More stories

  • in

    Explained: The 1.5 C climate benchmark

    The summer of 2023 has been a season of weather extremes.

    In June, uncontrolled wildfires ripped through parts of Canada, sending smoke into the U.S. and setting off air quality alerts in dozens of downwind states. In July, the world set the hottest global temperature on record, which it held for three days in a row, then broke again on day four.

    From July into August, unrelenting heat blanketed large parts of Europe, Asia, and the U.S., while India faced a torrential monsoon season, and heavy rains flooded regions in the northeastern U.S. And most recently, whipped up by high winds and dry vegetation, a historic wildfire tore through Maui, devastating an entire town.

    These extreme weather events are mainly a consequence of climate change driven by humans’ continued burning of coal, oil, and natural gas. Climate scientists agree that extreme weather such as what people experienced this summer will likely grow more frequent and intense in the coming years unless something is done, on a persistent and planet-wide scale, to rein in global temperatures.

    Just how much reining-in are they talking about? The number that is internationally agreed upon is 1.5 degrees Celsius. To prevent worsening and potentially irreversible effects of climate change, the world’s average temperature should not exceed that of preindustrial times by more than 1.5 degrees Celsius (2.7 degrees Fahrenheit).

    As more regions around the world face extreme weather, it’s worth taking stock of the 1.5-degree bar, where the planet stands in relation to this threshold, and what can be done at the global, regional, and personal level, to “keep 1.5 alive.”

    Why 1.5 C?

    In 2015, in response to the growing urgency of climate impacts, nearly every country in the world signed onto the Paris Agreement, a landmark international treaty under which 195 nations pledged to hold the Earth’s temperature to “well below 2 degrees Celsius above pre-industrial levels,” and going further, aim to “limit the temperature increase to 1.5 degrees Celsius above pre-industrial levels.”

    The treaty did not define a particular preindustrial period, though scientists generally consider the years from 1850 to 1900 to be a reliable reference; this time predates humans’ use of fossil fuels and is also the earliest period when global observations of land and sea temperatures are available. During this period, the average global temperature, while swinging up and down in certain years, generally hovered around 13.5 degrees Celsius, or 56.3 degrees Fahrenheit.

    The treaty was informed by a fact-finding report which concluded that, even global warming of 1.5 degrees Celsius above the preindustrial average, over an extended, decades-long period, would lead to high risks for “some regions and vulnerable ecosystems.” The recommendation then, was to set the 1.5 degrees Celsius limit as a “defense line” — if the world can keep below this line, it potentially could avoid the more extreme and irreversible climate effects that would occur with a 2 degrees Celsius increase, and for some places, an even smaller increase than that.

    But, as many regions are experiencing today, keeping below the 1.5 line is no guarantee of avoiding extreme, global warming effects.

    “There is nothing magical about the 1.5 number, other than that is an agreed aspirational target. Keeping at 1.4 is better than 1.5, and 1.3 is better than 1.4, and so on,” says Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change. “The science does not tell us that if, for example, the temperature increase is 1.51 degrees Celsius, then it would definitely be the end of the world. Similarly, if the temperature would stay at 1.49 degrees increase, it does not mean that we will eliminate all impacts of climate change. What is known: The lower the target for an increase in temperature, the lower the risks of climate impacts.”

    How close are we to 1.5 C?

    In 2022, the average global temperature was about 1.15 degrees Celsius above preindustrial levels. According to the World Meteorological Organization (WMO), the cyclical weather phenomenon La Niña recently contributed to temporarily cooling and dampening the effects of human-induced climate change. La Niña lasted for three years and ended around March of 2023.

    In May, the WMO issued a report that projected a significant likelihood (66 percent) that the world would exceed the 1.5 degrees Celsius threshold in the next four years. This breach would likely be driven by human-induced climate change, combined with a warming El Niño — a cyclical weather phenomenon that temporarily heats up ocean regions and pushes global temperatures higher.

    This summer, an El Niño is currently underway, and the event typically raises global temperatures in the year after it sets in, which in this case would be in 2024. The WMO predicts that, for each of the next four years, the global average temperature is likely to swing between 1.1 and 1.8 degrees Celsius above preindustrial levels.

    Though there is a good chance the world will get hotter than the 1.5-degree limit as the result of El Niño, the breach would be temporary, and for now, would not have failed the Paris Agreement, which aims to keep global temperatures below the 1.5-degree limit over the long term (averaged over several decades rather than a single year).

    “But we should not forget that this is a global average, and there are variations regionally and seasonally,” says Elfatih Eltahir, the H.M. King Bhumibol Professor and Professor of Civil and Environmental Engineering at MIT. “This year, we had extreme conditions around the world, even though we haven’t reached the 1.5 C threshold. So, even if we control the average at a global magnitude, we are going to see events that are extreme, because of climate change.”

    More than a number

    To hold the planet’s long-term average temperature to below the 1.5-degree threshold, the world will have to reach net zero emissions by the year 2050, according to the Intergovernmental Panel on Climate Change (IPCC). This means that, in terms of the emissions released by the burning of coal, oil, and natural gas, the entire world will have to remove as much as it puts into the atmosphere.

    “In terms of innovations, we need all of them — even those that may seem quite exotic at this point: fusion, direct air capture, and others,” Paltsev says.

    The task of curbing emissions in time is particularly daunting for the United States, which generates the most carbon dioxide emissions of any other country in the world.

    “The U.S.’s burning of fossil fuels and consumption of energy is just way above the rest of the world. That’s a persistent problem,” Eltahir says. “And the national statistics are an aggregate of what a lot of individuals are doing.”

    At an individual level, there are things that can be done to help bring down one’s personal emissions, and potentially chip away at rising global temperatures.

    “We are consumers of products that either embody greenhouse gases, such as meat, clothes, computers, and homes, or we are directly responsible for emitting greenhouse gases, such as when we use cars, airplanes, electricity, and air conditioners,” Paltsev says. “Our everyday choices affect the amount of emissions that are added to the atmosphere.”

    But to compel people to change their emissions, it may be less about a number, and more about a feeling.

    “To get people to act, my hypothesis is, you need to reach them not just by convincing them to be good citizens and saying it’s good for the world to keep below 1.5 degrees, but showing how they individually will be impacted,” says Eltahir, who specializes on the study of regional climates, focusing on how climate change impacts the water cycle and frequency of extreme weather such as heat waves.

    “True climate progress requires a dramatic change in how the human system gets its energy,” Paltsev says. “It is a huge undertaking. Are you ready personally to make sacrifices and to change the way of your life? If one gets an honest answer to that question, it would help to understand why true climate progress is so difficult to achieve.” More

  • in

    How forests can cut carbon, restore ecosystems, and create jobs

    To limit the frequency and severity of droughts, wildfires, flooding, and other adverse consequences of climate change, nearly 200 countries committed to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius. According to the latest United Nations Intergovernmental Panel on Climate Change (IPCC) Report, achieving that goal will require both large-scale greenhouse gas (GHG) emissions reduction and removal of GHGs from the atmosphere.

    At present, the most efficient and scalable GHG-removal strategy is the massive planting of trees through reforestation or afforestation — a “natural climate solution” (NCS) that extracts atmospheric carbon dioxide through photosynthesis and soil carbon sequestration.

    Despite the potential of forestry-based NCS projects to address climate change, biodiversity loss, unemployment, and other societal needs — and their appeal to policymakers, funders, and citizens — they have yet to achieve critical mass, and often underperform due to a mix of interacting ecological, social, and financial constraints. To better understand these challenges and identify opportunities to overcome them, a team of researchers at Imperial College London and the MIT Joint Program on the Science and Policy of Global Change recently studied how environmental scientists, local stakeholders, and project funders perceive the risks and benefits of NCS projects, and how these perceptions impact project goals and performance. To that end, they surveyed and consulted with dozens of recognized experts and organizations spanning the fields of ecology, finance, climate policy, and social science.

    The team’s analysis, which appears in the journal Frontiers in Climate, found two main factors that have hindered the success of forestry-based NCS projects.

    First, the ambition — levels of carbon removal, ecosystem restoration, job creation, and other environmental and social targets — of selected NCS projects is limited by funders’ perceptions of their overall risk. Among other things, funders aim to minimize operational risk (e.g., Will newly planted trees survive and grow?), political risk (e.g., Just how secure is their access to the land where trees will be planted?); and reputational risk (e.g., Will the project be perceived as an exercise in “greenwashing,” or fall way short of its promised environmental and social benefits?). Funders seeking a financial return on their initial investment are also concerned about the dependability of complex monitoring, reporting, and verification methods used to quantify atmospheric carbon removal, biodiversity gains, and other metrics of project performance.

    Second, the environmental and social benefits of NCS projects are unlikely to be realized unless the local communities impacted by these projects are granted ownership over their implementation and outcomes. But while engaging with local communities is critical to project performance, it can be challenging both legally and financially to set up incentives (e.g., payment and other forms of compensation) to mobilize such engagement.

    “Many carbon offset projects raise legitimate concerns about their effectiveness,” says study lead author Bonnie Waring, a senior lecturer at the Grantham Institute on Climate Change and the Environment, Imperial College London. “However, if nature climate solution projects are done properly, they can help with sustainable development and empower local communities.”

    Drawing on surveys and consultations with NCS experts, stakeholders, and funders, the research team highlighted several recommendations on how to overcome key challenges faced by forestry-based NCS projects and boost their environmental and social performance.

    These recommendations include encouraging funders to evaluate projects based on robust internal governance, support from regional and national governments, secure land tenure, material benefits for local communities, and full participation of community members from across a spectrum of socioeconomic groups; improving the credibility and verifiability of project emissions reductions and related co-benefits; and maintaining an open dialogue and shared costs and benefits among those who fund, implement, and benefit from these projects.

    “Addressing climate change requires approaches that include emissions mitigation from economic activities paired with greenhouse gas reductions by natural ecosystems,” says Sergey Paltsev, a co-author of the study and deputy director of the MIT Joint Program. “Guided by these recommendations, we advocate for a proper scaling-up of NCS activities from project levels to help assure integrity of emissions reductions across entire countries.” More

  • in

    Finding “hot spots” where compounding environmental and economic risks converge

    A computational tool developed by researchers at the MIT Joint Program on the Science and Policy of Global Change pinpoints specific counties within the United States that are particularly vulnerable to economic distress resulting from a transition from fossil fuels to low-carbon energy sources. By combining county-level data on employment in fossil fuel (oil, natural gas, and coal) industries with data on populations below the poverty level, the tool identifies locations with high risks for transition-driven economic hardship. It turns out that many of these high-risk counties are in the south-central U.S., with a heavy concentration in the lower portions of the Mississippi River.

    The computational tool, which the researchers call the System for the Triage of Risks from Environmental and Socio-economic Stressors (STRESS) platform, almost instantly displays these risk combinations on an easy-to-read visual map, revealing those counties that stand to gain the most from targeted green jobs retraining programs.  

    Drawing on data that characterize land, water, and energy systems; biodiversity; demographics; environmental equity; and transportation networks, the STRESS platform enables users to assess multiple, co-evolving, compounding hazards within a U.S. geographical region from the national to the county level. Because of its comprehensiveness and precision, this screening-level visualization tool can pinpoint risk “hot spots” that can be subsequently investigated in greater detail. Decision-makers can then plan targeted interventions to boost resilience to location-specific physical and economic risks.

    The platform and its applications are highlighted in a new study in the journal Frontiers in Climate.

    “As risks to natural and managed resources — and to the economies that depend upon them — become more complex, interdependent, and compounding amid rapid environmental and societal changes, they require more and more human and computational resources to understand and act upon,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “The STRESS platform provides decision-makers with an efficient way to combine and analyze data on those risks that matter most to them, identify ‘hot spots’ of compounding risk, and design interventions to minimize that risk.”

    In one demonstration of the STRESS platform’s capabilities, the study shows that national and global actions to reduce greenhouse gas emissions could simultaneously reduce risks to land, water, and air quality in the upper Mississippi River basin while increasing economic risks in the lower basin, where poverty and unemployment are already disproportionate. In another demonstration, the platform finds concerning “hot spots” where flood risk, poverty, and nonwhite populations coincide.

    The risk triage platform is based on an emerging discipline called multi-sector dynamics (MSD), which seeks to understand and model compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in natural and managed resources. With funding from the U.S. Department of Energy, the MIT Joint Program has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States.

    Current STRESS platform data includes more than 100 risk metrics at the county-level scale, but data collection is ongoing. MIT Joint Program researchers are continuing to develop the STRESS platform as an “open-science tool” that welcomes input from academics, researchers, industry and the general public. More

  • in

    Improving health outcomes by targeting climate and air pollution simultaneously

    Climate policies are typically designed to reduce greenhouse gas emissions that result from human activities and drive climate change. The largest source of these emissions is the combustion of fossil fuels, which increases atmospheric concentrations of ozone, fine particulate matter (PM2.5) and other air pollutants that pose public health risks. While climate policies may result in lower concentrations of health-damaging air pollutants as a “co-benefit” of reducing greenhouse gas emissions-intensive activities, they are most effective at improving health outcomes when deployed in tandem with geographically targeted air-quality regulations.

    Yet the computer models typically used to assess the likely air quality/health impacts of proposed climate/air-quality policy combinations come with drawbacks for decision-makers. Atmospheric chemistry/climate models can produce high-resolution results, but they are expensive and time-consuming to run. Integrated assessment models can produce results for far less time and money, but produce results at global and regional scales, rendering them insufficiently precise to obtain accurate assessments of air quality/health impacts at the subnational level.

    To overcome these drawbacks, a team of researchers at MIT and the University of California at Davis has developed a climate/air-quality policy assessment tool that is both computationally efficient and location-specific. Described in a new study in the journal ACS Environmental Au, the tool could enable users to obtain rapid estimates of combined policy impacts on air quality/health at more than 1,500 locations around the globe — estimates precise enough to reveal the equity implications of proposed policy combinations within a particular region.

    “The modeling approach described in this study may ultimately allow decision-makers to assess the efficacy of multiple combinations of climate and air-quality policies in reducing the health impacts of air pollution, and to design more effective policies,” says Sebastian Eastham, the study’s lead author and a principal research scientist at the MIT Joint Program on the Science and Policy of Global Change. “It may also be used to determine if a given policy combination would result in equitable health outcomes across a geographical area of interest.”

    To demonstrate the efficiency and accuracy of their policy assessment tool, the researchers showed that outcomes projected by the tool within seconds were consistent with region-specific results from detailed chemistry/climate models that took days or even months to run. While continuing to refine and develop their approaches, they are now working to embed the new tool into integrated assessment models for direct use by policymakers.

    “As decision-makers implement climate policies in the context of other sustainability challenges like air pollution, efficient modeling tools are important for assessment — and new computational techniques allow us to build faster and more accurate tools to provide credible, relevant information to a broader range of users,” says Noelle Selin, a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences, and supervising author of the study. “We are looking forward to further developing such approaches, and to working with stakeholders to ensure that they provide timely, targeted and useful assessments.”

    The study was funded, in part, by the U.S. Environmental Protection Agency and the Biogen Foundation. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    Coordinating climate and air-quality policies to improve public health

    As America’s largest investment to fight climate change, the Inflation Reduction Act positions the country to reduce its greenhouse gas emissions by an estimated 40 percent below 2005 levels by 2030. But as it edges the United States closer to achieving its international climate commitment, the legislation is also expected to yield significant — and more immediate — improvements in the nation’s health. If successful in accelerating the transition from fossil fuels to clean energy alternatives, the IRA will sharply reduce atmospheric concentrations of fine particulates known to exacerbate respiratory and cardiovascular disease and cause premature deaths, along with other air pollutants that degrade human health. One recent study shows that eliminating air pollution from fossil fuels in the contiguous United States would prevent more than 50,000 premature deaths and avoid more than $600 billion in health costs each year.

    While national climate policies such as those advanced by the IRA can simultaneously help mitigate climate change and improve air quality, their results may vary widely when it comes to improving public health. That’s because the potential health benefits associated with air quality improvements are much greater in some regions and economic sectors than in others. Those benefits can be maximized, however, through a prudent combination of climate and air-quality policies.

    Several past studies have evaluated the likely health impacts of various policy combinations, but their usefulness has been limited due to a reliance on a small set of standard policy scenarios. More versatile tools are needed to model a wide range of climate and air-quality policy combinations and assess their collective effects on air quality and human health. Now researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Institute for Data, Systems and Society (IDSS) have developed a publicly available, flexible scenario tool that does just that.

    In a study published in the journal Geoscientific Model Development, the MIT team introduces its Tool for Air Pollution Scenarios (TAPS), which can be used to estimate the likely air-quality and health outcomes of a wide range of climate and air-quality policies at the regional, sectoral, and fuel-based level. 

    “This tool can help integrate the siloed sustainability issues of air pollution and climate action,” says the study’s lead author William Atkinson, who recently served as a Biogen Graduate Fellow and research assistant at the IDSS Technology and Policy Program’s (TPP) Research to Policy Engagement Initiative. “Climate action does not guarantee a clean air future, and vice versa — but the issues have similar sources that imply shared solutions if done right.”

    The study’s initial application of TAPS shows that with current air-quality policies and near-term Paris Agreement climate pledges alone, short-term pollution reductions give way to long-term increases — given the expected growth of emissions-intensive industrial and agricultural processes in developing regions. More ambitious climate and air-quality policies could be complementary, each reducing different pollutants substantially to give tremendous near- and long-term health benefits worldwide.

    “The significance of this work is that we can more confidently identify the long-term emission reduction strategies that also support air quality improvements,” says MIT Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “This is a win-win for setting climate targets that are also healthy targets.”

    TAPS projects air quality and health outcomes based on three integrated components: a recent global inventory of detailed emissions resulting from human activities (e.g., fossil fuel combustion, land-use change, industrial processes); multiple scenarios of emissions-generating human activities between now and the year 2100, produced by the MIT Economic Projection and Policy Analysis model; and emissions intensity (emissions per unit of activity) scenarios based on recent data from the Greenhouse Gas and Air Pollution Interactions and Synergies model.

    “We see the climate crisis as a health crisis, and believe that evidence-based approaches are key to making the most of this historic investment in the future, particularly for vulnerable communities,” says Johanna Jobin, global head of corporate reputation and responsibility at Biogen. “The scientific community has spoken with unanimity and alarm that not all climate-related actions deliver equal health benefits. We’re proud of our collaboration with the MIT Joint Program to develop this tool that can be used to bridge research-to-policy gaps, support policy decisions to promote health among vulnerable communities, and train the next generation of scientists and leaders for far-reaching impact.”

    The tool can inform decision-makers about a wide range of climate and air-quality policies. Policy scenarios can be applied to specific regions, sectors, or fuels to investigate policy combinations at a more granular level, or to target short-term actions with high-impact benefits.

    TAPS could be further developed to account for additional emissions sources and trends.

    “Our new tool could be used to examine a large range of both climate and air quality scenarios. As the framework is expanded, we can add detail for specific regions, as well as additional pollutants such as air toxics,” says study supervising co-author Noelle Selin, professor at IDSS and the MIT Department of Earth, Atmospheric and Planetary Sciences, and director of TPP.    

    This research was supported by the U.S. Environmental Protection Agency and its Science to Achieve Results (STAR) program; Biogen; TPP’s Leading Technology and Policy Initiative; and TPP’s Research to Policy Engagement Initiative. More

  • in

    Professor Emeritus Richard “Dick” Eckaus, who specialized in development economics, dies at 96

    Richard “Dick” Eckaus, Ford Foundation International Professor of Economics, emeritus, in the Department of Economics, died on Sept. 11 in Boston. He was 96 years old.

    Eckaus was born in Kansas City, Missouri on April 30, 1926, the youngest of three children to parents who had emigrated from Lithuania. His father, Julius Eckaus, was a tailor, and his mother, Bessie (Finkelstein) Eckaus helped run the business. The family struggled to make ends meet financially but academic success offered Eckaus a way forward.

    He graduated from Westport High School, joined the United States Navy, and was awarded a college scholarship via the V-12 Navy College Training Program during World War II to study electrical engineering at Iowa State University. After graduating in 1944, Eckaus served on a base in New York State until he was discharged in 1946 as lieutenant junior grade.

    He attended Washington University in St. Louis, Missouri, on the GI Bill, graduating in 1948 with a master’s degree in economics, before relocating to Boston and serving as instructor of economics at Babson Institute, and then assistant and associate professor of economics at Brandeis University from 1951 to 1962. He concurrently earned a PhD in economics from MIT in 1954.

    The following year, the American Economic Review published “The Factor Proportions Problem in Economic Development,” a paper written by Eckaus that remained part of the macroeconomics canon for decades. He returned to MIT in 1962 and went on to teach development economics to generations of MIT students, serving as head of the department from 1986 to 1990 and continuing to work there for the remainder of his career.

    The development economist Paul Rosenstein-Rodan (1902-85), Eckaus’ mentor at MIT, took him to live and work first in Italy in 1954 and then in India in 1961. These stints helping governments abroad solidified Eckaus’ commitment to not only excelling in the field, but also creating opportunities for colleagues and students to contribute as well — occasionally in conjunction with the World Bank.

    Longtime colleague Abhijit Banerjee, a Nobel laureate, Ford Foundation International Professor of Economics, and director of the Abdul Latif Jameel Poverty Action Lab at MIT, recalls reading a reprint of Eckaus’ 1955 paper as an undergraduate in India. When he subsequently arrived at MIT as a doctoral candidate, he remembers “trying to tread lightly and not to take up too much space,” around the senior economist. “In fact, he made me feel so welcome,” Banerjee says. “He was both an outstanding scholar and someone who had the modesty and generosity to make younger scholars feel valued and heard.”

    The field of development economics provided Eckaus with a broad, powerful platform to work with governments in developing countries — including India, Egypt, Bhutan, Mexico, and Portugal — to set up economic systems. His development planning models helped governments to forecast where their economies were headed and how public policies could be implemented to shift or accelerate the direction.

    The Government of Portugal awarded Eckaus the Great-Cross of the Order of Prince Henry the Navigator after he brought teams from MIT to assist the country in its peaceful transition to democracy following the 1974 Carnation Revolution. Initiated at the request of the Portuguese Central Bank, these graduate students became some of the most prominent economists of their generation in America. They include Paul Krugman, Andrew Abel, Jeremy I. Bulow, and Kenneth Rogoff.

    His colleague for five decades, Paul Joskow, the Elizabeth and James Killian Professor of Economics at MIT, says that’s no surprise. “He was a real rock of the economics department. He deeply cared about the graduate students and younger faculty. He was a very supportive person.”

    Eckaus was also deeply interested in economic aspects of energy and environment, and in 1991 was instrumental in the formation of the MIT Joint Program on the Science and Policy of Global Change, a program that integrates the natural and social sciences in analysis of global climate threat. As Joint Program co-founder Henry Jacoby observes, “Dick provided crucial ideas as to how that kind of interdisciplinary work might be done at MIT. He was already 65 at the time, and continued for three decades to be active in guiding the research and analysis.”

    Although Eckaus retired officially in 1996, he continued to attend weekly faculty lunches, conduct research, mentor colleagues, and write papers related to climate change and the energy crisis. He leaves behind a trove of more than 100 published papers and eight authored and co-authored books.

    “He was continuously retooling himself and creating new interests. I was impressed by his agility of mind and his willingness to shift to new areas,” says his oldest living friend and peer, Jagdish Bhagwati, Columbia University professor of economics, law, and international relations, emeritus, and director of the Raj Center on Indian Economic Policies. “In their early career, economists usually write short theoretical articles that make large points, and Dick did that with two seminal articles in the leading professional journals of the time, the Quarterly Journal of Economics and the American Economic Review. Then, he shifted his focus to building large computable models. He also diversified by working in an advisory capacity in countries as diverse as Portugal and India. He was a ‘complete’ economist who straddled all styles of economics with distinction.” 

    Eckaus is survived by his beloved wife of 32 years Patricia Leahy Meaney of Brookline, Massachusetts. The two traveled the world, hiked the Alps, and collected pre-Columbian and contemporary art. He is lovingly remembered by his daughter Susan Miller; his step-son James Meaney (Bruna); step-daughter Caitlin Meaney Burrows (Lee); and four grandchildren, Chloe Burrows, Finley Burrows, Brandon Meaney, and Maria Sophia Meaney.

    In lieu of flowers, please consider a donation in Eckaus’ name to MIT Economics (77 Massachusetts Ave., Building E52-300, Cambridge, MA 02139). A memorial in his honor will be held later this year. More

  • in

    Stranded assets could exact steep costs on fossil energy producers and investors

    A 2021 study in the journal Nature found that in order to avert the worst impacts of climate change, most of the world’s known fossil fuel reserves must remain untapped. According to the study, 90 percent of coal and nearly 60 percent of oil and natural gas must be kept in the ground in order to maintain a 50 percent chance that global warming will not exceed 1.5 degrees Celsius above preindustrial levels.

    As the world transitions away from greenhouse-gas-emitting activities to keep global warming well below 2 C (and ideally 1.5 C) in alignment with the Paris Agreement on climate change, fossil fuel companies and their investors face growing financial risks (known as transition risks), including the prospect of ending up with massive stranded assets. This ongoing transition is likely to significantly scale back fossil fuel extraction and coal-fired power plant operations, exacting steep costs — most notably asset value losses — on fossil-energy producers and shareholders.

    Now, a new study in the journal Climate Change Economics led by researchers at the MIT Joint Program on the Science and Policy of Global Change estimates the current global asset value of untapped fossil fuels through 2050 under four increasingly ambitious climate-policy scenarios. The least-ambitious scenario (“Paris Forever”) assumes that initial Paris Agreement greenhouse gas emissions-reduction pledges are upheld in perpetuity; the most stringent scenario (“Net Zero 2050”) adds coordinated international policy instruments aimed at achieving global net-zero emissions by 2050.

    Powered by the MIT Joint Program’s model of the world economy with detailed representation of the energy sector and energy industry assets over time, the study finds that the global net present value of untapped fossil fuel output through 2050 relative to a reference “No Policy” scenario ranges from $21.5 trillion (Paris Forever) to $30.6 trillion (Net Zero 2050). The estimated global net present value of stranded assets in coal power generation through 2050 ranges from $1.3 to $2.3 trillion.

    “The more stringent the climate policy, the greater the volume of untapped fossil fuels, and hence the higher the potential asset value loss for fossil-fuel owners and investors,” says Henry Chen, a research scientist at the MIT Joint Program and the study’s lead author.

    The global economy-wide analysis presented in the study provides a more fine-grained assessment of stranded assets than those performed in previous studies. Firms and financial institutions may combine the MIT analysis with details on their own investment portfolios to assess their exposure to climate-related transition risk. More