More stories

  • in

    Moving perovskite advancements from the lab to the manufacturing floor

    The following was issued as a joint announcement from MIT.nano and the MIT Research Laboratory for Electronics; CubicPV; Verde Technologies; Princeton University; and the University of California at San Diego.

    Tandem solar cells are made of stacked materials — such as silicon paired with perovskites — that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

    However, current methods to create stable and efficient perovskite layers require time-consuming, painstaking rounds of design iteration and testing, inhibiting their development for commercial use. Today, the U.S. Department of Energy Solar Energy Technologies Office (SETO) announced that MIT has been selected to receive an $11.25 million cost-shared award to establish a new research center to address this challenge by using a co-optimization framework guided by machine learning and automation.

    A collaborative effort with lead industry participant CubicPV, solar startup Verde Technologies, and academic partners Princeton University and the University of California San Diego (UC San Diego), the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules that are co-designed for both stability and performance, with goals to significantly accelerate R&D and the transfer of these achievements into commercial environments.

    “Urgent challenges demand rapid action. This center will accelerate the development of tandem solar modules by bringing academia and industry into closer partnership,” says MIT professor of mechanical engineering Tonio Buonassisi, who will direct the center. “We’re grateful to the Department of Energy for supporting this powerful new model and excited to get to work.”

    Adam Lorenz, CTO of solar energy technology company CubicPV, stresses the importance of thinking about scale, alongside quality and efficiency, to accelerate the perovskite effort into the commercial environment. “Instead of chasing record efficiencies with tiny pixel-sized devices and later attempting to stabilize them, we will simultaneously target stability, reproducibility, and efficiency,” he says. “It’s a module-centric approach that creates a direct channel for R&D advancements into industry.”

    The center will be named Accelerated Co-Design of Durable, Reproducible, and Efficient Perovskite Tandems, or ADDEPT. The grant will be administered through the MIT Research Laboratory for Electronics (RLE).

    David Fenning, associate professor of nanoengineering at UC San Diego, has worked with Buonassisi on the idea of merging materials, automation, and computation, specifically in this field of artificial intelligence and solar, since 2014. Now, a central thrust of the ADDEPT project will be to deploy machine learning and robotic screening to optimize processing of perovskite-based solar materials for efficiency and durability.

    “We have already seen early indications of successful technology transfer between our UC San Diego robot PASCAL and industry,” says Fenning. “With this new center, we will bring research labs and the emerging perovskite industry together to improve reproducibility and reduce time to market.”

    “Our generation has an obligation to work collaboratively in the fight against climate change,” says Skylar Bagdon, CEO of Verde Technologies, which received the American-Made Perovskite Startup Prize. “Throughout the course of this center, Verde will do everything in our power to help this brilliant team transition lab-scale breakthroughs into the world where they can have an impact.”

    Several of the academic partners echoed the importance of the joint effort between academia and industry. Barry Rand, professor of electrical and computer engineering at the Andlinger Center for Energy and the Environment at Princeton University, pointed to the intersection of scientific knowledge and market awareness. “Understanding how chemistry affects films and interfaces will empower us to co-design for stability and performance,” he says. “The center will accelerate this use-inspired science, with close guidance from our end customers, the industry partners.”

    A critical resource for the center will be MIT.nano, a 200,000-square-foot research facility set in the heart of the campus. MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology, says he envisions MIT.nano as a hub for industry and academic partners, facilitating technology development and transfer through shared lab space, open-access equipment, and streamlined intellectual property frameworks.

    “MIT has a history of groundbreaking innovation using perovskite materials for solar applications,” says Bulović. “We’re thrilled to help build on that history by anchoring ADDEPT at MIT.nano and working to help the nation advance the future of these promising materials.”

    MIT was selected as a part of the SETO Fiscal Year 2022 Photovoltaics (PV) funding program, an effort to reduce costs and supply chain vulnerabilities, further develop durable and recyclable solar technologies, and advance perovskite PV technologies toward commercialization. ADDEPT is one project that will tackle perovskite durability, which will extend module life. The overarching goal of these projects is to lower the levelized cost of electricity generated by PV.

    Research groups involved with the ADDEPT project at MIT include Buonassisi’s Accelerated Materials Laboratory for Sustainability (AMLS), Bulović’s Organic and Nanostructured Electronics (ONE) Lab, and the Bawendi Group led by Lester Wolfe Professor in Chemistry Moungi Bawendi. Also working on the project is Jeremiah Mwaura, research scientist in the ONE Lab. More

  • in

    Victor K. McElheny Award in science journalism honors series on poultry farming and the environment

    The Knight Science Journalism Program at MIT has announced that the investigative series “Big Poultry,” published by The Charlotte Observer and The Raleigh News & Observer, has been chosen as the 2023 winner of the Victor K. McElheny Award for local and regional journalism. This series of articles uncovered the wide-ranging, unregulated impact of the poultry industry in North Carolina — from odors to pollution to the predatory nature of poultry contract farming.

    The series draws from more than 130 interviews and involved extensive analysis of satellite imagery, industry finances, and state laws, among other data. It expertly merges personal stories and hard data and creates a cohesive and comprehensive deep dive into an underreported, but pervasive, phenomenon in North Carolina. The series has engaged tens of thousands of readers and sparked a debate about the poultry industry in the state legislature.

    “With remarkable enterprise and persistence, these reporters from the Charlotte Observer and the Raleigh News & Observer penetrated the secrecy that obscures the scope and impact of thousands of industrial-scale poultry production farms in North Carolina, which together generate billions of pounds of unchecked agricultural waste,” a judge said of the series.

    “Big Poultry” was reported and written by Charlotte Observer investigative reporters Gavin Off and Ames Alexander and News & Observer environmental reporter Adam Wagner. The series was edited by McClatchy Southeast Investigations Editor Cathy Clabby and was supported by the work of News & Observer investigative reporters David Raynor and Tyler Dukes, and McClatchy newspapers visual journalists.

    “The Victor K. McElheny award recognizes the remarkable science reporting done at the local level by American journalists, and ‘Big Poultry’ is an outstanding example of that,” says Deborah Blum, director of the Knight Science Journalism Program at MIT. “We are proud to honor this series, which raises such important issues and reminds us of the essential role of journalists in protecting our country by illuminating such problems.”

    The 2023 McElheny Award received a robust and diverse pool of submissions from around the United States. Also on the short list of finalists for the award are four other exceptional journalism projects: “Undermined,” a collaboration between Navajo Times, Santa Fe Reporter, Source New Mexico, Capital & Main, and USA Today that uncovered the link between uranium poisoning and increased vulnerability to the Covid-19 virus in the Navajo Nation; “Fighting for Air,” from the Milwaukee Journal Sentinel, which examines the intersection of asthma with substandard housing and health systems; “When the Heat is Unbearable but There’s Nowhere to Go,” a collaboration between High Country News and Type Investigations, which exposed the impact of extreme heat on the incarcerated population of Washington State; and “There Must be Something in the Water,” published by the Minnesota Reformer, which investigated how the company 3M obscured the impact of chemical contamination in the water of Washington Country, Minnesota, and the ongoing health impacts of said contamination on the population.

    Named after the Knight Science Journalism Program’s founding director, the Victor K. McElheny Award was established to honor outstanding coverage of science, public-health, technology, and environmental issues at the local and regional level. The winning team will receive a $10,000 prize. The winners will be honored at the Knight Science Journalism Program’s 40th anniversary celebration on Saturday, April 22.

    The Knight Science Journalism Program extends a special thanks to the 2022 McElheny Award jurors: Jeff DelViscio (senior multimedia editor, Scientific American); Robert Lee Hotz (president, Alicia Patterson Foundation); Brant Houston, (Knight Chair in Investigative and Enterprise Reporting, University of Illinois); Amina Khan (science editor, National Public Radio); and Maya Kapoor (assistant professor of English, North Carolina State University). The program also extends warm appreciation to the award’s screeners: Mary-Rose Abraham, Sebastien Malo, Wojtek Brzezinski, and Kelly Servick.

    The McElheny Award is made possible by generous support from Victor K. McElheny, Ruth McElheny, and the Rita Allen Foundation.

    A complete list of 2023 Victor K. McElheny Award honorees:

    Winner

    “Big Poultry,” by Gavin Off , Ames Alexander, and Adam Wagner (The Charlotte Observer and The Raleigh News & Observer)

    Finalists

    “Undermined,” by Eli Cahan (Navajo Times, Santa Fe Reporter, Source New Mexico, Capital & Main, and USA Today)

    “Fighting for Air,” by Talis Shelbourne (Milwaukee Journal Sentinel)

    “When the Heat is Unbearable but There’s Nowhere to Go,” by Sarah Sax (High Country News and Type Investigations)

    “There Must be Something in the Water,” by Deena Winter (Minnesota Reformer) More

  • in

    Engaging enterprises with the climate crisis

    Almost every large corporation is committed to achieving net zero carbon emissions by 2050 but lacks a roadmap to get there, says John Sterman, professor of management at MIT’s Sloan School of Management, co-director of the MIT Sloan Sustainability Initiative, and leader of its Climate Pathways Project. Sterman and colleagues offer a suite of well-honed strategies to smooth this journey, including a free global climate policy simulator called En-ROADS deployed in workshops that have educated more than 230,000 people, including thousands of senior elected officials and leaders in business and civil society around the world. 

    Running on ordinary laptops, En-ROADS examines how we can reduce carbon emissions to keep global warming under 2 degrees Celsius, Sterman says. Users, expert or not, can easily explore how dozens of policies, such as pricing carbon and electrifying vehicles, can affect hundreds of factors such as temperature, energy prices, and sea level rise. 

    En-ROADs and related work on climate change are just one thread in Sterman’s decades of research to integrate environmental sustainability with business decisions. 

    “There’s a fundamental alignment between a healthy environment, a healthy society, and a healthy economy,” he says. “Destroy the environment and you destroy the economy and society. Likewise, hungry, ill-housed, insecure people, lacking decent jobs and equity in opportunity, will catch the last fish and cut the last tree, destroying the environment and society. Unfortunately, a lot of businesses still see the issue as a trade-off — if we focus on the environment, it will hurt our bottom line; if we improve working conditions, it will raise our labor costs. That turns out not to be true in many, many cases. But how can we help people understand that fundamental alignment? That’s where simulation models can play a big role.”

    Play video

    Learning with management flight simulators 

    “My original field is system dynamics, a method for understanding the complex systems in which we’re embedded—whether those are organizations, companies, markets, society as a whole, or the climate system” Sterman says. “You can build these wonderful, complex simulation models that offer important insights and insight into high-leverage policies so that organizations can make significant improvements.” 

    “But those models don’t do any good at all unless the folks in those organizations can learn for themselves about what those high-leverage opportunities are,” he emphasizes. “You can show people the best scientific evidence, the best data, and it’s not necessarily going to change their minds about what they ought to be doing. You’ve got to create a process that helps smart but busy people learn how they can improve their organizations.” 

    Sterman and his colleagues pioneered management flight simulators — which, like aircraft flight simulators, offer an environment in which you can make decisions, seeing what works and what doesn’t, at low cost with no risk. 

    “People learn best from experience and experiment,” he points out. “But in many of the most important settings that we face today, experience comes too late to be useful, and experiments are impossible. In such settings, simulation becomes the only way people can learn for themselves and gain the confidence to change their behavior in the real world.” 

    “You can’t learn to fly a new jetliner by watching someone else; to learn, one must be at the controls,” Sterman emphasizes. “People don’t change deeply embedded beliefs and behaviors just because somebody tells them that what they’re doing is harmful and there are better options. People have to learn for themselves.”

    Play video

    Learning the business of sustainability 

    His longstanding “laboratory for sustainable business” course lets MIT Sloan School students learn the state of the art in sustainability challenges — not just climate change but microplastics, water shortages, toxins in our food and air, and other crises. As part of the course, students work in teams with organizations on real sustainability challenges. “We’ve had a very wide range of companies and other organizations participate, and many of them come back year after year,” Sterman says. 

    MIT Sloan also offers executive education in sustainability, in both open enrollment and customized programs. “We’ve had all kinds of folks, from all over the world and every industry” he says. 

    In his opening class for executive MBAs, he polls attendees to ask if sustainability is a material issue for their companies, and how actively those companies are addressing that issue. Almost all of the attendees agree that sustainability is a key issue, but nearly all say their companies are not doing enough, with many saying they “comply with all applicable laws and regulations.” 

    “So there’s a huge disconnect,” Sterman points out. “How do you close that gap? How do you take action? How do you break the idea that if you take action to be more sustainable it will hurt your business, when in fact it’s almost always the other way around? And then how can you make the change happen, so that what you’re doing will get implemented and stick?” 

    Simulating policies for sustainability 

    Management flight simulators that offer active learning can provide crucial guidance. In the case of climate change, En-ROADs presents a straightforward interface that lets users adjust sliders to experiment with actions to try to bring down carbon emissions. “Should we have a price on carbon?” Sterman asks. “Should we promote renewables? Should we work on methane? Stop deforestation? You can try anything you want. You get immediate feedback on the likely consequences of your decisions. Often people are surprised as favorite policies — say, planting trees — have only minor impact on global warming. (In the case of trees, because it takes so long for the trees to grow).”

    One En-ROADS alumnus works for a pharmaceutical company that set a target of zero net emissions by mid-century. But, as often observed, measures proposed at the senior corporate level were often resisted by the operating units. The alumnus attacked the problem by bringing workshops with simulations and other sustainability tools to front-line employees in a manufacturing plant he knew well. He asked these employees how they thought they could reduce carbon emissions and what they needed to do so. 

    “It turns out that they had a long list of opportunities to reduce the emissions from this plant,” Sterman says. “But they didn’t have any support to get it done. He helped their ideas get that support, get the resources, come up with ways to monitor their progress, and ways to look for quick wins. It’s been highly successful.” 

    En-ROADS helps people understand that process improvement activity takes resources; you might need to take some equipment offline temporarily, for example, to upgrade or improve it. “There’s a little bit of a worse-before-better trade-off,” he says. “You need to be prepared. The active learning, the use of the simulators, helps people prepare for that journey and overcome the barriers that they will face.” 

    Interactive workshops with En-ROADS and other sustainability tools also brought change to another large corporation, HSBC Bank U.S.A. Like many other financial institutions, HSBC has committed to significantly cut its emissions, but many employees and executives didn’t understand why or what that would entail. For instance, would the bank give up potential business in carbon-intensive industries? 

    Brought to more than 1,000 employees, the En-ROADS workshops let employees surface concerns they might have about continuing to be successful while addressing climate concerns. “It turns out in many cases, there isn’t that much of a trade-off,” Sterman remarks. “Fossil energy projects, for example, are extremely risky. And there are opportunities to improve margins in other businesses where you can help cut their carbon footprint.” 

    The free version of En-ROADS generally satisfies the needs of most organizations, but Sterman and his partners also can augment the model or develop customized workshops to address specific concerns. 

    People who take the workshops emerge with a greater understanding of climate change and its effects, and a deeper knowledge of the high-leverage opportunities to cut emissions. “Even more importantly, they come out with a greater sense of urgency,” he says. “But they also come out with an understanding that it’s not too late. Time is short, but what we do can still make a difference.”  More

  • in

    A more sustainable way to generate phosphorus

    Phosphorus is an essential ingredient in thousands of products, including herbicides, lithium-ion batteries, and even soft drinks. Most of this phosphorus comes from an energy-intensive process that contributes significantly to global carbon emissions.

    In an effort to reduce that carbon footprint, MIT chemists have devised an alternative way to generate white phosphorus, a critical intermediate in the manufacture of those phosphorus-containing products. Their approach, which uses electricity to speed up a key chemical reaction, could reduce the carbon emissions of the process by half or even more, the researchers say.

    “White phosphorus is currently an indispensable intermediate, and our process dramatically reduces the carbon footprint of converting phosphate to white phosphorus,” says Yogesh Surendranath, an associate professor of chemistry at MIT and the senior author of the study.

    The new process reduces the carbon footprint of white phosphorus production in two ways: It reduces the temperatures required for the reaction, and it generates significantly less carbon dioxide as a waste product.

    Recent MIT graduate Jonathan “Jo” Melville PhD ’21 and MIT graduate student Andrew Licini are the lead authors of the paper, which appears today in ACS Central Science.

    Purifying phosphorus

    When phosphorus is mined out of the ground, it is in the form of phosphate, a mineral whose basic unit comprises one atom of phosphorus bound to four oxygen atoms. About 95 percent of this phosphate ore is used to make fertilizer. The remaining phosphate ore is processed separately into white phosphorus, a molecule composed of four phosphorus atoms bound to each other. White phosphorus is then fed into a variety of chemical processes that are used to manufacture many different products, such as lithium battery electrolytes and semiconductor dopants.

    Converting those mined phosphates into white phosphorus accounts for a substantial fraction of the carbon footprint of the entire phosphorus industry, Surendranath says. The most energy-intensive part of the process is breaking the bonds between phosphorus and oxygen, which are very stable.

    Using the traditional “thermal process,” those bonds are broken by heating carbon coke and phosphate rock to a temperature of 1,500 degrees Celsius. In this process, the carbon serves to strip away the oxygen atoms from phosphorus, leading to the eventual generation of CO2 as a byproduct. In addition, sustaining those temperatures requires a great deal of energy, adding to the carbon footprint of the process.

    “That process hasn’t changed substantially since its inception over a century ago. Our goal was to figure out how we could develop a process that would substantially lower the carbon footprint of this process,” Surendranath says. “The idea was to combine it with renewable electricity and drive that conversion of phosphate to white phosphorus with electrons rather than using carbon.”

    To do that, the researchers had to come up with an alternative way to weaken the strong phosphorus-oxygen bonds found in phosphates. They achieved this by controlling the environment in which the reaction occurs. The researchers found that the reaction could be promoted using a dehydrated form of phosphoric acid, which contains long chains of phosphate salts held together by bonds called phosphoryl anhydrides. These bonds help to weaken the phosphorus-oxygen bonds.

    When the researchers run an electric current through these salts, electrons break the weakened bonds, allowing the phosphorus atoms to break free and bind to each other to form white phosphorus. At the temperatures needed for this system (about 800 C), phosphorus exists as a gas, so it can bubble out of the solution and be collected in an external chamber.

    Decarbonization

    The electrode that the researchers used for this demonstration relies on carbon as a source of electrons, so the process generates some carbon dioxide as a byproduct. However, they are now working on swapping that electrode out for one that would use phosphate itself as the electron source, which would further reduce the carbon footprint by cleanly separating phosphate into phosphorus and oxygen.

    With the process reported in this paper, the researchers have reduced the overall carbon footprint for generating white phosphorus by about 50 percent. With future modifications, they hope to bring the carbon emissions down to nearly zero, in part by using renewable energy such as solar or wind power to drive the electric current required.

    If the researchers succeed in scaling up their process and making it widely available, it could allow industrial users to generate white phosphorus on site instead of having it shipped from the few places in the world where it is currently manufactured. That would cut down on the risks of transporting white phosphorus, which is an explosive material.

    “We’re excited about the prospect of doing on-site generation of this intermediate, so you don’t have to do the transportation and distribution,” Surendranath says. “If you could decentralize this production, the end user could make it on site and use it in an integrated fashion.”

    In order to do this study, the researchers had to develop new tools for controlling the electrolytes (such as salts and acids) present in the environment, and for measuring how those electrolytes affect the reaction. Now, they plan to use the same approach to try to develop lower-carbon processes for isolating other industrially important elements, such as silicon and iron.

    “This work falls within our broader interests in decarbonizing these legacy industrial processes that have a huge carbon footprint,” Surendranath says. “The basic science that leads us there is understanding how you can tailor the electrolytes to foster these processes.”

    The research was funded by the UMRP Partnership for Progress on Sustainable Development in Africa, a fellowship from the MIT Tata Center for Technology and Design, and a National Defense Science and Engineering Graduate Fellowship. More

  • in

    Preparing students for the new nuclear

    As nuclear power has gained greater recognition as a zero-emission energy source, the MIT Leaders for Global Operations (LGO) program has taken notice.

    Two years ago, LGO began a collaboration with MIT’s Department of Nuclear Science and Engineering (NSE) as a way to showcase the vital contribution of both business savvy and scientific rigor that LGO’s dual-degree graduates can offer this growing field.

    “We saw that the future of fission and fusion required business acumen and management acumen,” says Professor Anne White, NSE department head. “People who are going to be leaders in our discipline, and leaders in the nuclear enterprise, are going to need all of the technical pieces of the puzzle that our engineering department can provide in terms of education and training. But they’re also going to need a much broader perspective on how the technology connects with society through the lens of business.”

    The resulting response has been positive: “Companies are seeing the value of nuclear technology for their operations,” White says, and this often happens in unexpected ways.

    For example, graduate student Santiago Andrade recently completed a research project at Caterpillar Inc., a preeminent manufacturer of mining and construction equipment. Caterpillar is one of more than 20 major companies that partner with the LGO program, offering six-month internships to each student. On the surface, it seemed like an improbable pairing; what could Andrade, who was pursuing his master’s in nuclear science and engineering, do for a manufacturing company? However, Caterpillar wanted to understand the technical and commercial feasibility of using nuclear energy to power mining sites and data centers when wind and solar weren’t viable.

    “They are leaving no stone unturned in the search of financially smart solutions that can support the transition to a clean energy dependency,” Andrade says. “My project, along with many others’, is part of this effort.”

    “The research done through the LGO program with Santiago is enabling Caterpillar to understand how alternative technologies, like the nuclear microreactor, could participate in these markets in the future,” says Brian George, product manager for large electric power solutions at Caterpillar. “Our ability to connect our customers with the research will provide for a more accurate understanding of the potential opportunity, and helps provide exposure for our customers to emerging technologies.”

    With looming threats of climate change, White says, “We’re going to require more opportunities for nuclear technologies to step in and be part of those solutions. A cohort of LGO graduates will come through this program with technical expertise — a master’s degree in nuclear engineering — and an MBA. There’s going to be a tremendous talent pool out there to help companies and governments.”

    Andrade, who completed an undergraduate degree in chemical engineering and had a strong background in thermodynamics, applied to LGO unsure of which track to choose, but he knew he wanted to confront the world’s energy challenge. When MIT Admissions suggested that he join LGO’s new nuclear track, he was intrigued by how it could further his career.

    “Since the NSE department offers opportunities ranging from energy to health care and from quantum engineering to regulatory policy, the possibilities of career tracks after graduation are countless,” he says.

    He was also inspired by the fact that, as he says, “Nuclear is one of the less-popular solutions in terms of our energy transition journey. One of the things that attracted me is that it’s not one of the most popular, but it’s one of the most useful.”

    In addition to his work at Caterpillar, Andrade connected deeply with professors. He worked closely with professors Jacopo Buongiorno and John Parsons as a research assistant, helping them develop a business model to successfully support the deployment of nuclear microreactors. After graduation, he plans to work in the clean energy sector with an eye to innovations in the nuclear energy technology space.

    His LGO classmate, Lindsey Kennington, a control systems engineer, echoes his sentiments: This is a revolutionary time for nuclear technology.

    “Before MIT, I worked on a lot of nuclear waste or nuclear weapons-related projects. All of them were fission-related. I got disillusioned because of all the bureaucracy and the regulation,” Kennington says. “However, now there are a lot of new nuclear technologies coming straight out of MIT. Commonwealth Fusion Systems, a fusion startup, represents a prime example of MIT’s close relationship to new nuclear tech. Small modular reactors are another emerging technology being developed by MIT. Exposure to these cutting-edge technologies was the main sell factor for me.”

    Kennington conducted an internship with National Grid, where she used her expertise to evaluate how existing nuclear power plants could generate hydrogen. At MIT, she studied nuclear and energy policy, which offered her additional perspective that traditional engineering classes might not have provided. Because nuclear power has long been a hot-button issue, Kennington was able to gain nuanced insight about the pathways and roadblocks to its implementation.

    “I don’t think that other engineering departments emphasize that focus on policy quite as much. [Those classes] have been one of the most enriching parts of being in the nuclear department,” she says.

    Most of all, she says, it’s a pivotal time to be part of a new, blossoming program at the forefront of clean energy, especially as fusion research grows more prevalent.

    “We’re at an inflection point,” she says. “Whether or not we figure out fusion in the next five, 10, or 20 years, people are going to be working on it — and it’s a really exciting time to not only work on the science but to actually help the funding and business side grow.”

    White puts it simply.

    “This is not your parents’ nuclear,” she says. “It’s something totally different. Our discipline is evolving so rapidly that people who have technical expertise in nuclear will have a huge advantage in this next generation.” More

  • in

    Rescuing small plastics from the waste stream

    As plastic pollution continues to mount, with growing risks to ecosystems and wildlife, manufacturers are beginning to make ambitious commitments to keep new plastics out of the environment. A growing number have signed onto the U.S. Plastics Pact, which pledges to make 100 percent of plastic packaging reusable, recyclable, or compostable, and to see 50 percent of it effectively recycled or composted, by 2025.

    But for companies that make large numbers of small, disposable plastics, these pocket-sized objects are a major barrier to realizing their recycling goals.

    “Think about items like your toothbrush, your travel-size toothpaste tubes, your travel-size shampoo bottles,” says Alexis Hocken, a second-year PhD student in the MIT Department of Chemical Engineering. “They end up actually slipping through the cracks of current recycling infrastructure. So you might put them in your recycling bin at home, they might make it all the way to the sorting facility, but when it comes down to actually sorting them, they never make it into a recycled plastic bale at the very end of the line.”

    Now, a group of five consumer products companies is working with MIT to develop a sorting process that can keep their smallest plastic products inside the recycling chain. The companies — Colgate-Palmolive, Procter & Gamble, the Estée Lauder Companies, L’Oreal, and Haleon — all manufacture a large volume of “small format” plastics, or products less than two inches long in at least two dimensions. In a collaboration with Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor of Chemical Engineering; Desiree Plata, an associate professor of civil and environmental engineering; the MIT Environmental Solutions Initiative; and the nonprofit The Sustainability Consortium, these companies are seeking a prototype sorting technology to bring to recycling facilities for large-scale testing and commercial development.

    Working in Olsen’s lab, Hocken is coming to grips with the complexity of the recycling systems involved. Material recovery facilities, or MRFs, are expected to handle products in any number of shapes, sizes, and materials, and sort them into a pure stream of glass, metal, paper, or plastic. Hocken’s first step in taking on the recycling project was to tour one of these MRFs in Portland, Maine, with Olsen and Plata.

    “We could literally see plastics just falling from the conveyor belts,” she says. “Leaving that tour, I thought, my gosh! There’s so much improvement that can be made. There’s so much impact that we can have on this industry.”

    From designing plastics to managing them

    Hocken always knew she wanted to work in engineering. Growing up in Scottsdale, Arizona, she was able to spend time in the workplace with her father, an electrical engineer who designs biomedical devices. “Seeing him working as an engineer, and how he’s solving these really important problems, definitely sparked my interest,” she says. “When it came time to begin my undergraduate degree, it was a really easy decision to choose engineering after seeing the day-to-day that my dad was doing in his career.”

    At Arizona State University, she settled on chemical engineering as a major and began working with polymers, coming up with combinations of additives for 3D plastics printing that could help fine-tune how the final products behaved. But even working with plastics every day, she rarely thought about the implications of her work for the environment.

    “And then in the spring of my final year at ASU, I took a class about polymers through the lens of sustainability, and that really opened my eyes,” Hocken remembers. The class was taught by Professor Timothy Long, director of the Biodesign Center for Sustainable Macromolecular Materials and Manufacturing and a well-known expert in the field of sustainable plastics. “That first session, where he laid out all of the really scary facts surrounding the plastics crisis, got me very motivated to look more into that field.”

    At MIT the next year, Hocken sought out Olsen as her advisor and made plastics sustainability her focus from the start.

    “Coming to MIT was my first time venturing outside of the state of Arizona for more than a three-month period,” she says. “It’s been really fun. I love living in Cambridge and the Boston area. I love my labmates. Everyone is so supportive, whether it’s to give me advice about some science that I’m trying to figure out, or just give me a pep talk if I’m feeling a little discouraged.”

    A challenge to recycle

    A lot of plastics research today is devoted to creating new materials — including biodegradable ones that are easier for natural ecosystems to absorb, and highly recyclable ones that hold their properties better after being melted down and recast.

    But Hocken also sees a huge need for better ways to handle the plastics we’re already making. “While biodegradable and sustainable polymers represent a very important route, and I think they should certainly be further pursued, we’re still a ways away from that being a reality universally across all plastic packaging,” she says. As long as large volumes of conventional plastic are coming out of factories, we’ll need innovative ways to stop it from piling onto the mountain of plastic pollution. In one of her projects, Hocken is trying to come up with new uses for recycled plastic that take advantage of its lost strength to produce a useful, flexible material similar to rubber.

    The small-format recycling project also falls in this category. The companies supporting the project have challenged the MIT team to work with their products exactly as currently manufactured — especially because their competitors use similar packaging materials that will also need to be covered by any solution the MIT team devises.

    The challenge is a large one. To kick the project off, the participating companies sent the MIT team a wide range of small-format products that need to make it through the sorting process. These include containers for lip balm, deodorant, pills, and shampoo, and disposable tools like toothbrushes and flossing picks. “A constraint, or problem I foresee, is just how variable the shapes are,” says Hocken. “A flossing pick versus a toothbrush are very different shapes.”

    Nor are they all made of the same kind of plastic. Many are made of polyethylene terephthalate (PET, type 1 in the recycling label system) or high-density polyethylene (HDPE, type 2), but nearly all of the seven recycling categories are represented among the sample products. The team’s solution will have to handle them all.

    Another obstacle is that the sorting process at a large MRF is already very complex and requires a heavy investment in equipment. The waste stream typically goes through a “glass breaker screen” that shatters glass and collects the shards; a series of rotating rubber stars to pull out two-dimensional objects, collecting paper and cardboard; a system of magnets and eddy currents to attract or repel different metals; and finally, a series of optical sorters that use infrared spectroscopy to identify the various types of plastics, then blow them down different chutes with jets of air. MRFs won’t be interested in adopting additional sorters unless they’re inexpensive and easy to fit into this elaborate stream.

    “We’re interested in creating something that could be retrofitted into current technology and current infrastructure,” Hocken says.

    Shared solutions

    “Recycling is a really good example of where pre-competitive collaboration is needed,” says Jennifer Park, collective action manager at The Sustainability Consortium (TSC), who has been working with corporate stakeholders on small format recyclability and helped convene the sponsors of this project and organize their contributions. “Companies manufacturing these products recognize that they cannot shift entire systems on their own. Consistency around what is and is not recyclable is the only way to avoid confusion and drive impact at scale.

    “Additionally, it is interesting that consumer packaged goods companies are sponsoring this research at MIT which is focused on MRF-level innovations. They’re investing in innovations that they hope will be adopted by the recycling industry to make progress on their own sustainability goals.”

    Hocken believes that, despite the challenges, it’s well worth pursuing a technology that can keep small-format plastics from slipping through MRFs’ fingers.

    “These are products that would be more recyclable if they were easier to sort,” she says. “The only thing that’s different is the size. So you can recycle both your large shampoo bottle and the small travel-size one at home, but the small one isn’t guaranteed to make it into a plastic bale at the end. If we can come up with a solution that specifically targets those while they’re still on the sorting line, they’re more likely to end up in those plastic bales at the end of the line, which can be sold to plastic reclaimers who can then use that material in new products.”

    “TSC is really excited about this project and our collaboration with MIT,” adds Park. “Our project stakeholders are very dedicated to finding a solution.”

    To learn more about this project, contact Christopher Noble, director of corporate engagement at the MIT Environmental Solutions Initiative. More

  • in

    To decarbonize the chemical industry, electrify it

    The chemical industry is the world’s largest industrial energy consumer and the third-largest source of industrial emissions, according to the International Energy Agency. In 2019, the industrial sector as a whole was responsible for 24 percent of global greenhouse gas emissions. And yet, as the world races to find pathways to decarbonization, the chemical industry has been largely untouched.

    “When it comes to climate action and dealing with the emissions that come from the chemical sector, the slow pace of progress is partly technical and partly driven by the hesitation on behalf of policymakers to overly impact the economic competitiveness of the sector,” says Dharik Mallapragada, a principal research scientist at the MIT Energy Initiative.

    With so many of the items we interact with in our daily lives — from soap to baking soda to fertilizer — deriving from products of the chemical industry, the sector has become a major source of economic activity and employment for many nations, including the United States and China. But as the global demand for chemical products continues to grow, so do the industry’s emissions.

    New sustainable chemical production methods need to be developed and deployed and current emission-intensive chemical production technologies need to be reconsidered, urge the authors of a new paper published in Joule. Researchers from DC-MUSE, a multi-institution research initiative, argue that electrification powered by low-carbon sources should be viewed more broadly as a viable decarbonization pathway for the chemical industry. In this paper, they shine a light on different potential methods to do just that.

    “Generally, the perception is that electrification can play a role in this sector — in a very narrow sense — in that it can replace fossil fuel combustion by providing the heat that the combustion is providing,” says Mallapragada, a member of DC-MUSE. “What we argue is that electrification could be much more than that.”

    The researchers outline four technological pathways — ranging from more mature, near-term options to less technologically mature options in need of research investment — and present the opportunities and challenges associated with each.

    The first two pathways directly replace fossil fuel-produced heat (which facilitates the reactions inherent in chemical production) with electricity or electrochemically generated hydrogen. The researchers suggest that both options could be deployed now and potentially be used to retrofit existing facilities. Electrolytic hydrogen is also highlighted as an opportunity to replace fossil fuel-produced hydrogen (a process that emits carbon dioxide) as a critical chemical feedstock. In 2020, fossil-based hydrogen supplied nearly all hydrogen demand (90 megatons) in the chemical and refining industries — hydrogen’s largest consumers.

    The researchers note that increasing the role of electricity in decarbonizing the chemical industry will directly affect the decarbonization of the power grid. They stress that to successfully implement these technologies, their operation must coordinate with the power grid in a mutually beneficial manner to avoid overburdening it. “If we’re going to be serious about decarbonizing the sector and relying on electricity for that, we have to be creative in how we use it,” says Mallapragada. “Otherwise we run the risk of having addressed one problem, while creating a massive problem for the grid in the process.”

    Electrified processes have the potential to be much more flexible than conventional fossil fuel-driven processes. This can reduce the cost of chemical production by allowing producers to shift electricity consumption to times when the cost of electricity is low. “Process flexibility is particularly impactful during stressed power grid conditions and can help better accommodate renewable generation resources, which are intermittent and are often poorly correlated with daily power grid cycles,” says Yury Dvorkin, an associate research professor at the Johns Hopkins Ralph O’Connor Sustainable Energy Institute. “It’s beneficial for potential adopters because it can help them avoid consuming electricity during high-price periods.”

    Dvorkin adds that some intermediate energy carriers, such as hydrogen, can potentially be used as highly efficient energy storage for day-to-day operations and as long-term energy storage. This would help support the power grid during extreme events when traditional and renewable generators may be unavailable. “The application of long-duration storage is of particular interest as this is a key enabler of a low-emissions society, yet not widespread beyond pumped hydro units,” he says. “However, as we envision electrified chemical manufacturing, it is important to ensure that the supplied electricity is sourced from low-emission generators to prevent emissions leakages from the chemical to power sector.” 

    The next two pathways introduced — utilizing electrochemistry and plasma — are less technologically mature but have the potential to replace energy- and carbon-intensive thermochemical processes currently used in the industry. By adopting electrochemical processes or plasma-driven reactions instead, chemical transformations can occur at lower temperatures and pressures, potentially enhancing efficiency. “These reaction pathways also have the potential to enable more flexible, grid-responsive plants and the deployment of modular manufacturing plants that leverage distributed chemical feedstocks such as biomass waste — further enhancing sustainability in chemical manufacturing,” says Miguel Modestino, the director of the Sustainable Engineering Initiative at the New York University Tandon School of Engineering.

    A large barrier to deep decarbonization of chemical manufacturing relates to its complex, multi-product nature. But, according to the researchers, each of these electricity-driven pathways supports chemical industry decarbonization for various feedstock choices and end-of-life disposal decisions. Each should be evaluated in comprehensive techno-economic and environmental life cycle assessments to weigh trade-offs and establish suitable cost and performance metrics.

    Regardless of the pathway chosen, the researchers stress the need for active research and development and deployment of these technologies. They also emphasize the importance of workforce training and development running in parallel to technology development. As André Taylor, the director of DC-MUSE, explains, “There is a healthy skepticism in the industry regarding electrification and adoption of these technologies, as it involves processing chemicals in a new way.” The workforce at different levels of the industry hasn’t necessarily been exposed to ideas related to the grid, electrochemistry, or plasma. The researchers say that workforce training at all levels will help build greater confidence in these different solutions and support customer-driven industry adoption.

    “There’s no silver bullet, which is kind of the standard line with all climate change solutions,” says Mallapragada. “Each option has pros and cons, as well as unique advantages. But being aware of the portfolio of options in which you can use electricity allows us to have a better chance of success and of reducing emissions — and doing so in a way that supports grid decarbonization.”

    This work was supported, in part, by the Alfred P. Sloan Foundation. More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More