More stories

  • in

    A nonflammable battery to power a safer, decarbonized future

    Lithium-ion batteries are the workhorses of home electronics and are powering an electric revolution in transportation. But they are not suitable for every application.A key drawback is their flammability and toxicity, which make large-scale lithium-ion energy storage a bad fit in densely populated city centers and near metal processing or chemical manufacturing plants.Now Alsym Energy has developed a nonflammable, nontoxic alternative to lithium-ion batteries to help renewables like wind and solar bridge the gap in a broader range of sectors. The company’s electrodes use relatively stable, abundant materials, and its electrolyte is primarily water with some nontoxic add-ons.“Renewables are intermittent, so you need storage, and to really solve the decarbonization problem, we need to be able to make these batteries anywhere at low cost,” says Alsym co-founder and MIT Professor Kripa Varanasi.The company believes its batteries, which are currently being tested by potential customers around the world, hold enormous potential to decarbonize the high-emissions industrial manufacturing sector, and they see other applications ranging from mining to powering data centers, homes, and utilities.“We are enabling a decarbonization of markets that was not possible before,” Alsym co-founder and CEO Mukesh Chatter says. “No chemical or steel plant would dare put a lithium battery close to their premises because of the flammability, and industrial emissions are a much bigger problem than passenger cars. With this approach, we’re able to offer a new path.”Helping 1 billion peopleChatter started a telecommunications company with serial entrepreneurs and longtime members of the MIT community Ray Stata ’57, SM ’58 and Alec Dingee ’52 in 1997. Since the company was acquired in 1999, Chatter and his wife have started other ventures and invested in some startups, but after losing his mother to cancer in 2012, Chatter decided he wanted to maximize his impact by only working on technologies that could reach 1 billion people or more.The problem Chatter decided to focus on was electricity access.“The intent was to light up the homes of at least 1 billion people around the world who either did not have electricity, or only got it part of the time, condemning them basically to a life of poverty in the 19th century,” Chatter says. “When you don’t have access to electricity, you also don’t have the internet, cell phones, education, etc.”To solve the problem, Chatter decided to fund research into a new kind of battery. The battery had to be cheap enough to be adopted in low-resource settings, safe enough to be deployed in crowded areas, and work well enough to support two light bulbs, a fan, a refrigerator, and an internet modem.At first, Chatter was surprised how few takers he had to start the research, even from researchers at the top universities in the world.“It’s a burning problem, but the risk of failure was so high that nobody wanted to take the chance,” Chatter recalls.He finally found his partners in Varanasi, Rensselaer Polytechnic Institute Professor Nikhil Koratkar and Rensselaer researcher Rahul Mukherjee. Varanasi, who notes he’s been at MIT for 22 years, says the Institute’s culture gave him the confidence to tackle big problems.“My students, postdocs, and colleagues are inspirational to me,” he says. “The MIT ecosystem infuses us with this resolve to go after problems that look insurmountable.”Varanasi leads an interdisciplinary lab at MIT dedicated to understanding physicochemical and biological phenomena. His research has spurred the creation of materials, devices, products, and processes to tackle challenges in energy, agriculture, and other sectors, as well as startup companies to commercialize this work.“Working at the interfaces of matter has unlocked numerous new research pathways across various fields, and MIT has provided me the creative freedom to explore, discover, and learn, and apply that knowledge to solve critical challenges,” he says. “I was able to draw significantly from my learnings as we set out to develop the new battery technology.”Alsym’s founding team began by trying to design a battery from scratch based on new materials that could fit the parameters defined by Chatter. To make it nonflammable and nontoxic, the founders wanted to avoid lithium and cobalt.After evaluating many different chemistries, the founders settled on Alsym’s current approach, which was finalized in 2020.Although the full makeup of Alsym’s battery is still under wraps as the company waits to be granted patents, one of Alsym’s electrodes is made mostly of manganese oxide while the other is primarily made of a metal oxide. The electrolyte is primarily water.There are several advantages to Alsym’s new battery chemistry. Because the battery is inherently safer and more sustainable than lithium-ion, the company doesn’t need the same safety protections or cooling equipment, and it can pack its batteries close to each other without fear of fires or explosions. Varanasi also says the battery can be manufactured in any of today’s lithium-ion plants with minimal changes and at significantly lower operating cost.“We are very excited right now,” Chatter says. “We started out wanting to light up 1 billion people’s homes, and now in addition to the original goal we have a chance to impact the entire globe if we are successful at cutting back industrial emissions.”A new platform for energy storageAlthough the batteries don’t quite reach the energy density of lithium-ion batteries, Varanasi says Alsym is first among alternative chemistries at the system-level. He says 20-foot containers of Alsym’s batteries can provide 1.7 megawatt hours of electricity. The batteries can also fast-charge over four hours and can be configured to discharge over anywhere from two to 110 hours.“We’re highly configurable, and that’s important because depending on where you are, you can sometimes run on two cycles a day with solar, and in combination with wind, you could truly get 24/7 electricity,” Chatter says. “The need to do multiday or long duration storage is a small part of the market, but we support that too.”Alsym has been manufacturing prototypes at a small facility in Woburn, Massachusetts, for the last two years, and early this year it expanded its capacity and began to send samples to customers for field testing.In addition to large utilities, the company is working with municipalities, generator manufacturers, and providers of behind-the-meter power for residential and commercial buildings. The company is also in discussion with a large chemical manufacturers and metal processing plants to provide energy storage system to reduce their carbon footprint, something they say was not feasible with lithium-ion batteries, due to their flammability, or with nonlithium batteries, due to their large space requirements.Another critical area is data centers. With the growth of AI, the demand for data centers — and their energy consumption — is set to surge.“We must power the AI and digitization revolution without compromising our planet,” says Varanasi, adding that lithium batteries are unsuitable for co-location with data centers due to flammability risks. “Alsym batteries are well-positioned to offer a safer, more sustainable alternative. Intermittency is also a key issue for electrolyzers used in green hydrogen production and other markets.”Varanasi sees Alsym as a platform company, and Chatter says Alsym is already working on other battery chemistries that have higher densities and maintain performance at even more extreme temperatures.“When you use a single material in any battery, and the whole world starts to use it, you run out of that material,” Varanasi says. “What we have is a platform that has enabled us to not just to come up with just one chemistry, but at least three or four chemistries targeted at different applications so no one particular set of materials will be stressed in terms of supply.” More

  • in

    Preparing Taiwan for a decarbonized economy

    The operations of Taiwan’s electronics, manufacturing, and financial firms vary widely, but their leaders all have at least one thing in common: They recognize the role that a changing energy landscape will play in their future success, and they’re actively planning for that transition.“They’re all interested in how Taiwan can supply energy for its economy going forward — energy that meets global goals for decarbonization,” says Robert C. Armstrong, the Chevron Professor of Chemical Engineering Emeritus at MIT, as well as a principal investigator for the Taiwan Innovative Green Economy Roadmap (TIGER) program. “Each company is going to have its own particular needs. For example, financial companies have data centers that need energy 24/7, with no interruptions. But the need for a robust, reliable, resilient energy system is shared among all of them.”Ten Taiwanese companies are participating in TIGER, a two-year program with the MIT Energy Initiative (MITEI) to explore various ways that industry and government can promote and adopt technologies, practices, and policies that will keep Taiwan competitive amid a quickly changing energy landscape. MIT research teams are exploring a set of six topics during the first year of the program, with plans to tackle a second set of topics during the second year, eventually leading to a roadmap to green energy security for Taiwan.“We are helping them to understand green energy technologies, we are helping them to understand how policies around the world might affect supply chains, and we are helping them to understand different pathways for their domestic policies,” says Sergey Paltsev, a principal investigator for the TIGER program, as well as a deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “We are looking at how Taiwan will be affected in terms of the cost of doing business and how to preserve the competitive advantage of its export-oriented industries.”“The biggest question,” Paltsev adds, “is how Taiwanese companies can decarbonize their energy in a sustainable manner.”Why Taiwan?Paul Hsu, founding partner of the Taiwanese business consultancy Paul Hsu and Partners (one of the 10 participating TIGER companies), as well as founding chair and current board member of the Epoch Foundation, has been working for more than 30 years to forge collaborations between business leaders in Taiwan and MIT researchers. The energy challenges facing Taiwanese businesses, as well as their place in the global supply chain, make the TIGER program critical not only to improve environmental sustainability, but also to ensure future competitiveness, he says. “The energy field is facing revolution,” Hsu says. “Taiwanese companies are not operating in Taiwan alone, but also operating worldwide, and we are affected by the global supply chain. We need to diversify our businesses and our energy resources, and the first thing we’re looking for in this partnership is education — an understanding about how to orient Taiwanese industry toward the future of energy.”Wendy Duan, the program director of the Asia Pacific program at MITEI, notes that Taiwan has a number of similarities to places such as Singapore and Japan. The lessons learned through the TIGER program, she says, will likely be applicable — at least on some level — to other markets throughout Asia, and even around the world.“Taiwan is very much dependent on imported energy,” Duan notes. “Many countries in East Asia are facing similar challenges, and if Taiwan has a good roadmap for the future of energy, it can be a good role model.”“Taiwan is a great place for this sort of collaboration,” Armstrong says. “Their industry is very innovative, and it’s a place where businesses are willing to implement new, important ideas. At the same time, their economy is highly dependent on trade, and they import a lot of fossil fuels today. To compete in a decarbonized global economy, they’re going to have to find alternatives to that. If you can develop a path from today’s economy in Taiwan to a future manufacturing economy that is decarbonized, then that gives you a lot of interesting tools you could bring to bear in other economies.”Uncovering solutionsStakeholders from MIT and the participating companies meet for monthly webinars and biannual in-person workshops (alternating between Cambridge, Massachusetts, and Taipei) to discuss progress. The research addresses options for Taiwan to increase its supply of green energy, methods for storing and distributing that energy more efficiently, policy levers for implementing these changes, and Taiwan’s place in the global energy economy.“The project on the electric grid, the project on storage, and the project on hydrogen — all three of those are related to the issue of how to decarbonize power generation and delivery,” notes Paltsev. “But we also need to understand how things in other parts of the world are going to affect demand for the products that are produced in Taiwan. If there is a huge change in demand for certain products due to decarbonization, Taiwanese companies are going to feel it. Therefore, the companies want to understand where the demand is going to be coming from, and how to adjust their business strategies.”One of the research projects is looking closely at advanced nuclear power. There are significant political roadblocks standing in the way, but business leaders are intrigued by the prospect of nuclear energy in Taiwan, where available land for wind and solar power generation is sparse.“So far, Taiwan government policy is anti-nuclear,” Hsu says. “The current ruling party is against it. They are still thinking about what happened in the 1960s and 1970s, and they think nuclear is very dangerous. But if you look into it, nuclear generation technology has really improved.”Implementing a green economy roadmapTIGER participants’ interest in green energy solutions is, of course, not merely academic. Ultimately, the success of the program will be determined not only by the insights from the research produced over these two years, but by how these findings constructively inform both the private and public sectors.“MIT and TIGER participants are united in their commitment to advancing regional industrial and economic development, while championing decarbonization and sustainability efforts in Taiwan,” Duan says. “MIT researchers are informed by insights and domain expertise contributed by TIGER participants, believing that their collaborative efforts can help other nations facing similar geo-economic challenges.”“We are helping the companies understand how to stay leaders in this changing world,” says Paltsev. “We want to make sure that we are not painting an unrealistically rosy picture, or conveying that it will be easy to decarbonize. On the contrary, we want to stay realistic and try to show them both where they can make advances and where we see challenges.”The goal, Armstrong says, is not energy independence for Taiwan, but rather energy security. “Energy security requires diversity of supply,” he says. “So, you have a diverse set of suppliers, who are trusted trading partners, but it doesn’t mean you’re on your own. That’s the goal for Taiwan.”What will that mean, more specifically? Well, that’s what TIGER researchers aim to learn. “It probably means a mix of energy sources,” Armstrong says. “It could be that nuclear fission provides a core of energy that companies need for their industrial operations, it could be that they can import hydrogen in the form of ammonia or another carrier, and it could be that they leverage the renewable resources they have, together with storage technologies, to provide some pretty inexpensive energy for their manufacturing sector.”“We don’t know,” Armstrong adds. “But that’s what we’re looking at, to see if we can figure out a pathway that gets them to their goals. We are optimistic that we can get there.”The companies participating in the TIGER program include AcBel Polytech Inc., CDIB Capital Group / KGI Bank Co., Ltd.; Delta Electronics, Inc.; Fubon Financial Holding Co., Ltd.; Paul Hsu and Partners Co., Ltd.; Ta Ya Electric Wire & Cable Co., Ltd.; TCC Group Holdings Co. Ltd.; Walsin Lihwa Corporation; Wistron Corporation; and Zhen Ding Technology Holding, Ltd. More

  • in

    Celebrating the people behind Kendall Square’s innovation ecosystem

    While it’s easy to be amazed by the constant drumbeat of innovations coming from Kendall Square in Cambridge, Massachusetts, sometimes overlooked are the dedicated individuals working to make those scientific and technological breakthroughs a reality. Every day, people in the neighborhood tackle previously intractable problems and push the frontiers of their fields.This year’s Kendall Square Association (KSA) Annual Meeting centered around celebrating the people behind the area’s prolific innovation ecosystem. That included a new slate of awards and recognitions for community members and a panel discussion featuring MIT President Sally Kornbluth.“It’s truly inspiring to be surrounded by all of you: people who seem to share an exuberant curiosity, a pervasive ethic of service, and the baseline expectation that we’re all interested in impact — in making a difference for people and the planet,” Kornbluth said.The gathering took place in MIT’s Walker Memorial (Building 50) on Memorial Drive and attracted entrepreneurs, life science workers, local students, restaurant and retail shop owners, and leaders of nonprofits.The KSA itself is a nonprofit organization made up of over 150 organizations across the greater Kendall Square region, from large companies to universities like MIT and Harvard, along with the independent shops and restaurants that give Kendall Square its distinct character.New to this year’s event were two Founder Awards, which were given to Sangeeta Bhatia, the the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT, and Michal Preminger, head of Johnson and Johnson Innovation, for their work bringing people together to achieve hard things that benefit humanity.The KSA will donate $2,500 to the Science Club for Girls in Bhatia’s honor and $2,500 to Innovators for Purpose in honor of Preminger.Recognition was also given to Alex Cheung of the Cambridge Innovation Center and Shazia Mir of LabCentral for their work bringing Kendall Square’s community members together.Cambridge Mayor Denise Simmons also spoke at the event, noting the vital role the Kendall Square community has played in things like Covid-19 vaccine development and in the fight against climate change.“As many of you know, Cambridge has a long and proud history of innovation, with the presence of MIT and the remarkable growth of the tech and life science industry examples of that,” Simmons said. “We are leaving a lasting, positive impact in our city. This community has made and continues to make enormous contributions, not just to our city but to the world.”In her talk, Kornbluth also introduced the Kendall Square community to her plans for The Climate Project at MIT, which is designed to focus the Institute’s talent and resources to achieve real-world impact on climate change faster. The project will provide funding and catalyze partnerships around six climate “missions,” or broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill.“The Climate Project is a whole-of-MIT mobilization that’s mission driven, solution focused, and outward looking,” Kornbluth explained. “If you want to make progress, faster and at scale, that’s the way!”After mingling with Kendall community members, Kornbluth said she still considers herself a newbie to the area but is coming to see the success of Kendall Square and MIT as more than a coincidence.“The more time I spend here, the more I come to understand the incredible synergies between MIT and Kendall Square,” Kornbluth said. “We know, for example, that proximity is an essential ingredient in our collective and distinctive recipe for impact. That proximity, and the cross-fertilization that comes with it, helps us churn out new technologies and patents, found startups, and course-correct our work as we try to keep pace with the world’s challenges. We can’t do any of this separately. Our work together — all of us in this thriving, wildly entrepreneurial community — is what drives the success of our innovation ecosystem.” More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    China-based emissions of three potent climate-warming greenhouse gases spiked in past decade

    When it comes to heating up the planet, not all greenhouse gases are created equal. They vary widely in their global warming potential (GWP), a measure of how much infrared thermal radiation a greenhouse gas would absorb over a given time frame once it enters the atmosphere. For example, measured over a 100-year period, the GWP of methane is about 28 times that of carbon dioxide (CO2), and the GWPs of a class of greenhouse gases known as perfluorocarbons (PFCs) are thousands of times that of CO2. The lifespans in the atmosphere of different greenhouse gases also vary widely. Methane persists in the atmosphere for around 10 years; CO2 for over 100 years, and PFCs for up to tens of thousands of years.Given the high GWPs and lifespans of PFCs, their emissions could pose a major roadblock to achieving the aspirational goal of the Paris Agreement on climate change — to limit the increase in global average surface temperature to 1.5 degrees Celsius above preindustrial levels. Now, two new studies based on atmospheric observations inside China and high-resolution atmospheric models show a rapid rise in Chinese emissions over the last decade (2011 to 2020 or 2021) of three PFCs: tetrafluoromethane (PFC-14) and hexafluoroethane (PFC-116) (results in PNAS), and perfluorocyclobutane (PFC-318) (results in Environmental Science & Technology).Both studies find that Chinese emissions have played a dominant role in driving up global emission levels for all three PFCs.The PNAS study identifies substantial PFC-14 and PFC-116 emission sources in the less-populated western regions of China from 2011 to 2021, likely due to the large amount of aluminum industry in these regions. The semiconductor industry also contributes to some of the emissions detected in the more economically developed eastern regions. These emissions are byproducts from aluminum smelting, or occur during the use of the two PFCs in the production of semiconductors and flat panel displays. During the observation period, emissions of both gases in China rose by 78 percent, accounting for most of the increase in global emissions of these gases.The ES&T study finds that during 2011-20, a 70 percent increase in Chinese PFC-318 emissions (contributing more than half of the global emissions increase of this gas) — originated primarily in eastern China. The regions with high emissions of PFC-318 in China overlap with geographical areas densely populated with factories that produce polytetrafluoroethylene (PTFE, commonly used for nonstick cookware coatings), implying that PTFE factories are major sources of PFC-318 emissions in China. In these factories, PFC-318 is formed as a byproduct.“Using atmospheric observations from multiple monitoring sites, we not only determined the magnitudes of PFC emissions, but also pinpointed the possible locations of their sources,” says Minde An, a postdoc at the MIT Center for Global Change Science (CGCS), and corresponding author of both studies. “Identifying the actual source industries contributing to these PFC emissions, and understanding the reasons for these largely byproduct emissions, can provide guidance for developing region- or industry-specific mitigation strategies.”“These three PFCs are largely produced as unwanted byproducts during the manufacture of otherwise widely used industrial products,” says MIT professor of atmospheric sciences Ronald Prinn, director of both the MIT Joint Program on the Science and Policy of Global Change and CGCS, and a co-author of both studies. “Phasing out emissions of PFCs as early as possible is highly beneficial for achieving global climate mitigation targets and is likely achievable by recycling programs and targeted technological improvements in these industries.”Findings in both studies were obtained, in part, from atmospheric observations collected from nine stations within a Chinese network, including one station from the Advanced Global Atmospheric Gases Experiment (AGAGE) network. For comparison, global total emissions were determined from five globally distributed, relatively unpolluted “background” AGAGE stations, as reported in the latest United Nations Environment Program and World Meteorological Organization Ozone Assessment report. More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Tests show high-temperature superconducting magnets are ready for fusion

    In the predawn hours of Sept. 5, 2021, engineers achieved a major milestone in the labs of MIT’s Plasma Science and Fusion Center (PSFC), when a new type of magnet, made from high-temperature superconducting material, achieved a world-record magnetic field strength of 20 tesla for a large-scale magnet. That’s the intensity needed to build a fusion power plant that is expected to produce a net output of power and potentially usher in an era of virtually limitless power production.

    The test was immediately declared a success, having met all the criteria established for the design of the new fusion device, dubbed SPARC, for which the magnets are the key enabling technology. Champagne corks popped as the weary team of experimenters, who had labored long and hard to make the achievement possible, celebrated their accomplishment.

    But that was far from the end of the process. Over the ensuing months, the team tore apart and inspected the components of the magnet, pored over and analyzed the data from hundreds of instruments that recorded details of the tests, and performed two additional test runs on the same magnet, ultimately pushing it to its breaking point in order to learn the details of any possible failure modes.

    All of this work has now culminated in a detailed report by researchers at PSFC and MIT spinout company Commonwealth Fusion Systems (CFS), published in a collection of six peer-reviewed papers in a special edition of the March issue of IEEE Transactions on Applied Superconductivity. Together, the papers describe the design and fabrication of the magnet and the diagnostic equipment needed to evaluate its performance, as well as the lessons learned from the process. Overall, the team found, the predictions and computer modeling were spot-on, verifying that the magnet’s unique design elements could serve as the foundation for a fusion power plant.

    Enabling practical fusion power

    The successful test of the magnet, says Hitachi America Professor of Engineering Dennis Whyte, who recently stepped down as director of the PSFC, was “the most important thing, in my opinion, in the last 30 years of fusion research.”

    Before the Sept. 5 demonstration, the best-available superconducting magnets were powerful enough to potentially achieve fusion energy — but only at sizes and costs that could never be practical or economically viable. Then, when the tests showed the practicality of such a strong magnet at a greatly reduced size, “overnight, it basically changed the cost per watt of a fusion reactor by a factor of almost 40 in one day,” Whyte says.

    “Now fusion has a chance,” Whyte adds. Tokamaks, the most widely used design for experimental fusion devices, “have a chance, in my opinion, of being economical because you’ve got a quantum change in your ability, with the known confinement physics rules, about being able to greatly reduce the size and the cost of objects that would make fusion possible.”

    The comprehensive data and analysis from the PSFC’s magnet test, as detailed in the six new papers, has demonstrated that plans for a new generation of fusion devices — the one designed by MIT and CFS, as well as similar designs by other commercial fusion companies — are built on a solid foundation in science.

    The superconducting breakthrough

    Fusion, the process of combining light atoms to form heavier ones, powers the sun and stars, but harnessing that process on Earth has proved to be a daunting challenge, with decades of hard work and many billions of dollars spent on experimental devices. The long-sought, but never yet achieved, goal is to build a fusion power plant that produces more energy than it consumes. Such a power plant could produce electricity without emitting greenhouse gases during operation, and generating very little radioactive waste. Fusion’s fuel, a form of hydrogen that can be derived from seawater, is virtually limitless.

    But to make it work requires compressing the fuel at extraordinarily high temperatures and pressures, and since no known material could withstand such temperatures, the fuel must be held in place by extremely powerful magnetic fields. Producing such strong fields requires superconducting magnets, but all previous fusion magnets have been made with a superconducting material that requires frigid temperatures of about 4 degrees above absolute zero (4 kelvins, or -270 degrees Celsius). In the last few years, a newer material nicknamed REBCO, for rare-earth barium copper oxide, was added to fusion magnets, and allows them to operate at 20 kelvins, a temperature that despite being only 16 kelvins warmer, brings significant advantages in terms of material properties and practical engineering.

    Taking advantage of this new higher-temperature superconducting material was not just a matter of substituting it in existing magnet designs. Instead, “it was a rework from the ground up of almost all the principles that you use to build superconducting magnets,” Whyte says. The new REBCO material is “extraordinarily different than the previous generation of superconductors. You’re not just going to adapt and replace, you’re actually going to innovate from the ground up.” The new papers in Transactions on Applied Superconductivity describe the details of that redesign process, now that patent protection is in place.

    A key innovation: no insulation

    One of the dramatic innovations, which had many others in the field skeptical of its chances of success, was the elimination of insulation around the thin, flat ribbons of superconducting tape that formed the magnet. Like virtually all electrical wires, conventional superconducting magnets are fully protected by insulating material to prevent short-circuits between the wires. But in the new magnet, the tape was left completely bare; the engineers relied on REBCO’s much greater conductivity to keep the current flowing through the material.

    “When we started this project, in let’s say 2018, the technology of using high-temperature superconductors to build large-scale high-field magnets was in its infancy,” says Zach Hartwig, the Robert N. Noyce Career Development Professor in the Department of Nuclear Science and Engineering. Hartwig has a co-appointment at the PSFC and is the head of its engineering group, which led the magnet development project. “The state of the art was small benchtop experiments, not really representative of what it takes to build a full-size thing. Our magnet development project started at benchtop scale and ended up at full scale in a short amount of time,” he adds, noting that the team built a 20,000-pound magnet that produced a steady, even magnetic field of just over 20 tesla — far beyond any such field ever produced at large scale.

    “The standard way to build these magnets is you would wind the conductor and you have insulation between the windings, and you need insulation to deal with the high voltages that are generated during off-normal events such as a shutdown.” Eliminating the layers of insulation, he says, “has the advantage of being a low-voltage system. It greatly simplifies the fabrication processes and schedule.” It also leaves more room for other elements, such as more cooling or more structure for strength.

    The magnet assembly is a slightly smaller-scale version of the ones that will form the donut-shaped chamber of the SPARC fusion device now being built by CFS in Devens, Massachusetts. It consists of 16 plates, called pancakes, each bearing a spiral winding of the superconducting tape on one side and cooling channels for helium gas on the other.

    But the no-insulation design was considered risky, and a lot was riding on the test program. “This was the first magnet at any sufficient scale that really probed what is involved in designing and building and testing a magnet with this so-called no-insulation no-twist technology,” Hartwig says. “It was very much a surprise to the community when we announced that it was a no-insulation coil.”

    Pushing to the limit … and beyond

    The initial test, described in previous papers, proved that the design and manufacturing process not only worked but was highly stable — something that some researchers had doubted. The next two test runs, also performed in late 2021, then pushed the device to the limit by deliberately creating unstable conditions, including a complete shutoff of incoming power that can lead to a catastrophic overheating. Known as quenching, this is considered a worst-case scenario for the operation of such magnets, with the potential to destroy the equipment.

    Part of the mission of the test program, Hartwig says, was “to actually go off and intentionally quench a full-scale magnet, so that we can get the critical data at the right scale and the right conditions to advance the science, to validate the design codes, and then to take the magnet apart and see what went wrong, why did it go wrong, and how do we take the next iteration toward fixing that. … It was a very successful test.”

    That final test, which ended with the melting of one corner of one of the 16 pancakes, produced a wealth of new information, Hartwig says. For one thing, they had been using several different computational models to design and predict the performance of various aspects of the magnet’s performance, and for the most part, the models agreed in their overall predictions and were well-validated by the series of tests and real-world measurements. But in predicting the effect of the quench, the model predictions diverged, so it was necessary to get the experimental data to evaluate the models’ validity.

    “The highest-fidelity models that we had predicted almost exactly how the magnet would warm up, to what degree it would warm up as it started to quench, and where would the resulting damage to the magnet would be,” he says. As described in detail in one of the new reports, “That test actually told us exactly the physics that was going on, and it told us which models were useful going forward and which to leave by the wayside because they’re not right.”

    Whyte says, “Basically we did the worst thing possible to a coil, on purpose, after we had tested all other aspects of the coil performance. And we found that most of the coil survived with no damage,” while one isolated area sustained some melting. “It’s like a few percent of the volume of the coil that got damaged.” And that led to revisions in the design that are expected to prevent such damage in the actual fusion device magnets, even under the most extreme conditions.

    Hartwig emphasizes that a major reason the team was able to accomplish such a radical new record-setting magnet design, and get it right the very first time and on a breakneck schedule, was thanks to the deep level of knowledge, expertise, and equipment accumulated over decades of operation of the Alcator C-Mod tokamak, the Francis Bitter Magnet Laboratory, and other work carried out at PSFC. “This goes to the heart of the institutional capabilities of a place like this,” he says. “We had the capability, the infrastructure, and the space and the people to do these things under one roof.”

    The collaboration with CFS was also key, he says, with MIT and CFS combining the most powerful aspects of an academic institution and private company to do things together that neither could have done on their own. “For example, one of the major contributions from CFS was leveraging the power of a private company to establish and scale up a supply chain at an unprecedented level and timeline for the most critical material in the project: 300 kilometers (186 miles) of high-temperature superconductor, which was procured with rigorous quality control in under a year, and integrated on schedule into the magnet.”

    The integration of the two teams, those from MIT and those from CFS, also was crucial to the success, he says. “We thought of ourselves as one team, and that made it possible to do what we did.” More

  • in

    3 Questions: The Climate Project at MIT

    MIT is preparing a major campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems now impeding an effective global climate response. The Climate Project at MIT, as the new enterprise is known, includes new arrangements for promoting cross-Institute collaborations and new mechanisms for engaging with outside partners to speed the development and implementation of climate solutions.

    MIT News spoke with Richard K. Lester, MIT’s vice provost for international activities, who has helped oversee the development of the project.

    Q: What is the Climate Project at MIT?

    A: In her inaugural address last May, President Kornbluth called on the MIT community to join her in a “bold, tenacious response” to climate change. The Climate Project at MIT is a response to that call. It aims to mobilize every part of MIT to develop, deliver, and scale up practical climate solutions, as quickly as possible.

    Play video

    At MIT, well over 300 of our faculty are already working with their students and research staff members on different aspects of the climate problem. Almost all of our academic departments and more than a score of our interdepartmental labs and centers are involved in some way. What they are doing is remarkable, and this decentralized structure reflects the best traditions of MIT as a “bottom up,” entrepreneurial institution. But, as President Kornbluth said, we must do much more. We must be bolder in our research choices and more creative in how we organize ourselves to work with each other and with our partners. The purpose of the Climate Project is to support our community’s efforts to do bigger things faster in the climate domain. We will have succeeded if our work changes the trajectory of global climate outcomes for the better.

    I want to be clear that the clay is still wet here. The Climate Project will continue to take shape as more members of the MIT community bring their excellence, their energy, and their ambition to bear on the climate challenge. But I believe we have a vision and a framework for accelerating and amplifying MIT’s real-world climate impact, and I know that President Kornbluth is eager to share this progress report with the MIT community now to convey the breadth and ambition of what we’re planning.

    Q: How will the project be organized?

    A: The Climate Project will have three core components: the Climate Missions; their offshoots, the Climate Frontier Projects; and Climate HQ. A new vice president for climate will lead the enterprise.

    Initially there will be six missions, which you can read about in the plan. Each will address a different domain of climate impact where new solutions are required and where a critical mass of research excellence exists at MIT. One such mission, of course, is to decarbonize energy and industry, an area where we estimate that about 150 of our faculty are already working.

    The mission leaders will build multidisciplinary problem-solving communities reaching across the Institute and beyond. Each of these will be charged with roadmapping and assessing progress toward its mission, identifying critical gaps and bottlenecks, and launching applied research projects to accelerate progress where the MIT community and our partners are well-positioned to achieve impactful results. These projects — the climate frontier projects — will benefit from active, professional project management, with clear metrics and milestones. We are in a critical decade for responding to climate change, so it’s important that these research projects move quickly, with an eye on producing real-world results.

    The new Climate HQ will drive the overall vision for the Climate Project and support the work of the missions. We’ve talked about a core focus on impact-driven research, but much is still unknown about the Earth’s physical and biogeochemical systems, and there is also much to be learned about the behavior of the social and political systems that led us to the very difficult situation the world now faces. Climate HQ will support fundamental research in the scientific and humanistic disciplines related to climate, and will promote engagement between these disciplines and the missions. We must also advance climate-related education, led by departments and programs, as well as policy work, public outreach, and more, including an MIT-wide student-centric Climate Corps to elevate climate-related, community-focused service in MIT’s culture.

    Q: Why are partners a key part of this project?

    A: It is important to build strong partners right from the very start for our innovations, inventions, and discoveries to have any prospect of achieving scale. And in many cases, with climate change, it’s all about scale.

    One of the aims of this initiative is to strengthen MIT’s climate “scaffolding” — the people and processes connecting what we do on campus to the practical world of climate impact and response. We can build on MIT’s highly developed infrastructure for translation, innovation, and entrepreneurship, even as we promote other important pathways to scale involving communities, municipalities, and other not-for-profit organizations. Working with all these different organizations will help us build a broad infrastructure to help us get traction in the world. On a related note, the Sloan School of Management will be sharing details in the coming days of an exciting new effort to enhance MIT’s contributions in the climate policy arena.

    MIT is committing $75 million, including $25 million from Sloan, at the outset of the project. But we anticipate developing new partnerships, including philanthropic partnerships, to increase that scope dramatically. More