately eight endowed GE Vernova research fellowships for MIT students, to be selected by faculty and beginning in the fall. There will also be 10 student internships that will span GE Vernova’s global operations, and GE Vernova will also sponsor programming through MIT’s New Engineering Education Transformation (NEET), which equips students with career-oriented experiential opportunities. Additionally, the alliance will create professional education programming for GE Vernova employees.“The internships and fellowships will be designed to bring students into our ecosystem,” says GE Vernova Chief Corporate Affairs Officer Roger Martella. “Students will walk our factory floor, come to our labs, be a part of our management teams, and see how we operate as business leaders. They’ll get a sense for how what they’re learning in the classroom is being applied in the real world.”Philanthropic support from GE Vernova will also support projects in MIT’s Human Insight Collaborative (MITHIC), which launched last fall to elevate human-centered research and teaching. The projects will allow faculty to explore how areas like energy and cybersecurity influence human behavior and experiences.In connection with the alliance, GE Vernova is expected to join several MIT consortia and membership programs, helping foster collaborations and dialogue between industry experts and researchers and educators across campus.With operations across more than 100 countries, GE Vernova designs, manufactures, and services technologies to generate, transfer, and store electricity with a mission to decarbonize the world. The company is headquartered in Kendall Square, right down the road from MIT, which its leaders say is not a coincidence.“We’re really good at taking proven technologies and commercializing them and scaling them up through our labs,” Martella says. “MIT excels at coming up with those ideas and being a sort of time machine that thinks outside the box to create the future. That’s why this such a great fit: We both have a commitment to research, innovation, and technology.”The alliance is the latest in MIT’s rapidly growing portfolio of research and innovation initiatives around sustainable energy systems, which also includes the Climate Project at MIT. Separate from, but complementary to, the MIT-GE Vernova Alliance, the Climate Project is a campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems impeding an effective global climate response. More

  • in

    MIT spinout Commonwealth Fusion Systems unveils plans for the world’s first fusion power plant

    America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world’s first grid-scale fusion power plant in Chesterfield County, Virginia.The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion — the reaction that powers the sun — since its founders first conceived of their approach in an MIT classroom in 2012. CFS is now commercializing a suite of advanced technologies developed in MIT research labs.“This moment exemplifies the power of MIT’s mission, which is to create knowledge that serves the nation and the world, whether via the classroom, the lab, or out in communities,” MIT Vice President for Research Ian Waitz says. “From student coursework 12 years ago to today’s announcement of the siting in Virginia of the world’s first fusion power plant, progress has been amazingly rapid. At the same time, we owe this progress to over 65 years of sustained investment by the U.S. federal government in basic science and energy research.”The new fusion power plant, named ARC, is expected to come online in the early 2030s and generate about 400 megawatts of clean, carbon-free electricity — enough energy to power large industrial sites or about 150,000 homes.The plant will be built at the James River Industrial Park outside of Richmond through a nonfinancial collaboration with Dominion Energy Virginia, which will provide development and technical expertise along with leasing rights for the site. CFS will independently finance, build, own, and operate the power plant.The plant will support Virginia’s economic and clean energy goals by generating what is expected to be billions of dollars in economic development and hundreds of jobs during its construction and long-term operation.More broadly, ARC will position the U.S. to lead the world in harnessing a new form of safe and reliable energy that could prove critical for economic prosperity and national security, including for meeting increasing electricity demands driven by needs like artificial intelligence.“This will be a watershed moment for fusion,” says CFS co-founder Dennis Whyte, the Hitachi America Professor of Engineering at MIT. “It sets the pace in the race toward commercial fusion power plants. The ambition is to build thousands of these power plants and to change the world.”Fusion can generate energy from abundant fuels like hydrogen and lithium isotopes, which can be sourced from seawater, and leave behind no emissions or toxic waste. However, harnessing fusion in a way that produces more power than it takes in has proven difficult because of the high temperatures needed to create and maintain the fusion reaction. Over the course of decades, scientists and engineers have worked to make the dream of fusion power plants a reality.In 2012, teaching the MIT class 22.63 (Principles of Fusion Engineering), Whyte challenged a group of graduate students to design a fusion device that would use a new kind of superconducting magnet to confine the plasma used in the reaction. It turned out the magnets enabled a more compact and economic reactor design. When Whyte reviewed his students’ work, he realized that could mean a new development path for fusion.Since then, a huge amount of capital and expertise has rushed into the once fledgling fusion industry. Today there are dozens of private fusion companies around the world racing to develop the first net-energy fusion power plants, many utilizing the new superconducting magnets. CFS, which Whyte founded with several students from his class, has attracted more than $2 billion in funding.“It all started with that class, where our ideas kept evolving as we challenged the standard assumptions that came with fusion,” Whyte says. “We had this new superconducting technology, so much of the common wisdom was no longer valid. It was a perfect forum for students, who can challenge the status quo.”Since the company’s founding in 2017, it has collaborated with researchers in MIT’s Plasma Science and Fusion Center (PFSC) on a range of initiatives, from validating the underlying plasma physics for the first demonstration machine to breaking records with a new kind of magnet to be used in commercial fusion power plants. Each piece of progress moves the U.S. closer to harnessing a revolutionary new energy source.CFS is currently completing development of its fusion demonstration machine, SPARC, at its headquarters in Devens, Massachusetts. SPARC is expected to produce its first plasma in 2026 and net fusion energy shortly after, demonstrating for the first time a commercially relevant design that will produce more power than it consumes. SPARC will pave the way for ARC, which is expected to deliver power to the grid in the early 2030s.“There’s more challenging engineering and science to be done in this field, and we’re very enthusiastic about the progress that CFS and the researchers on our campus are making on those problems,” Waitz says. “We’re in a ‘hockey stick’ moment in fusion energy, where things are moving incredibly quickly now. On the other hand, we can’t forget about the much longer part of that hockey stick, the sustained support for very complex, fundamental research that underlies great innovations. If we’re going to continue to lead the world in these cutting-edge technologies, continued investment in those areas will be crucial.” More

  • in

    A nonflammable battery to power a safer, decarbonized future

    Lithium-ion batteries are the workhorses of home electronics and are powering an electric revolution in transportation. But they are not suitable for every application.A key drawback is their flammability and toxicity, which make large-scale lithium-ion energy storage a bad fit in densely populated city centers and near metal processing or chemical manufacturing plants.Now Alsym Energy has developed a nonflammable, nontoxic alternative to lithium-ion batteries to help renewables like wind and solar bridge the gap in a broader range of sectors. The company’s electrodes use relatively stable, abundant materials, and its electrolyte is primarily water with some nontoxic add-ons.“Renewables are intermittent, so you need storage, and to really solve the decarbonization problem, we need to be able to make these batteries anywhere at low cost,” says Alsym co-founder and MIT Professor Kripa Varanasi.The company believes its batteries, which are currently being tested by potential customers around the world, hold enormous potential to decarbonize the high-emissions industrial manufacturing sector, and they see other applications ranging from mining to powering data centers, homes, and utilities.“We are enabling a decarbonization of markets that was not possible before,” Alsym co-founder and CEO Mukesh Chatter says. “No chemical or steel plant would dare put a lithium battery close to their premises because of the flammability, and industrial emissions are a much bigger problem than passenger cars. With this approach, we’re able to offer a new path.”Helping 1 billion peopleChatter started a telecommunications company with serial entrepreneurs and longtime members of the MIT community Ray Stata ’57, SM ’58 and Alec Dingee ’52 in 1997. Since the company was acquired in 1999, Chatter and his wife have started other ventures and invested in some startups, but after losing his mother to cancer in 2012, Chatter decided he wanted to maximize his impact by only working on technologies that could reach 1 billion people or more.The problem Chatter decided to focus on was electricity access.“The intent was to light up the homes of at least 1 billion people around the world who either did not have electricity, or only got it part of the time, condemning them basically to a life of poverty in the 19th century,” Chatter says. “When you don’t have access to electricity, you also don’t have the internet, cell phones, education, etc.”To solve the problem, Chatter decided to fund research into a new kind of battery. The battery had to be cheap enough to be adopted in low-resource settings, safe enough to be deployed in crowded areas, and work well enough to support two light bulbs, a fan, a refrigerator, and an internet modem.At first, Chatter was surprised how few takers he had to start the research, even from researchers at the top universities in the world.“It’s a burning problem, but the risk of failure was so high that nobody wanted to take the chance,” Chatter recalls.He finally found his partners in Varanasi, Rensselaer Polytechnic Institute Professor Nikhil Koratkar and Rensselaer researcher Rahul Mukherjee. Varanasi, who notes he’s been at MIT for 22 years, says the Institute’s culture gave him the confidence to tackle big problems.“My students, postdocs, and colleagues are inspirational to me,” he says. “The MIT ecosystem infuses us with this resolve to go after problems that look insurmountable.”Varanasi leads an interdisciplinary lab at MIT dedicated to understanding physicochemical and biological phenomena. His research has spurred the creation of materials, devices, products, and processes to tackle challenges in energy, agriculture, and other sectors, as well as startup companies to commercialize this work.“Working at the interfaces of matter has unlocked numerous new research pathways across various fields, and MIT has provided me the creative freedom to explore, discover, and learn, and apply that knowledge to solve critical challenges,” he says. “I was able to draw significantly from my learnings as we set out to develop the new battery technology.”Alsym’s founding team began by trying to design a battery from scratch based on new materials that could fit the parameters defined by Chatter. To make it nonflammable and nontoxic, the founders wanted to avoid lithium and cobalt.After evaluating many different chemistries, the founders settled on Alsym’s current approach, which was finalized in 2020.Although the full makeup of Alsym’s battery is still under wraps as the company waits to be granted patents, one of Alsym’s electrodes is made mostly of manganese oxide while the other is primarily made of a metal oxide. The electrolyte is primarily water.There are several advantages to Alsym’s new battery chemistry. Because the battery is inherently safer and more sustainable than lithium-ion, the company doesn’t need the same safety protections or cooling equipment, and it can pack its batteries close to each other without fear of fires or explosions. Varanasi also says the battery can be manufactured in any of today’s lithium-ion plants with minimal changes and at significantly lower operating cost.“We are very excited right now,” Chatter says. “We started out wanting to light up 1 billion people’s homes, and now in addition to the original goal we have a chance to impact the entire globe if we are successful at cutting back industrial emissions.”A new platform for energy storageAlthough the batteries don’t quite reach the energy density of lithium-ion batteries, Varanasi says Alsym is first among alternative chemistries at the system-level. He says 20-foot containers of Alsym’s batteries can provide 1.7 megawatt hours of electricity. The batteries can also fast-charge over four hours and can be configured to discharge over anywhere from two to 110 hours.“We’re highly configurable, and that’s important because depending on where you are, you can sometimes run on two cycles a day with solar, and in combination with wind, you could truly get 24/7 electricity,” Chatter says. “The need to do multiday or long duration storage is a small part of the market, but we support that too.”Alsym has been manufacturing prototypes at a small facility in Woburn, Massachusetts, for the last two years, and early this year it expanded its capacity and began to send samples to customers for field testing.In addition to large utilities, the company is working with municipalities, generator manufacturers, and providers of behind-the-meter power for residential and commercial buildings. The company is also in discussion with a large chemical manufacturers and metal processing plants to provide energy storage system to reduce their carbon footprint, something they say was not feasible with lithium-ion batteries, due to their flammability, or with nonlithium batteries, due to their large space requirements.Another critical area is data centers. With the growth of AI, the demand for data centers — and their energy consumption — is set to surge.“We must power the AI and digitization revolution without compromising our planet,” says Varanasi, adding that lithium batteries are unsuitable for co-location with data centers due to flammability risks. “Alsym batteries are well-positioned to offer a safer, more sustainable alternative. Intermittency is also a key issue for electrolyzers used in green hydrogen production and other markets.”Varanasi sees Alsym as a platform company, and Chatter says Alsym is already working on other battery chemistries that have higher densities and maintain performance at even more extreme temperatures.“When you use a single material in any battery, and the whole world starts to use it, you run out of that material,” Varanasi says. “What we have is a platform that has enabled us to not just to come up with just one chemistry, but at least three or four chemistries targeted at different applications so no one particular set of materials will be stressed in terms of supply.” More

  • in

    Preparing Taiwan for a decarbonized economy

    The operations of Taiwan’s electronics, manufacturing, and financial firms vary widely, but their leaders all have at least one thing in common: They recognize the role that a changing energy landscape will play in their future success, and they’re actively planning for that transition.“They’re all interested in how Taiwan can supply energy for its economy going forward — energy that meets global goals for decarbonization,” says Robert C. Armstrong, the Chevron Professor of Chemical Engineering Emeritus at MIT, as well as a principal investigator for the Taiwan Innovative Green Economy Roadmap (TIGER) program. “Each company is going to have its own particular needs. For example, financial companies have data centers that need energy 24/7, with no interruptions. But the need for a robust, reliable, resilient energy system is shared among all of them.”Ten Taiwanese companies are participating in TIGER, a two-year program with the MIT Energy Initiative (MITEI) to explore various ways that industry and government can promote and adopt technologies, practices, and policies that will keep Taiwan competitive amid a quickly changing energy landscape. MIT research teams are exploring a set of six topics during the first year of the program, with plans to tackle a second set of topics during the second year, eventually leading to a roadmap to green energy security for Taiwan.“We are helping them to understand green energy technologies, we are helping them to understand how policies around the world might affect supply chains, and we are helping them to understand different pathways for their domestic policies,” says Sergey Paltsev, a principal investigator for the TIGER program, as well as a deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “We are looking at how Taiwan will be affected in terms of the cost of doing business and how to preserve the competitive advantage of its export-oriented industries.”“The biggest question,” Paltsev adds, “is how Taiwanese companies can decarbonize their energy in a sustainable manner.”Why Taiwan?Paul Hsu, founding partner of the Taiwanese business consultancy Paul Hsu and Partners (one of the 10 participating TIGER companies), as well as founding chair and current board member of the Epoch Foundation, has been working for more than 30 years to forge collaborations between business leaders in Taiwan and MIT researchers. The energy challenges facing Taiwanese businesses, as well as their place in the global supply chain, make the TIGER program critical not only to improve environmental sustainability, but also to ensure future competitiveness, he says. “The energy field is facing revolution,” Hsu says. “Taiwanese companies are not operating in Taiwan alone, but also operating worldwide, and we are affected by the global supply chain. We need to diversify our businesses and our energy resources, and the first thing we’re looking for in this partnership is education — an understanding about how to orient Taiwanese industry toward the future of energy.”Wendy Duan, the program director of the Asia Pacific program at MITEI, notes that Taiwan has a number of similarities to places such as Singapore and Japan. The lessons learned through the TIGER program, she says, will likely be applicable — at least on some level — to other markets throughout Asia, and even around the world.“Taiwan is very much dependent on imported energy,” Duan notes. “Many countries in East Asia are facing similar challenges, and if Taiwan has a good roadmap for the future of energy, it can be a good role model.”“Taiwan is a great place for this sort of collaboration,” Armstrong says. “Their industry is very innovative, and it’s a place where businesses are willing to implement new, important ideas. At the same time, their economy is highly dependent on trade, and they import a lot of fossil fuels today. To compete in a decarbonized global economy, they’re going to have to find alternatives to that. If you can develop a path from today’s economy in Taiwan to a future manufacturing economy that is decarbonized, then that gives you a lot of interesting tools you could bring to bear in other economies.”Uncovering solutionsStakeholders from MIT and the participating companies meet for monthly webinars and biannual in-person workshops (alternating between Cambridge, Massachusetts, and Taipei) to discuss progress. The research addresses options for Taiwan to increase its supply of green energy, methods for storing and distributing that energy more efficiently, policy levers for implementing these changes, and Taiwan’s place in the global energy economy.“The project on the electric grid, the project on storage, and the project on hydrogen — all three of those are related to the issue of how to decarbonize power generation and delivery,” notes Paltsev. “But we also need to understand how things in other parts of the world are going to affect demand for the products that are produced in Taiwan. If there is a huge change in demand for certain products due to decarbonization, Taiwanese companies are going to feel it. Therefore, the companies want to understand where the demand is going to be coming from, and how to adjust their business strategies.”One of the research projects is looking closely at advanced nuclear power. There are significant political roadblocks standing in the way, but business leaders are intrigued by the prospect of nuclear energy in Taiwan, where available land for wind and solar power generation is sparse.“So far, Taiwan government policy is anti-nuclear,” Hsu says. “The current ruling party is against it. They are still thinking about what happened in the 1960s and 1970s, and they think nuclear is very dangerous. But if you look into it, nuclear generation technology has really improved.”Implementing a green economy roadmapTIGER participants’ interest in green energy solutions is, of course, not merely academic. Ultimately, the success of the program will be determined not only by the insights from the research produced over these two years, but by how these findings constructively inform both the private and public sectors.“MIT and TIGER participants are united in their commitment to advancing regional industrial and economic development, while championing decarbonization and sustainability efforts in Taiwan,” Duan says. “MIT researchers are informed by insights and domain expertise contributed by TIGER participants, believing that their collaborative efforts can help other nations facing similar geo-economic challenges.”“We are helping the companies understand how to stay leaders in this changing world,” says Paltsev. “We want to make sure that we are not painting an unrealistically rosy picture, or conveying that it will be easy to decarbonize. On the contrary, we want to stay realistic and try to show them both where they can make advances and where we see challenges.”The goal, Armstrong says, is not energy independence for Taiwan, but rather energy security. “Energy security requires diversity of supply,” he says. “So, you have a diverse set of suppliers, who are trusted trading partners, but it doesn’t mean you’re on your own. That’s the goal for Taiwan.”What will that mean, more specifically? Well, that’s what TIGER researchers aim to learn. “It probably means a mix of energy sources,” Armstrong says. “It could be that nuclear fission provides a core of energy that companies need for their industrial operations, it could be that they can import hydrogen in the form of ammonia or another carrier, and it could be that they leverage the renewable resources they have, together with storage technologies, to provide some pretty inexpensive energy for their manufacturing sector.”“We don’t know,” Armstrong adds. “But that’s what we’re looking at, to see if we can figure out a pathway that gets them to their goals. We are optimistic that we can get there.”The companies participating in the TIGER program include AcBel Polytech Inc., CDIB Capital Group / KGI Bank Co., Ltd.; Delta Electronics, Inc.; Fubon Financial Holding Co., Ltd.; Paul Hsu and Partners Co., Ltd.; Ta Ya Electric Wire & Cable Co., Ltd.; TCC Group Holdings Co. Ltd.; Walsin Lihwa Corporation; Wistron Corporation; and Zhen Ding Technology Holding, Ltd. More

  • in

    Celebrating the people behind Kendall Square’s innovation ecosystem

    While it’s easy to be amazed by the constant drumbeat of innovations coming from Kendall Square in Cambridge, Massachusetts, sometimes overlooked are the dedicated individuals working to make those scientific and technological breakthroughs a reality. Every day, people in the neighborhood tackle previously intractable problems and push the frontiers of their fields.This year’s Kendall Square Association (KSA) Annual Meeting centered around celebrating the people behind the area’s prolific innovation ecosystem. That included a new slate of awards and recognitions for community members and a panel discussion featuring MIT President Sally Kornbluth.“It’s truly inspiring to be surrounded by all of you: people who seem to share an exuberant curiosity, a pervasive ethic of service, and the baseline expectation that we’re all interested in impact — in making a difference for people and the planet,” Kornbluth said.The gathering took place in MIT’s Walker Memorial (Building 50) on Memorial Drive and attracted entrepreneurs, life science workers, local students, restaurant and retail shop owners, and leaders of nonprofits.The KSA itself is a nonprofit organization made up of over 150 organizations across the greater Kendall Square region, from large companies to universities like MIT and Harvard, along with the independent shops and restaurants that give Kendall Square its distinct character.New to this year’s event were two Founder Awards, which were given to Sangeeta Bhatia, the the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT, and Michal Preminger, head of Johnson and Johnson Innovation, for their work bringing people together to achieve hard things that benefit humanity.The KSA will donate $2,500 to the Science Club for Girls in Bhatia’s honor and $2,500 to Innovators for Purpose in honor of Preminger.Recognition was also given to Alex Cheung of the Cambridge Innovation Center and Shazia Mir of LabCentral for their work bringing Kendall Square’s community members together.Cambridge Mayor Denise Simmons also spoke at the event, noting the vital role the Kendall Square community has played in things like Covid-19 vaccine development and in the fight against climate change.“As many of you know, Cambridge has a long and proud history of innovation, with the presence of MIT and the remarkable growth of the tech and life science industry examples of that,” Simmons said. “We are leaving a lasting, positive impact in our city. This community has made and continues to make enormous contributions, not just to our city but to the world.”In her talk, Kornbluth also introduced the Kendall Square community to her plans for The Climate Project at MIT, which is designed to focus the Institute’s talent and resources to achieve real-world impact on climate change faster. The project will provide funding and catalyze partnerships around six climate “missions,” or broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill.“The Climate Project is a whole-of-MIT mobilization that’s mission driven, solution focused, and outward looking,” Kornbluth explained. “If you want to make progress, faster and at scale, that’s the way!”After mingling with Kendall community members, Kornbluth said she still considers herself a newbie to the area but is coming to see the success of Kendall Square and MIT as more than a coincidence.“The more time I spend here, the more I come to understand the incredible synergies between MIT and Kendall Square,” Kornbluth said. “We know, for example, that proximity is an essential ingredient in our collective and distinctive recipe for impact. That proximity, and the cross-fertilization that comes with it, helps us churn out new technologies and patents, found startups, and course-correct our work as we try to keep pace with the world’s challenges. We can’t do any of this separately. Our work together — all of us in this thriving, wildly entrepreneurial community — is what drives the success of our innovation ecosystem.” More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    China-based emissions of three potent climate-warming greenhouse gases spiked in past decade

    When it comes to heating up the planet, not all greenhouse gases are created equal. They vary widely in their global warming potential (GWP), a measure of how much infrared thermal radiation a greenhouse gas would absorb over a given time frame once it enters the atmosphere. For example, measured over a 100-year period, the GWP of methane is about 28 times that of carbon dioxide (CO2), and the GWPs of a class of greenhouse gases known as perfluorocarbons (PFCs) are thousands of times that of CO2. The lifespans in the atmosphere of different greenhouse gases also vary widely. Methane persists in the atmosphere for around 10 years; CO2 for over 100 years, and PFCs for up to tens of thousands of years.Given the high GWPs and lifespans of PFCs, their emissions could pose a major roadblock to achieving the aspirational goal of the Paris Agreement on climate change — to limit the increase in global average surface temperature to 1.5 degrees Celsius above preindustrial levels. Now, two new studies based on atmospheric observations inside China and high-resolution atmospheric models show a rapid rise in Chinese emissions over the last decade (2011 to 2020 or 2021) of three PFCs: tetrafluoromethane (PFC-14) and hexafluoroethane (PFC-116) (results in PNAS), and perfluorocyclobutane (PFC-318) (results in Environmental Science & Technology).Both studies find that Chinese emissions have played a dominant role in driving up global emission levels for all three PFCs.The PNAS study identifies substantial PFC-14 and PFC-116 emission sources in the less-populated western regions of China from 2011 to 2021, likely due to the large amount of aluminum industry in these regions. The semiconductor industry also contributes to some of the emissions detected in the more economically developed eastern regions. These emissions are byproducts from aluminum smelting, or occur during the use of the two PFCs in the production of semiconductors and flat panel displays. During the observation period, emissions of both gases in China rose by 78 percent, accounting for most of the increase in global emissions of these gases.The ES&T study finds that during 2011-20, a 70 percent increase in Chinese PFC-318 emissions (contributing more than half of the global emissions increase of this gas) — originated primarily in eastern China. The regions with high emissions of PFC-318 in China overlap with geographical areas densely populated with factories that produce polytetrafluoroethylene (PTFE, commonly used for nonstick cookware coatings), implying that PTFE factories are major sources of PFC-318 emissions in China. In these factories, PFC-318 is formed as a byproduct.“Using atmospheric observations from multiple monitoring sites, we not only determined the magnitudes of PFC emissions, but also pinpointed the possible locations of their sources,” says Minde An, a postdoc at the MIT Center for Global Change Science (CGCS), and corresponding author of both studies. “Identifying the actual source industries contributing to these PFC emissions, and understanding the reasons for these largely byproduct emissions, can provide guidance for developing region- or industry-specific mitigation strategies.”“These three PFCs are largely produced as unwanted byproducts during the manufacture of otherwise widely used industrial products,” says MIT professor of atmospheric sciences Ronald Prinn, director of both the MIT Joint Program on the Science and Policy of Global Change and CGCS, and a co-author of both studies. “Phasing out emissions of PFCs as early as possible is highly beneficial for achieving global climate mitigation targets and is likely achievable by recycling programs and targeted technological improvements in these industries.”Findings in both studies were obtained, in part, from atmospheric observations collected from nine stations within a Chinese network, including one station from the Advanced Global Atmospheric Gases Experiment (AGAGE) network. For comparison, global total emissions were determined from five globally distributed, relatively unpolluted “background” AGAGE stations, as reported in the latest United Nations Environment Program and World Meteorological Organization Ozone Assessment report. More