More stories

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More

  • in

    Scientists project increased risk to water supplies in South Africa this century

    In 2018, Cape Town, South Africa’s second most populous city, came very close to running out of water as the multi-year “Day Zero” drought depleted its reservoirs. Since then, researchers from Stanford University determined that climate change had made this extreme drought five to six times more likely, and warned that a lot more Day Zero events could occur in regions with similar climates in the future. A better understanding of likely surface air temperature and precipitation trends in South Africa and other dry, populated areas around the world in the coming decades could empower decision-makers to pursue science-based climate mitigation and adaptation measures designed to reduce the risk of future Day Zero events.    

    Toward that end, researchers at the MIT Joint Program on the Science and Policy of Global Change, International Food Policy Research Institute, and CGIAR have produced modeled projections of 21st-century changes in seasonal surface air temperature and precipitation for South Africa that systematically and comprehensively account for uncertainties in how Earth and socioeconomic systems behave and co-evolve. Presented in a study in the journal Climatic Change, these projections show how temperature and precipitation over three sub-national regions — western, central, and eastern South Africa — are likely to change under a wide range of global climate mitigation policy scenarios.

    In a business-as-usual global climate policy scenario in which no emissions or climate targets are set or met, the projections show that for all three regions, there’s a greater-than 50 percent likelihood that mid-century temperatures will increase threefold over the current climate’s range of variability. But the risk of these mid-century temperature increases is effectively eliminated through more aggressive climate targets.

    The business-as-usual projections indicate that the risk of decreased precipitation levels in western and central South Africa is three to four times higher than the risk of increased precipitation levels. Under a global climate mitigation policy designed to cap global warming at 1.5 degrees Celsius by 2100, the risk of precipitation changes within South Africa toward the end of the century (2065-74) is similar to the risk during the 2030s in the business-as-usual scenario.

    Rising risks of substantially reduced precipitation levels throughout this century under a business-as-usual scenario suggest increased reliance and stress on the widespread water-efficiency measures established in the aftermath of the Day Zero drought. But a 1.5 C global climate mitigation policy would delay these risks by 30 years, giving South Africa ample lead time to prepare for and adapt to them.

    “Our analysis provides risk-based evidence on the benefits of climate mitigation policies as well as unavoidable climate impacts that will need to be addressed through adaptive measures,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “Global action to limit human-induced warming could give South Africa enough time to secure sufficient water supplies to sustain its population. Otherwise, anticipated climate shifts by the middle of the next decade may well make Day-Zero situations more common.”

    This study is part of an ongoing effort to assess the risks that climate change poses for South Africa’s agricultural, economic, energy and infrastructure sectors. More

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More

  • in

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    Over a 36-hour period in August, Hurricane Henri delivered record rainfall in New York City, where an aging storm-sewer system was not built to handle the deluge, resulting in street flooding. Meanwhile, an ongoing drought in California continued to overburden aquifers and extend statewide water restrictions. As climate change amplifies the frequency and intensity of extreme events in the United States and around the world, and the populations and economies they threaten grow and change, there is a critical need to make infrastructure more resilient. But how can this be done in a timely, cost-effective way?

    An emerging discipline called multi-sector dynamics (MSD) offers a promising solution. MSD homes in on compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in infrastructure and managed resources.

    At MIT, the Joint Program on the Science and Policy of Global Change has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States. In a two-hour webinar on Sept. 15, MIT Joint Program researchers presented an overview of the program’s MSD research tool set and its applications.  

    MSD and the risk triage platform

    “Multi-sector dynamics explores interactions and interdependencies among human and natural systems, and how these systems may adapt, interact, and co-evolve in response to short-term shocks and long-term influences and stresses,” says MIT Joint Program Deputy Director C. Adam Schlosser, noting that such analysis can reveal and quantify potential risks that would likely evade detection in siloed investigations. “These systems can experience cascading effects or failures after crossing tipping points. The real question is not just where these tipping points are in each system, but how they manifest and interact across all systems.”

    To address that question, the program’s MSD researchers have developed the MIT Socio-Environmental Triage (MST) platform, now publicly available for the first time. Focused on the continental United States, the first version of the platform analyzes present-day risks related to water, land, climate, the economy, energy, demographics, health, and infrastructure, and where these compound to create risk hot spots. It’s essentially a screening-level visualization tool that allows users to examine risks, identify hot spots when combining risks, and make decisions about how to deploy more in-depth analysis to solve complex problems at regional and local levels. For example, MST can identify hot spots for combined flood and poverty risks in the lower Mississippi River basin, and thereby alert decision-makers as to where more concentrated flood-control resources are needed.

    Successive versions of the platform will incorporate projections based on the MIT Joint Program’s Integrated Global System Modeling (IGSM) framework of how different systems and stressors may co-evolve into the future and thereby change the risk landscape. This enhanced capability could help uncover cost-effective pathways for mitigating and adapting to a wide range of environmental and economic risks.  

    MSD applications

    Five webinar presentations explored how MIT Joint Program researchers are applying the program’s risk triage platform and other MSD modeling tools to identify potential tipping points and risks in five key domains: water quality, land use, economics and energy, health, and infrastructure. 

    Joint Program Principal Research Scientist Xiang Gao described her efforts to apply a high-resolution U.S. water-quality model to calculate a location-specific, water-quality index over more than 2,000 river basins in the country. By accounting for interactions among climate, agriculture, and socioeconomic systems, various water-quality measures can be obtained ranging from nitrate and phosphate levels to phytoplankton concentrations. This modeling approach advances a unique capability to identify potential water-quality risk hot spots for freshwater resources.

    Joint Program Research Scientist Angelo Gurgel discussed his MSD-based analysis of how climate change, population growth, changing diets, crop-yield improvements and other forces that drive land-use change at the global level may ultimately impact how land is used in the United States. Drawing upon national observational data and the IGSM framework, the analysis shows that while current U.S. land-use trends are projected to persist or intensify between now and 2050, there is no evidence of any concerning tipping points arising throughout this period.  

    MIT Joint Program Research Scientist Jennifer Morris presented several examples of how the risk triage platform can be used to combine existing U.S. datasets and the IGSM framework to assess energy and economic risks at the regional level. For example, by aggregating separate data streams on fossil-fuel employment and poverty, one can target selected counties for clean energy job training programs as the nation moves toward a low-carbon future. 

    “Our modeling and risk triage frameworks can provide pictures of current and projected future economic and energy landscapes,” says Morris. “They can also highlight interactions among different human, built, and natural systems, including compounding risks that occur in the same location.”  

    MIT Joint Program research affiliate Sebastian Eastham, a research scientist at the MIT Laboratory for Aviation and the Environment, described an MSD approach to the study of air pollution and public health. Linking the IGSM with an atmospheric chemistry model, Eastham ultimately aims to better understand where the greatest health risks are in the United States and how they may compound throughout this century under different policy scenarios. Using the risk triage tool to combine current risk metrics for air quality and poverty in a selected county based on current population and air-quality data, he showed how one can rapidly identify cardiovascular and other air-pollution-induced disease risk hot spots.

    Finally, MIT Joint Program research affiliate Alyssa McCluskey, a lecturer at the University of Colorado at Boulder, showed how the risk triage tool can be used to pinpoint potential risks to roadways, waterways, and power distribution lines from flooding, extreme temperatures, population growth, and other stressors. In addition, McCluskey described how transportation and energy infrastructure development and expansion can threaten critical wildlife habitats.

    Enabling comprehensive, location-specific analyses of risks and hot spots within and among multiple domains, the Joint Program’s MSD modeling tools can be used to inform policymaking and investment from the municipal to the global level.

    “MSD takes on the challenge of linking human, natural, and infrastructure systems in order to inform risk analysis and decision-making,” says Schlosser. “Through our risk triage platform and other MSD models, we plan to assess important interactions and tipping points, and to provide foresight that supports action toward a sustainable, resilient, and prosperous world.”

    This research is funded by the U.S. Department of Energy’s Office of Science as an ongoing project. More

  • in

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Emissions from shipping activities around the world account for nearly 3 percent of total human-caused greenhouse gas emissions, and could increase by up to 50 percent by 2050, making them an important and often overlooked target for global climate mitigation. At the same time, shipping-related emissions of additional pollutants, particularly nitrogen and sulfur oxides, pose a significant threat to global health, as they degrade air quality enough to cause premature deaths.

    The main source of shipping emissions is the combustion of heavy fuel oil in large diesel engines, which disperses pollutants into the air over coastal areas. The nitrogen and sulfur oxides emitted from these engines contribute to the formation of PM2.5, airborne particulates with diameters of up to 2.5 micrometers that are linked to respiratory and cardiovascular diseases. Previous studies have estimated that PM2.5  from shipping emissions contribute to about 60,000 cardiopulmonary and lung cancer deaths each year, and that IMO 2020, an international policy that caps engine fuel sulfur content at 0.5 percent, could reduce PM2.5 concentrations enough to lower annual premature mortality by 34 percent.

    Global shipping emissions arise from both domestic (between ports in the same country) and international (between ports of different countries) shipping activities, and are governed by national and international policies, respectively. Consequently, effective mitigation of the air quality and health impacts of global shipping emissions will require that policymakers quantify the relative contributions of domestic and international shipping activities to these adverse impacts in an integrated global analysis.

    A new study in the journal Environmental Research Letters provides that kind of analysis for the first time. To that end, the study’s co-authors — researchers from MIT and the Hong Kong University of Science and Technology — implement a three-step process. First, they create global shipping emission inventories for domestic and international vessels based on ship activity records of the year 2015 from the Automatic Identification System (AIS). Second, they apply an atmospheric chemistry and transport model to this data to calculate PM2.5 concentrations generated by that year’s domestic and international shipping activities. Finally, they apply a model that estimates mortalities attributable to these pollutant concentrations.

    The researchers find that approximately 94,000 premature deaths were associated with PM2.5 exposure due to maritime shipping in 2015 — 83 percent international and 17 percent domestic. While international shipping accounted for the vast majority of the global health impact, some regions experienced significant health burdens from domestic shipping operations. This is especially true in East Asia: In China, 44 percent of shipping-related premature deaths were attributable to domestic shipping activities.

    “By comparing the health impacts from international and domestic shipping at the global level, our study could help inform decision-makers’ efforts to coordinate shipping emissions policies across multiple scales, and thereby reduce the air quality and health impacts of these emissions more effectively,” says Yiqi Zhang, a researcher at the Hong Kong University of Science and Technology who led the study as a visiting student supported by the MIT Joint Program on the Science and Policy of Global Change.

    In addition to estimating the air-quality and health impacts of domestic and international shipping, the researchers evaluate potential health outcomes under different shipping emissions-control policies that are either currently in effect or likely to be implemented in different regions in the near future.

    They estimate about 30,000 avoided deaths per year under a scenario consistent with IMO 2020, an international regulation limiting the sulfur content in shipping fuel oil to 0.5 percent — a finding that tracks with previous studies. Further strengthening regulations on sulfur content would yield only slight improvement; limiting sulfur content to 0.1 percent reduces annual shipping-attributable PM2.5-related premature deaths by an additional 5,000. In contrast, regulating nitrogen oxides instead, involving a Tier III NOx Standard would produce far greater benefits than a 0.1-percent sulfur cap, with 33,000 further avoided deaths.

    “Areas with high proportions of mortalities contributed by domestic shipping could effectively use domestic regulations to implement controls,” says study co-author Noelle Selin, a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences, and a faculty affiliate of the MIT Joint Program. “For other regions where much damage comes from international vessels, further international cooperation is required to mitigate impacts.” More

  • in

    Electrifying cars and light trucks to meet Paris climate goals

    On Aug. 5, the White House announced that it seeks to ensure that 50 percent of all new passenger vehicles sold in the United States by 2030 are powered by electricity. The purpose of this target is to enable the U.S to remain competitive with China in the growing electric vehicle (EV) market and meet its international climate commitments. Setting ambitious EV sales targets and transitioning to zero-carbon power sources in the United States and other nations could lead to significant reductions in carbon dioxide and other greenhouse gas emissions in the transportation sector and move the world closer to achieving the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius relative to preindustrial levels.

    At this time, electrification of the transportation sector is occurring primarily in private light-duty vehicles (LDVs). In 2020, the global EV fleet exceeded 10 million, but that’s a tiny fraction of the cars and light trucks on the road. How much of the LDV fleet will need to go electric to keep the Paris climate goal in play? 

    To help answer that question, researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Energy Initiative have assessed the potential impacts of global efforts to reduce carbon dioxide emissions on the evolution of LDV fleets over the next three decades.

    Using an enhanced version of the multi-region, multi-sector MIT Economic Projection and Policy Analysis (EPPA) model that includes a representation of the household transportation sector, they projected changes for the 2020-50 period in LDV fleet composition, carbon dioxide emissions, and related impacts for 18 different regions. Projections were generated under four increasingly ambitious climate mitigation scenarios: a “Reference” scenario based on current market trends and fuel efficiency policies, a “Paris Forever” scenario in which current Paris Agreement commitments (Nationally Determined Contributions, or NDCs) are maintained but not strengthened after 2030, a “Paris to 2 C” scenario in which decarbonization actions are enhanced to be consistent with capping global warming at 2 C, and an “Accelerated Actions” scenario the caps global warming at 1.5 C through much more aggressive emissions targets than the current NDCs.

    Based on projections spanning the first three scenarios, the researchers found that the global EV fleet will likely grow to about 95-105 million EVs by 2030, and 585-823 million EVs by 2050. In the Accelerated Actions scenario, global EV stock reaches more than 200 million vehicles in 2030, and more than 1 billion in 2050, accounting for two-thirds of the global LDV fleet. The research team also determined that EV uptake will likely grow but vary across regions over the 30-year study time frame, with China, the United States, and Europe remaining the largest markets. Finally, the researchers found that while EVs play a role in reducing oil use, a more substantial reduction in oil consumption comes from economy-wide carbon pricing. The results appear in a study in the journal Economics of Energy & Environmental Policy.

    “Our study shows that EVs can contribute significantly to reducing global carbon emissions at a manageable cost,” says MIT Joint Program Deputy Director and MIT Energy Initiative Senior Research Scientist Sergey Paltsev, the lead author. “We hope that our findings will help decision-makers to design efficient pathways to reduce emissions.”  

    To boost the EV share of the global LDV fleet, the study’s co-authors recommend more ambitious policies to mitigate climate change and decarbonize the electric grid. They also envision an “integrated system approach” to transportation that emphasizes making internal combustion engine vehicles more efficient, a long-term shift to low- and net-zero carbon fuels, and systemic efficiency improvements through digitalization, smart pricing, and multi-modal integration. While the study focuses on EV deployment, the authors also stress for the need for investment in all possible decarbonization options related to transportation, including enhancing public transportation, avoiding urban sprawl through strategic land-use planning, and reducing the use of private motorized transport by mode switching to walking, biking, and mass transit.

    This research is an extension of the authors’ contribution to the MIT Mobility of the Future study. More

  • in

    Reducing emissions by decarbonizing industry

    A critical challenge in meeting the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius is to vastly reduce carbon dioxide (CO2) and other greenhouse gas emissions generated by the most energy-intensive industries. According to a recent report by the International Energy Agency, these industries — cement, iron and steel, chemicals — account for about 20 percent of global CO2 emissions. Emissions from these industries are notoriously difficult to abate because, in addition to emissions associated with energy use, a significant portion of industrial emissions come from the process itself.

    For example, in the cement industry, about half the emissions come from the decomposition of limestone into lime and CO2. While a shift to zero-carbon energy sources such as solar or wind-powered electricity could lower CO2 emissions in the power sector, there are no easy substitutes for emissions-intensive industrial processes.

    Enter industrial carbon capture and storage (CCS). This technology, which extracts point-source carbon emissions and sequesters them underground, has the potential to remove up to 90-99 percent of CO2 emissions from an industrial facility, including both energy-related and process emissions. And that begs the question: Might CCS alone enable hard-to-abate industries to continue to grow while eliminating nearly all of the CO2 emissions they generate from the atmosphere?

    The answer is an unequivocal yes in a new study in the journal Applied Energy co-authored by researchers at the MIT Joint Program on the Science and Policy of Global Change, MIT Energy Initiative, and ExxonMobil.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model that represents different industrial CCS technology choices — and assuming that CCS is the only greenhouse gas emissions mitigation option available to hard-to-abate industries — the study assesses the long-term economic and environmental impacts of CCS deployment under a climate policy aimed at capping the rise in average global surface temperature at 2 C above preindustrial levels.

    The researchers find that absent industrial CCS deployment, the global costs of implementing the 2 C policy are higher by 12 percent in 2075 and 71 percent in 2100, relative to policy costs with CCS. They conclude that industrial CCS enables continued growth in the production and consumption of energy-intensive goods from hard-to-abate industries, along with dramatic reductions in the CO2 emissions they generate. Their projections show that as industrial CCS gains traction mid-century, this growth occurs globally as well as within geographical regions (primarily in China, Europe, and the United States) and the cement, iron and steel, and chemical sectors.

    “Because it can enable deep reductions in industrial emissions, industrial CCS is an essential mitigation option in the successful implementation of policies aligned with the Paris Agreement’s long-term climate targets,” says Sergey Paltsev, the study’s lead author and a deputy director of the MIT Joint Program and senior research scientist at the MIT Energy Initiative. “As the technology advances, our modeling approach offers decision-makers a pathway for projecting the deployment of industrial CCS across industries and regions.”

    But such advances will not take place without substantial, ongoing funding.

    “Sustained government policy support across decades will be needed if CCS is to realize its potential to promote the growth of energy-intensive industries and a stable climate,” says Howard Herzog, a co-author of the study and senior research engineer at the MIT Energy Initiative.

    The researchers also find that advanced CCS options such as cryogenic carbon capture (CCC), in which extracted CO2 is cooled to solid form using far less power than conventional coal- and gas-fired CCS technologies, could help expand the use of CCS in industrial settings through further production cost and emissions reductions.

    The study was supported by sponsors of the MIT Joint Program and by ExxonMobil through its membership in the MIT Energy Initiative. More