More stories

  • in

    Turning automotive engines into modular chemical plants to make green fuels

    Reducing methane emissions is a top priority in the fight against climate change because of its propensity to trap heat in the atmosphere: Methane’s warming effects are 84 times more potent than CO2 over a 20-year timescale.And yet, as the main component of natural gas, methane is also a valuable fuel and a precursor to several important chemicals. The main barrier to using methane emissions to create carbon-negative materials is that human sources of methane gas — landfills, farms, and oil and gas wells — are relatively small and spread out across large areas, while traditional chemical processing facilities are huge and centralized. That makes it prohibitively expensive to capture, transport, and convert methane gas into anything useful. As a result, most companies burn or “flare” their methane at the site where it’s emitted, seeing it as a sunk cost and an environmental liability.The MIT spinout Emvolon is taking a new approach to processing methane by repurposing automotive engines to serve as modular, cost-effective chemical plants. The company’s systems can take methane gas and produce liquid fuels like methanol and ammonia on-site; these fuels can then be used or transported in standard truck containers.”We see this as a new way of chemical manufacturing,” Emvolon co-founder and CEO Emmanuel Kasseris SM ’07, PhD ’11 says. “We’re starting with methane because methane is an abundant emission that we can use as a resource. With methane, we can solve two problems at the same time: About 15 percent of global greenhouse gas emissions come from hard-to-abate sectors that need green fuel, like shipping, aviation, heavy heavy-duty trucks, and rail. Then another 15 percent of emissions come from distributed methane emissions like landfills and oil wells.”By using mass-produced engines and eliminating the need to invest in infrastructure like pipelines, the company says it’s making methane conversion economically attractive enough to be adopted at scale. The system can also take green hydrogen produced by intermittent renewables and turn it into ammonia, another fuel that can also be used to decarbonize fertilizers.“In the future, we’re going to need green fuels because you can’t electrify a large ship or plane — you have to use a high-energy-density, low-carbon-footprint, low-cost liquid fuel,” Kasseris says. “The energy resources to produce those green fuels are either distributed, as is the case with methane, or variable, like wind. So, you cannot have a massive plant [producing green fuels] that has its own zip code. You either have to be distributed or variable, and both of those approaches lend themselves to this modular design.”From a “crazy idea” to a companyKasseris first came to MIT to study mechanical engineering as a graduate student in 2004, when he worked in the Sloan Automotive Lab on a report on the future of transportation. For his PhD, he developed a novel technology for improving internal combustion engine fuel efficiency for a consortium of automotive and energy companies, which he then went to work for after graduation.Around 2014, he was approached by Leslie Bromberg ’73, PhD ’77, a serial inventor with more than 100 patents, who has been a principal research engineer in MIT’s Plasma Science and Fusion Center for nearly 50 years.“Leslie had this crazy idea of repurposing an internal combustion engine as a reactor,” Kasseris recalls. “I had looked at that while working in industry, and I liked it, but my company at the time thought the work needed more validation.”Bromberg had done that validation through a U.S. Department of Energy-funded project in which he used a diesel engine to “reform” methane — a high-pressure chemical reaction in which methane is combined with steam and oxygen to produce hydrogen. The work impressed Kasseris enough to bring him back to MIT as a research scientist in 2016.“We worked on that idea in addition to some other projects, and eventually it had reached the point where we decided to license the work from MIT and go full throttle,” Kasseris recalls. “It’s very easy to work with MIT’s Technology Licensing Office when you are an MIT inventor. You can get a low-cost licensing option, and you can do a lot with that, which is important for a new company. Then, once you are ready, you can finalize the license, so MIT was instrumental.”Emvolon continued working with MIT’s research community, sponsoring projects with Professor Emeritus John Heywood and participating in the MIT Venture Mentoring Service and the MIT Industrial Liaison Program.An engine-powered chemical plantAt the core of Emvolon’s system is an off-the-shelf automotive engine that runs “fuel rich” — with a higher ratio of fuel to air than what is needed for complete combustion.“That’s easy to say, but it takes a lot of [intellectual property], and that’s what was developed at MIT,” Kasseris says. “Instead of burning the methane in the gas to carbon dioxide and water, you partially burn it, or partially oxidize it, to carbon monoxide and hydrogen, which are the building blocks to synthesize a variety of chemicals.”The hydrogen and carbon monoxide are intermediate products used to synthesize different chemicals through further reactions. Those processing steps take place right next to the engine, which makes its own power. Each of Emvolon’s standalone systems fits within a 40-foot shipping container and can produce about 8 tons of methanol per day from 300,000 standard cubic feet of methane gas.The company is starting with green methanol because it’s an ideal fuel for hard-to-abate sectors such as shipping and heavy-duty transport, as well as an excellent feedstock for other high-value chemicals, such as sustainable aviation fuel. Many shipping vessels have already converted to run on green methanol in an effort to meet decarbonization goals.This summer, the company also received a grant from the Department of Energy to adapt its process to produce clean liquid fuels from power sources like solar and wind.“We’d like to expand to other chemicals like ammonia, but also other feedstocks, such as biomass and hydrogen from renewable electricity, and we already have promising results in that direction” Kasseris says. “We think we have a good solution for the energy transition and, in the later stages of the transition, for e-manufacturing.”A scalable approachEmvolon has already built a system capable of producing up to six barrels of green methanol a day in its 5,000 square-foot headquarters in Woburn, Massachusetts.“For chemical technologies, people talk about scale up risk, but with an engine, if it works in a single cylinder, we know it will work in a multicylinder engine,” Kasseris says. “It’s just engineering.”Last month, Emvolon announced an agreement with Montauk Renewables to build a commercial-scale demonstration unit next to a Texas landfill that will initially produce up to 15,000 gallons of green methanol a year and later scale up to 2.5 million gallons. That project could be expanded tenfold by scaling across Montauk’s other sites.“Our whole process was designed to be a very realistic approach to the energy transition,” Kasseris says. “Our solution is designed to produce green fuels and chemicals at prices that the markets are willing to pay today, without the need for subsidies. Using the engines as chemical plants, we can get the capital expenditure per unit output close to that of a large plant, but at a modular scale that enables us to be next to low-cost feedstock. Furthermore, our modular systems require small investments — of $1 to 10 million — that are quickly deployed, one at a time, within weeks, as opposed to massive chemical plants that require multiyear capital construction projects and cost hundreds of millions.” More

  • in

    MIT engineers make converting CO2 into useful products more practical

    As the world struggles to reduce greenhouse gas emissions, researchers are seeking practical, economical ways to capture carbon dioxide and convert it into useful products, such as transportation fuels, chemical feedstocks, or even building materials. But so far, such attempts have struggled to reach economic viability.New research by engineers at MIT could lead to rapid improvements in a variety of electrochemical systems that are under development to convert carbon dioxide into a valuable commodity. The team developed a new design for the electrodes used in these systems, which increases the efficiency of the conversion process.The findings are reported today in the journal Nature Communications, in a paper by MIT doctoral student Simon Rufer, professor of mechanical engineering Kripa Varanasi, and three others.“The CO2 problem is a big challenge for our times, and we are using all kinds of levers to solve and address this problem,” Varanasi says. It will be essential to find practical ways of removing the gas, he says, either from sources such as power plant emissions, or straight out of the air or the oceans. But then, once the CO2 has been removed, it has to go somewhere.A wide variety of systems have been developed for converting that captured gas into a useful chemical product, Varanasi says. “It’s not that we can’t do it — we can do it. But the question is how can we make this efficient? How can we make this cost-effective?”In the new study, the team focused on the electrochemical conversion of CO2 to ethylene, a widely used chemical that can be made into a variety of plastics as well as fuels, and which today is made from petroleum. But the approach they developed could also be applied to producing other high-value chemical products as well, including methane, methanol, carbon monoxide, and others, the researchers say.Currently, ethylene sells for about $1,000 per ton, so the goal is to be able to meet or beat that price. The electrochemical process that converts CO2 into ethylene involves a water-based solution and a catalyst material, which come into contact along with an electric current in a device called a gas diffusion electrode.There are two competing characteristics of the gas diffusion electrode materials that affect their performance: They must be good electrical conductors so that the current that drives the process doesn’t get wasted through resistance heating, but they must also be “hydrophobic,” or water repelling, so the water-based electrolyte solution doesn’t leak through and interfere with the reactions taking place at the electrode surface.Unfortunately, it’s a tradeoff. Improving the conductivity reduces the hydrophobicity, and vice versa. Varanasi and his team set out to see if they could find a way around that conflict, and after many months of trying, they did just that.The solution, devised by Rufer and Varanasi, is elegant in its simplicity. They used a plastic material, PTFE (essentially Teflon), that has been known to have good hydrophobic properties. However, PTFE’s lack of conductivity means that electrons must travel through a very thin catalyst layer, leading to significant voltage drop with distance. To overcome this limitation, the researchers wove a series of conductive copper wires through the very thin sheet of the PTFE.“This work really addressed this challenge, as we can now get both conductivity and hydrophobicity,” Varanasi says.Research on potential carbon conversion systems tends to be done on very small, lab-scale samples, typically less than 1-inch (2.5-centimeter) squares. To demonstrate the potential for scaling up, Varanasi’s team produced a sheet 10 times larger in area and demonstrated its effective performance.To get to that point, they had to do some basic tests that had apparently never been done before, running tests under identical conditions but using electrodes of different sizes to analyze the relationship between conductivity and electrode size. They found that conductivity dropped off dramatically with size, which would mean much more energy, and thus cost, would be needed to drive the reaction.“That’s exactly what we would expect, but it was something that nobody had really dedicatedly investigated before,” Rufer says. In addition, the larger sizes produced more unwanted chemical byproducts besides the intended ethylene.Real-world industrial applications would require electrodes that are perhaps 100 times larger than the lab versions, so adding the conductive wires will be necessary for making such systems practical, the researchers say. They also developed a model which captures the spatial variability in voltage and product distribution on electrodes due to ohmic losses. The model along with the experimental data they collected enabled them to calculate the optimal spacing for conductive wires to counteract the drop off in conductivity.In effect, by weaving the wire through the material, the material is divided into smaller subsections determined by the spacing of the wires. “We split it into a bunch of little subsegments, each of which is effectively a smaller electrode,” Rufer says. “And as we’ve seen, small electrodes can work really well.”Because the copper wire is so much more conductive than the PTFE material, it acts as a kind of superhighway for electrons passing through, bridging the areas where they are confined to the substrate and face greater resistance.To demonstrate that their system is robust, the researchers ran a test electrode for 75 hours continuously, with little change in performance. Overall, Rufer says, their system “is the first PTFE-based electrode which has gone beyond the lab scale on the order of 5 centimeters or smaller. It’s the first work that has progressed into a much larger scale and has done so without sacrificing efficiency.”The weaving process for incorporating the wire can be easily integrated into existing manufacturing processes, even in a large-scale roll-to-roll process, he adds.“Our approach is very powerful because it doesn’t have anything to do with the actual catalyst being used,” Rufer says. “You can sew this micrometric copper wire into any gas diffusion electrode you want, independent of catalyst morphology or chemistry. So, this approach can be used to scale anybody’s electrode.”“Given that we will need to process gigatons of CO2 annually to combat the CO2 challenge, we really need to think about solutions that can scale,” Varanasi says. “Starting with this mindset enables us to identify critical bottlenecks and develop innovative approaches that can make a meaningful impact in solving the problem. Our hierarchically conductive electrode is a result of such thinking.”The research team included MIT graduate students Michael Nitzsche and Sanjay Garimella,  as well as Jack Lake PhD ’23. The work was supported by Shell, through the MIT Energy Initiative. More

  • in

    Tackling the energy revolution, one sector at a time

    As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.A new study by MIT researchers, presented at the recent American Society of Mechanical Engineers 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue. The multivariable model outlined in the paper allows fleet owners and operators to better understand the design choices that impact the economic feasibility of battery-electric and hydrogen fuel cell heavy-duty trucks for commercial application, equipping stakeholders to make informed fleet transition decisions.“The whole issue [of decarbonizing trucking] is like a very big, messy pie. One of the things we can do, from an academic standpoint, is quantify some of those pieces of pie with modeling, based on information and experience we’ve learned from industry stakeholders,” says ZhiYi Liang, PhD student on the renewable hydrogen team at the MIT K. Lisa Yang Global Engineering and Research Center (GEAR) and lead author of the study. Co-authored by Bryony Dupont, visiting scholar at GEAR, and Amos Winter, the Germeshausen Professor in the MIT Department of Mechanical Engineering, the paper elucidates operational and socioeconomic factors that need to be considered in efforts to decarbonize heavy-duty vehicles (HDVs).Operational and infrastructure challengesThe team’s model shows that a technical challenge lies in the amount of energy that needs to be stored on the truck to meet the range and towing performance needs of commercial trucking applications. Due to the high energy density and low cost of diesel, existing diesel drivetrains remain more competitive than alternative lithium battery-electric vehicle (Li-BEV) and hydrogen fuel-cell-electric vehicle (H2 FCEV) drivetrains. Although Li-BEV drivetrains have the highest energy efficiency of all three, they are limited to short-to-medium range routes (under 500 miles) with low freight capacity, due to the weight and volume of the onboard energy storage needed. In addition, the authors note that existing electric grid infrastructure will need significant upgrades to support large-scale deployment of Li-BEV HDVs.While the hydrogen-powered drivetrain has a significant weight advantage that enables higher cargo capacity and routes over 750 miles, the current state of hydrogen fuel networks limits economic viability, especially once operational cost and projected revenue are taken into account. Deployment will most likely require government intervention in the form of incentives and subsidies to reduce the price of hydrogen by more than half, as well as continued investment by corporations to ensure a stable supply. Also, as H2-FCEVs are still a relatively new technology, the ongoing design of conformal onboard hydrogen storage systems — one of which is the subject of Liang’s PhD — is crucial to successful adoption into the HDV market.The current efficiency of diesel systems is a result of technological developments and manufacturing processes established over many decades, a precedent that suggests similar strides can be made with alternative drivetrains. However, interactions with fleet owners, automotive manufacturers, and refueling network providers reveal another major hurdle in the way that each “slice of the pie” is interrelated — issues must be addressed simultaneously because of how they affect each other, from renewable fuel infrastructure to technological readiness and capital cost of new fleets, among other considerations. And first steps into an uncertain future, where no one sector is fully in control of potential outcomes, is inherently risky. “Besides infrastructure limitations, we only have prototypes [of alternative HDVs] for fleet operator use, so the cost of procuring them is high, which means there isn’t demand for automakers to build manufacturing lines up to a scale that would make them economical to produce,” says Liang, describing just one step of a vicious cycle that is difficult to disrupt, especially for industry stakeholders trying to be competitive in a free market. Quantifying a path to feasibility“Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. Although there is no singular avenue to zero emissions, the new model provides a way to further quantify and assess at least one slice of pie to aid decision-making.Other MIT-led efforts aimed at helping industry stakeholders navigate decarbonization include an interactive mapping tool developed by Danika MacDonell, Impact Fellow at the MIT Climate and Sustainability Consortium (MCSC); alongside Florian Allroggen, executive director of MITs Zero Impact Aviation Alliance; and undergraduate researchers Micah Borrero, Helena De Figueiredo Valente, and Brooke Bao. The MCSC’s Geospatial Decision Support Tool supports strategic decision-making for fleet operators by allowing them to visualize regional freight flow densities, costs, emissions, planned and available infrastructure, and relevant regulations and incentives by region.While current limitations reveal the need for joint problem-solving across sectors, the authors believe that stakeholders are motivated and ready to tackle climate problems together. Once-competing businesses already appear to be embracing a culture shift toward collaboration, with the recent agreement between General Motors and Hyundai to explore “future collaboration across key strategic areas,” including clean energy. Liang believes that transitioning the transportation sector to zero emissions is just one part of an “energy revolution” that will require all sectors to work together, because “everything is connected. In order for the whole thing to make sense, we need to consider ourselves part of that pie, and the entire system needs to change,” says Liang. “You can’t make a revolution succeed by yourself.” The authors acknowledge the MIT Climate and Sustainability Consortium for connecting them with industry members in the HDV ecosystem; and the MIT K. Lisa Yang Global Engineering and Research Center and MIT Morningside Academy for Design for financial support. More

  • in

    “Mens et manus” in Guatemala

    In a new, well-equipped lab at the University del Valle de Guatemala (UVG) in June 2024, members of two Mayan farmers’ cooperatives watched closely as Rodrigo Aragón, professor of mechanical engineering at UVG, demonstrated the operation of an industrial ultrasound machine. Then he invited each of them to test the device.“For us, it is a dream to be able to interact with technology,” said Francisca Elizabeth Saloj Saloj, a member of the Ija´tz women’s collective, a group from Guatemala’s highlands.After a seven-hour bumpy bus ride, the farmers had arrived in Guatemala City with sacks full of rosemary, chamomile, and thyme. Their objective: to explore processes for extracting essential oils from their plants and to identify new products to manufacture with these oils. Currently, farmers sell their herbs in local markets for medicinal or culinary purposes. With new technology, says Aragón, they can add value to their harvest, using herb oils as the basis for perfumes, syrups, and tinctures that would reach broader markets. These goods could provide much-needed income to the farmers’ households.A strategy for transformationThis collaboration is just one part of a five-year, $15-million project funded by the U.S. Agency for International Development (USAID) and managed by MIT’s Department of Mechanical Engineering in collaboration with UVG and the Guatemalan Export Association (AGEXPORT). Launched in 2021 and called ASPIRE — Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship — the project aims to collaboratively strengthen UVG, and eventually other universities in Central America, as problem-solving powerhouses that research, design, and build solutions with and for the people most in need.“The vision of ASPIRE is that within a decade, UVG researchers are collaborating with community members on research that generates results that are relevant to addressing local development challenges — results that are picked up and used by policymakers and actors in the private sector,” says MIT Research Scientist Elizabeth Hoffecker, a co-principal investigator of ASPIRE at MIT, and leader of the Institute’s Local Innovation Group.UVG, one of Guatemala’s top universities, has embraced ASPIRE as part of its long-term strategic plan, and is now pursuing wide-ranging changes based on a playbook developed at MIT — including at MIT D-Lab, which deploys participatory design, co-creation, low-cost technologies, and capacity building to meet the complex challenges of poverty — and piloted at UVG. The ASPIRE team is working to extend the reach of its research innovation and entrepreneurship activities to its two regional campuses and to other regional universities. The overall program is informed by MIT’s approach to development of research-driven innovation ecosystems.Although lacking the resources (and PhD programs) of a typical U.S. university, UVG has big ambitions for itself, and for Guatemala.“We want to thrive and lead the country in research and teaching, and to accomplish this, we are creating an innovation and entrepreneurship ecosystem, based on best practices drawn from D-Lab and other MIT groups,” says Mónica Stein, vice-rector for research and outreach at UVG, who holds a doctorate from Stanford University in plant biology. “ASPIRE can really change the way that development work and local research is done so that it has more impact,” says Stein. “And in theory, if you have more impact, then you improve environmental outcomes, health outcomes, educational outcomes, and economic outcomes.”Local innovation and entrepreneurshipShifting gears at a university and launching novel development initiatives are complex challenges, but with training and workshops conducted by D-Lab-trained collaborators and MIT-based ASPIRE staff, UVG faculty, staff, and students are embracing the change. Programs underway should sound familiar to anyone who has set foot recently on the campus of a U.S. research university: hackathons, makerspaces, pitchapaloozas, entrepreneurship competitions, and spinouts. But at UVG, all of these serve a larger purpose: addressing sustainable development goals.ASPIRE principal investigator Daniel Frey, professor of mechanical engineering at MIT, believes some of these programs are already paying off, particularly a UVG venture mentoring service (VMS), modeled after and facilitated by MIT’s own VMS program. “We’d like to see students building companies and improving their livelihoods and those of people from indigenous and marginalized communities,” says Frey.The ASPIRE project intends to enable the lowest-income communities to share more of Guatemala’s wealth, derived mainly from agricultural goods. In collaborating with AGEXPORT, which enables networking with companies across the country, the team zeroed in on creating or enhancing the value chain for several key crops.“Snow peas offer a great target for both research and innovation,” says Adilia Blandón, ASPIRE research project manager and professor of food engineering at UVG. Many farming communities grow snow peas, which they send along to companies for export to the U.S. Unless these peas are perfect in shape and color, Blandón explains, they don’t make it to market. Nearly a third of Guatemala’s crop is left at processing plants, turned into animal feed, or wasted.An ASPIRE snow pea team located farmers from two cooperatives who wanted to solve this problem. At a series of co-creation sessions, these growers and mechanical engineers at UVG developed a prototype for a low-tech cart for collecting snow peas, made from easily acquired local materials, which can navigate the steep and narrow paths on the hills where the plants grow. This method avoids crushing snow peas in a conventional harvest bag. In addition, the snow pea project has engaged women at a technical school to design a harvest apron for women snow pea farmers. “This could be a business opportunity for them,” Blandón says.Blandón vividly recalls her first ASPIRE workshop, focused on participatory design. “It opened my eyes as a researcher in so many ways,” she says. “I learned that instead of taking information from people, I can learn from them and create things with them that they are really excited about.” It completely changed how she approaches research, she says.Working with Mayan communities that produce snow peas, where malnourishment and illness are rampant, Blandón and ASPIRE researchers found that families don’t eat the protein-packed vegetable because they don’t find it palatable — even though so much of it is left over from harvest. Participatory design sessions with a group of mothers yielded an intriguing possibility: grinding snow peas into flour, which would then be incorporated into traditional bean- and corn-based dishes. The recipes born of this collaboration could land on WhatsApp or TikTok, mobile apps familiar to these families.Building value chainsAdditional research projects are teasing out novel ways of adding value to the products grown or made by Guatemalan hands.These include an educational toolkit developed with government farm extension workers to teach avocado producers how to improve their practices. The long-term goal is to grow and export larger and unblemished fruit for the lucrative U.S. market, currently dominated by Mexico. The kit, featuring simple graphics for growers who can’t read or don’t have the time, offers lessons on soil care, fertilizing, and protecting the fruit post-harvest.ASPIRE UVG Research Director Ana Lucia Solano is especially proud of “an immersive, animated, Monopoly-like game that shows farmers the impact of activities like buying fertilizer on their finances,” she says. “If small producers improve their practices, they will have better opportunities to sell their products at a better price, which may allow them to hire more people, teach others more easily, and offer better jobs and working conditions — and maybe this will help prevent farmworkers from having to leave the country.”Solano has just begun a similar program to educate cocoa producers. “The cocoa of Guatemala is wonderful, but the growers, who have great native knowledge, also need to learn new methods so they can transform their chocolate into the kind of high-quality product expected in European markets, with the help of AGEXPORT,” she says.At the UVG Altiplano campus, Mayan instructor Jeremías Morales, who runs the maker space, trained with Amy Smith, an MIT senior lecturer and founding director of the D-Lab, to facilitate creative capacity-building programs. He is working with nearby villages on a solution for the backbreaking labor of planting broccoli seedlings.“Here in Guatemala, small farm holders don’t have technology to do this task,” says Solano. Through design and prototyping workshops, the village and UVG professors have developed an inexpensive device that accomplishes this painful work. “After their next iteration of this technology, we can support the participants in starting a business,” says Solano.Opportunities to invent solutions to commonplace but vexing problems keep popping up. A small village of 100 families has to share two mills to grind corn for their tortillas. It’s a major household expense. With ASPIRE facilitators, a group of women designed a prototype corn mill for home use. “They were skeptical at first, especially when their initial prototypes didn’t work,” reports Solano, “but when they finally succeeded, there was so much excitement about the results, an energy and happiness that you could feel in the room.”Adopting an MIT mindsetThis feeling of empowerment, a pillar of sustainable development, has great meaning for UVG Professor Victor Hugo Ayerdi, an ASPIRE project manager and director of UVG’s Department of Mechanical Engineering.“In college and after I graduated, I thought since everything came from developed countries, and I was in a developing country, I couldn’t invent products.” With that mindset, he says, he went to work in manufacturing and sales for an international tire manufacturing company.But when he arrived at UVG in 2009, Ayerdi heard from mechanical engineering students who craved practical experience designing and building things. Determined to create maker spaces for the three UVG campuses, he took a field trip to MIT, whose motto is “mens et manus” or “mind and hand.”“The trip changed my life,” he says. “The MIT mindset is to believe in yourself, try things, and fail, but assume there has to be a way to do it.” As a result, he says, he realized UVG faculty and students could also use scientific and engineering knowledge to invent products, become entrepreneurs, spark economic growth; they had the capacity. He and other UVG colleagues were primed for change when the ASPIRE opportunity emerged.As some ASPIRE research projects wind down their initial phases, others are just gearing up, including an effort to fashion a water purification system from the shells of farmed shrimp. “We are only just starting to get results from our research,” says Stein. “But we are totally betting on the ASPIRE model because it works at MIT and other places.”The ASPIRE researchers acknowledge they are looking at long timelines to make significant inroads against environmental, health, educational, and economic challenges.“My greatest hope is that ASPIRE will have planted the seed of this innovation and entrepreneurship ecosystem model, and that in a decade, UVG will have optimized the different programs, whether in training, entrepreneurship, or research, enough to actively transfer them to other Central American universities,” says Stein.“We would like to be the hub of this network and we want to stay connected, because, in theory, we can work together on problems that we have in common in our region. That would be really cool.” More

  • in

    Making agriculture more resilient to climate change

    As Earth’s temperature rises, agricultural practices will need to adapt. Droughts will likely become more frequent, and some land may no longer be arable. On top of that is the challenge of feeding an ever-growing population without expanding the production of fertilizer and other agrochemicals, which have a large carbon footprint that is contributing to the overall warming of the planet.Researchers across MIT are taking on these agricultural challenges from a variety of angles, from engineering plants that sound an alarm when they’re under stress to making seeds more resilient to drought. These types of technologies, and more yet to be devised, will be essential to feed the world’s population as the climate changes.“After water, the first thing we need is food. In terms of priority, there is water, food, and then everything else. As we are trying to find new strategies to support a world of 10 billion people, it will require us to invent new ways of making food,” says Benedetto Marelli, an associate professor of civil and environmental engineering at MIT.Marelli is the director of one of the six missions of the recently launched Climate Project at MIT, which focus on research areas such as decarbonizing industry and building resilient cities. Marelli directs the Wild Cards mission, which aims to identify unconventional solutions that are high-risk and high-reward.Drawing on expertise from a breadth of fields, MIT is well-positioned to tackle the challenges posed by climate change, Marelli says. “Bringing together our strengths across disciplines, including engineering, processing at scale, biological engineering, and infrastructure engineering, along with humanities, science, and economics, presents a great opportunity.”Protecting seeds from droughtMarelli, who began his career as a biomedical engineer working on regenerative medicine, is now developing ways to boost crop yields by helping seeds to survive and germinate during drought conditions, or in soil that has been depleted of nutrients. To achieve that, he has devised seed coatings, based on silk and other polymers, that can envelop and nourish seeds during the critical germination process.

    A new seed-coating process could facilitate agriculture on marginal arid lands by enabling the seeds to retain any available water.

    In healthy soil, plants have access to nitrogen, phosphates, and other nutrients that they need, many of which are supplied by microbes that live in the soil. However, in soil that has suffered from drought or overfarming, these nutrients are lacking. Marelli’s idea was to coat the seeds with a polymer that can be embedded with plant-growth-promoting bacteria that “fix” nitrogen by absorbing it from the air and making it available to plants. The microbes can also make other necessary nutrients available to plants.For the first generation of the seed coatings, he embedded these microbes in coatings made of silk — a material that he had previously shown can extend the shelf life of produce, meat, and other foods. In his lab at MIT, Marelli has shown that the seed coatings can help germinating plants survive drought, ultraviolet light exposure, and high salinity.Now, working with researchers at the Mohammed VI Polytechnic University in Morocco, he is adapting the approach to crops native to Morocco, a country that has experienced six consecutive years of drought due a drop in rainfall linked to climate change.For these studies, the researchers are using a biopolymer coating derived from food waste that can be easily obtained in Morocco, instead of silk.“We’re working with local communities to extract the biopolymers, to try to have a process that works at scale so that we make materials that work in that specific environment.” Marelli says. “We may come up with an idea here at MIT within a high-resource environment, but then to work there, we need to talk with the local communities, with local stakeholders, and use their own ingenuity and try to match our solution with something that could actually be applied in the local environment.”Microbes as fertilizersWhether they are experiencing drought or not, crops grow much better when synthetic fertilizers are applied. Although it’s essential to most farms, applying fertilizer is expensive and has environmental consequences. Most of the world’s fertilizer is produced using the Haber-Bosch process, which converts nitrogen and hydrogen to ammonia at high temperatures and pressures. This energy intensive process accounts for about 1.5 percent of the world’s greenhouse gas emissions, and the transportation required to deliver it to farms around the world adds even more emissions.Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT, is developing a microbial alternative to the Haber-Bosch process. Some farms have experimented with applying nitrogen-fixing bacteria directly to the roots of their crops, which has shown some success. However, the microbes are too delicate to be stored long-term or shipped anywhere, so they must be produced in a bioreactor on the farm.

    MIT chemical engineers devised a metal-organic coating that protects bacterial cells from damage without impeding their growth or function.

    To overcome those challenges, Furst has developed a way to coat the microbes with a protective shell that prevents them from being destroyed by heat or other stresses. The coating also protects microbes from damage caused by freeze-drying — a process that would make them easier to transport.The coatings can vary in composition, but they all consist of two components. One is a metal such as iron, manganese, or zinc, and the other is a polyphenol — a type of plant-derived organic compound that includes tannins and other antioxidants. These two components self-assemble into a protective shell that encapsulates bacteria.

    Play video

    Mighty Microbes: The Power of Protective PolymersVideo: Chemistry Shorts

    “These microbes would be delivered with the seeds, so it would remove the need for fertilizing mid-growing. It also reduces the cost and provides more autonomy to the farmers and decreases carbon emissions associated with agriculture,” Furst says. “We think it’ll be a way to make agriculture completely regenerative, so to bring back soil health while also boosting crop yields and the nutrient density of the crops.”Furst has founded a company called Seia Bio, which is working on commercializing the coated microbes and has begun testing them on farms in Brazil. In her lab, Furst is also working on adapting the approach to coat microbes that can capture carbon dioxide from the atmosphere and turn it into limestone, which helps to raise the soil pH.“It can help change the pH of soil to stabilize it, while also being a way to effectively perform direct air capture of CO2,” she says. “Right now, farmers may truck in limestone to change the pH of soil, and so you’re creating a lot of emissions to bring something in that microbes can do on their own.”Distress sensors for plantsSeveral years ago, Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT, began to explore the idea of using plants themselves as sensors that could reveal when they’re in distress. When plants experience drought, attack by pests, or other kinds of stress, they produce hormones and other signaling molecules to defend themselves.Strano, whose lab specializes in developing tiny sensors for a variety of molecules, wondered if such sensors could be deployed inside plants to pick up those distress signals. To create their sensors, Strano’s lab takes advantage of the special properties of single-walled carbon nanotubes, which emit fluorescent light. By wrapping the tubes with different types of polymers, the sensors can be tuned to detect specific targets, giving off a fluorescent signal when the target is present.For use in plants, Strano and his colleagues created sensors that could detect signaling molecules such as salicylic acid and hydrogen peroxide. They then showed that these sensors could be inserted into the underside of plant leaves, without harming the plants. Once embedded in the mesophyll of the leaves, the sensors can pick up a variety of signals, which can be read with an infrared camera.

    Sensors that detect plant signaling molecules can reveal when crops are experiencing too much light or heat, or attack from insects or microbes.

    These sensors can reveal, in real-time, whether a plant is experiencing a variety of stresses. Until now, there hasn’t been a way to get that information fast enough for farmers to act on it.“What we’re trying to do is make tools that get information into the hands of farmers very quickly, fast enough for them to make adaptive decisions that can increase yield,” Strano says. “We’re in the middle of a revolution of really understanding the way in which plants internally communicate and communicate with other plants.”This kind of sensing could be deployed in fields, where it could help farmers respond more quickly to drought and other stresses, or in greenhouses, vertical farms, and other types of indoor farms that use technology to grow crops in a controlled environment.Much of Strano’s work in this area has been conducted with the support of the U.S. Department of Agriculture (USDA) and as part of the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) program at the Singapore-MIT Alliance for Research and Technology (SMART), and sensors have been deployed in tests in crops at a controlled environment farm in Singapore called Growy.“The same basic kinds of tools can help detect problems in open field agriculture or in controlled environment agriculture,” Strano says. “They both suffer from the same problem, which is that the farmers get information too late to prevent yield loss.”Reducing pesticide usePesticides represent another huge financial expense for farmers: Worldwide, farmers spend about $60 billion per year on pesticides. Much of this pesticide ends up accumulating in water and soil, where it can harm many species, including humans. But, without using pesticides, farmers may lose more than half of their crops.Kripa Varanasi, an MIT professor of mechanical engineering, is working on tools that can help farmers measure how much pesticide is reaching their plants, as well as technologies that can help pesticides adhere to plants more efficiently, reducing the amount that runs off into soil and water.Varanasi, whose research focuses on interactions between liquid droplets and surfaces, began to think about applying his work to agriculture more than a decade ago, after attending a conference at the USDA. There, he was inspired to begin developing ways to improve the efficiency of pesticide application by optimizing the interactions that occur at leaf surfaces.“Billions of drops of pesticide are being sprayed on every acre of crop, and only a small fraction is ultimately reaching and staying on target. This seemed to me like a problem that we could help to solve,” he says.Varanasi and his students began exploring strategies to make drops of pesticide stick to leaves better, instead of bouncing off. They found that if they added polymers with positive and negative charges, the oppositely charged droplets would form a hydrophilic (water-attracting) coating on the leaf surface, which helps the next droplets applied to stick to the leaf.

    AgZen has developed a system for farming that can monitor exactly how much of the sprayed chemicals adheres to plants, in real time, as the sprayer drives through a field.

    Later, they developed an easier-to-use technology in which a surfactant is added to the pesticide before spraying. When this mixture is sprayed through a special nozzle, it forms tiny droplets that are “cloaked” in surfactant. The surfactant helps the droplets to stick to the leaves within a few milliseconds, without bouncing off.In 2020, Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22 founded a company called AgZen to commercialize their technologies and get them into the hands of farmers. They incorporated their ideas for improving pesticide adhesion into a product called EnhanceCoverage.During the testing for this product, they realized that there weren’t any good ways to measure how many of the droplets were staying on the plant. That led them to develop a product known as RealCoverage, which is based on machine vision. It can be attached to any pesticide sprayer and offer real-time feedback on what percentage of the pesticide droplets are sticking to and staying on every leaf.RealCoverage was used on 65,000 acres of farmland across the United States in 2024, from soybeans in Iowa to cotton in Georgia. Farmers who used the product were able to reduce their pesticide use by 30 to 50 percent, by using the data to optimize delivery and, in some cases, even change what chemicals were sprayed.He hopes that the EnhanceCoverage product, which is expected to become available in 2025, will help farmers further reduce their pesticide use.“Our mission here is to help farmers with savings while helping them achieve better yields. We have found a way to do all this while also reducing waste and the amount of chemicals that we put into our atmosphere and into our soils and into our water,” Varanasi says. “This is the MIT approach: to figure out what are the real issues and how to come up with solutions. Now we have a tool and I hope that it’s deployed everywhere and everyone gets the benefit from it.” More

  • in

    Oceanographers record the largest predation event ever observed in the ocean

    There is power in numbers, or so the saying goes. But in the ocean, scientists are finding that fish that group together don’t necessarily survive together. In some cases, the more fish there are, the larger a target they make for predators.This is what MIT and Norwegian oceanographers observed recently when they explored a wide swath of ocean off the coast of Norway during the height of spawning season for capelin — a small Arctic fish about the size of an anchovy. Billions of capelin migrate each February from the edge of the Arctic ice sheet southward to the Norwegian coast, to lay their eggs. Norway’s coastline is also a stopover for capelin’s primary predator, the Atlantic cod. As cod migrate south, they feed on spawning capelin, though scientists have not measured this process over large scales until now.Reporting their findings today in Nature Communications Biology, the MIT team captured interactions between individual migrating cod and spawning capelin, over a huge spatial extent. Using a sonic-based wide-area imaging technique, they watched as random capelin began grouping together to form a massive shoal spanning tens of kilometers. As the capelin shoal formed a sort of ecological “hotspot,” the team observed individual cod begin to group together in response, forming a huge shoal of their own. The swarming cod overtook the capelin, quickly consuming over 10 million fish, estimated to be more than half of the gathered prey.The dramatic encounter, which took place over just a few hours, is the largest such predation event ever recorded, both in terms of the number of individuals involved and the area over which the event occurred.This one event is unlikely to weaken the capelin population as a whole; the preyed-upon shoal represents 0.1 percent of the capelin that spawn in the region. However, as climate change causes the Arctic ice sheet to retreat, capelin will have to swim farther to spawn, making the species more stressed and vulnerable to natural predation events such as the one the team observed. As capelin sustains many fish species, including cod, continuously monitoring their behavior, at a resolution approaching that of individual fish and across large scales spanning tens of thousands of square kilometers, will help efforts to maintain the species and the health of the ocean overall.“In our work we are seeing that natural catastrophic predation events can change the local predator prey balance in a matter of hours,” says Nicholas Makris, professor of mechanical and ocean engineering at MIT. “That’s not an issue for a healthy population with many spatially distributed population centers or ecological hotspots. But as the number of these hotspots deceases due to climate and anthropogenic stresses, the kind of natural ‘catastrophic’ predation event we witnessed of a keystone species could lead to dramatic consequences for that species as well as the many species dependent on them.”Makris’ co-authors on the paper are Shourav Pednekar and Ankita Jain at MIT, and Olav Rune Godø of the Institute of Marine Research in Norway.Bell soundsFor their new study, Makris and his colleagues reanalyzed data that they gathered during a cruise in February of 2014 to the Barents Sea, off the coast of Norway. During that cruise, the team deployed the Ocean Acoustic Waveguide Remote Sensing (OAWRS) system — a sonic imaging technique that employs a vertical acoustic array, attached to the bottom of a boat, to send sound waves down into the ocean and out in all directions. These waves can travel over large distances as they bounce off any obstacles or fish in their path.The same or a second boat, towing an array of acoustic receivers, continuously picks up the scattered and reflected waves, from as far as many tens of kilometers away. Scientists can then analyze the collected waveforms to create instantaneous maps of the ocean over a huge areal extent.Previously, the team reconstructed maps of individual fish and their movements, but could not distinguish between different species. In the new study, the researchers applied a new “multispectral” technique to differentiate between species based on the characteristic acoustic resonance of their swim bladders.“Fish have swim bladders that resonate like bells,” Makris explains. “Cod have large swim bladders that have a low resonance, like a Big Ben bell, whereas capelin have tiny swim bladders that resonate like the highest notes on a piano.”By reanalyzing OAWRS data to look for specific frequencies of capelin versus cod, the researchers were able to image fish groups, determine their species content, and map the movements of each species over a huge areal extent.Watching a waveThe researchers applied the multi-spectral technique to OAWRS data collected on Feb. 27, 2014, at the peak of the capelin spawning season. In the early morning hours, their new mapping showed that capelin largely kept to themselves, moving as random individuals, in loose clusters along the Norwegian coastline. As the sun rose and lit the surface waters, the capelin began to descend to darker depths, possibly seeking places along the seafloor to spawn.The team observed that as the capelin descended, they began shifting from individual to group behavior, ultimately forming a huge shoal of about 23 million fish that moved in a coordinated wave spanning over ten kilometers long.“What we’re finding is capelin have this critical density, which came out of a physical theory, which we have now observed in the wild,” Makris says. “If they are close enough to each other, they can take on the average speed and direction of other fish that they can sense around them, and can then form a massive and coherent shoal.”As they watched, the shoaling fish began to move as one, in a coherent behavior that has been observed in other species but never in capelin until now. Such coherent migration is thought to help fish save energy over large distances by essentially riding the collective motion of the group.In this instance, however, as soon as the capelin shoal formed, it attracted increasing numbers of cod, which quickly formed a shoal of their own, amounting to about 2.5 million fish, based on the team’s acoustic mapping. Over a few short hours, the cod consumed 10.5 million capelin over tens of kilometers before both shoals dissolved and the fish scattered away. Makris suspects that such massive and coordinated predation is a common occurrence in the ocean, though this is the first time that scientists have been able to document such an event.“It’s the first time seeing predator-prey interaction on a huge scale, and it’s a coherent battle of survival,” Makris says. “This is happening over a monstrous scale, and we’re watching a wave of capelin zoom in, like a wave around a sports stadium, and they kind of gather together to form a defense. It’s also happening with the predators, coming together to coherently attack.”“This is a truly fascinating study that documents complex spatial dynamics linking predators and prey, here cod and capelin, at scales previously unachievable in marine ecosystems,” says George Rose, professor of fisheries at the University of British Columbia, who studies the ecology and productivity of cod in the North Atlantic, and was not involved in this work. “Simultaneous species mapping with the OAWRS system…enables insight into fundamental ecological processes with untold potential to enhance current survey methods.”Makris hopes to deploy OAWRS in the future to monitor the large-scale dynamics among other species of fish.“It’s been shown time and again that, when a population is on the verge of collapse, you will have that one last shoal. And when that last big, dense group is gone, there’s a collapse,” Makris says. “So you’ve got to know what’s there before it’s gone, because the pressures are not in their favor.”This work was supported, in part, by the U.S. Office of Naval Research and the Institute of Marine Research in Norway.  More

  • in

    Aspiring to sustainable development

    In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together MIT, UVG, and the Guatemalan Exporters Association to promote sustainable solutions to local development challenges.“This research is yielding insights into our understanding of how to design with and for marginalized people, specifically Indigenous people,” says Elizabeth Hoffecker, co-principal investigator of ASPIRE at MIT and director of the MIT Local Innovation Group.The students’ work is bearing fruit in the form of publications and new products — directly advancing ASPIRE’s goals to create an innovation ecosystem in Guatemala that can be replicated elsewhere in Central and Latin America.For the students, the project offers rewards both tangible and inspirational.“My experience allowed me to find my interest in local innovation and entrepreneurship,” says Ximena Sarmiento García, a fifth-year undergraduate at UVG majoring in anthropology. Supervised by Hoffecker, Sarmiento García says, “I learned how to inform myself, investigate, and find solutions — to become a researcher.”Sandra Youssef, a rising junior in mechanical engineering at MIT, collaborated with UVG researchers and Indigenous farmers to design a mobile cart to improve the harvest yield of snow peas. “It was perfect for me,” she says. “My goal was to use creative, new technologies and science to make a dent in difficult problems.”Remote and effectiveKendra Leith, co-principal investigator of ASPIRE, and associate director for research at MIT D-Lab, shaped the MIT-based undergraduate research opportunities (UROPs) in concert with UVG colleagues. “Although MIT students aren’t currently permitted to travel to Guatemala, I wanted them to have an opportunity to apply their experience and knowledge to address real-world challenges,” says Leith. “The Covid pandemic prepared them and their counterparts at UVG for effective remote collaboration — the UROPs completed remarkably productive research projects over Zoom and met our goals for them.”MIT students participated in some of UVG’s most ambitious ASPIRE research. For instance, Sydney Baller, a rising sophomore in mechanical engineering, joined a team of Indigenous farmers and UVG mechanical engineers investigating the manufacturing process and potential markets for essential oils extracted from thyme, rosemary, and chamomile plants.“Indigenous people have thousands of years working with plant extracts and ancient remedies,” says Baller. “There is promising history there that would be important to follow up with more modern research.”Sandra Youssef used computer-aided design and manufacturing to realize a design created in a hackathon by snow pea farmers. “Our cart had to hold 495 pounds of snow peas without collapsing or overturning, navigate narrow paths on hills, and be simple and inexpensive to assemble,” she says. The snow pea producers have tested two of Youssef’s designs, built by a team at UVG led by Rony Herrarte, a faculty member in the department of mechanical engineering.From waste to filterTwo MIT undergraduates joined one of UVG’s long-standing projects: addressing pollution in Guatemala’s water. The research seeks to use chitosan molecules, extracted from shrimp shells, for bioremediation of heavy metals and other water contaminants. These shells are available in abundance, left as waste by the country’s shrimp industry.Sophomores Ariana Hodlewsky, majoring in chemical engineering, and Paolo Mangiafico, majoring in brain and cognitive sciences, signed on to work with principal investigator and chemistry department instructor Allan Vásquez (UVG) on filtration systems utilizing chitosan.“The team wants to find a cost-effective product rural communities, most at risk from polluted water, can use in homes or in town water systems,” says Mangiafico. “So we have been investigating different technologies for water filtration, and analyzing the Guatemalan and U.S. markets to understand the regulations and opportunities that might affect introduction of a chitosan-based product.”“Our research into how different communities use water and into potential consumers and pitfalls sets the scene for prototypes UVG wants to produce,” says Hodlewsky.Lourdes Figueroa, UVG ASPIRE project manager for technology transfer, found their assistance invaluable.“Paolo and Ariana brought the MIT culture and mindset to the project,” she says. “They wanted to understand not only how the technology works, but the best ways of getting the technology out of the lab to make it useful.”This was an “Aha!” moment, says Figueroa. “The MIT students made a major contribution to both the engineering and marketing sides by emphasizing that you have to think about how to guarantee the market acceptance of the technology while it is still under development.”Innovation ecosystemsUVG’s three campuses have served as incubators for problem-solving innovation and entrepreneurship, in many cases driven by students from Indigenous communities and families. In 2022, Elizabeth Hoffecker, with eight UVG anthropology majors, set out to identify the most vibrant examples of these collaborative initiatives, which ASPIRE seeks to promote and replicate.Hoffecker’s “innovation ecosystem diagnostic” revealed a cluster of activity centered on UVG’s Altiplano campus in the central highlands, which serves Mayan communities. Hoffecker and two of the anthropology students focused on four examples for a series of case studies, which they are currently preparing for submission to a peer-reviewed journal.“The caliber of their work was so good that it became clear to me that we could collaborate on a paper,” says Hoffecker. “It was my first time publishing with undergraduates.”The researchers’ cases included novel production of traditional thread, and creation of a 3D phytoplankton kit that is being used to educate community members about water pollution in Lake Atitlán, a tourist destination that drives the local economy but is increasingly being affected by toxic algae blooms. Hoffecker singles out a project by Indigenous undergraduates who developed play-based teaching tools for introducing basic mathematical concepts.“These connect to local Mayan ways of understanding and offer a novel, hands-on way to strengthen the math teaching skills of local primary school teachers in Indigenous communities,” says Hoffecker. “They created something that addresses a very immediate need in the community — lack of training.Both of Hoffecker’s undergraduate collaborators are writing theses inspired by these case studies.“My time with Elizabeth allowed me to learn how to conduct research from scratch, ask for help, find solutions, and trust myself,” says Sarmiento García. She finds the ASPIRE approach profoundly appealing. “It is not only ethical, but also deeply committed to applying results to the real lives of the people involved.”“This experience has been incredibly positive, validating my own ability to generate knowledge through research, rather than relying only on established authors to back up my arguments,” says Camila del Cid, a fifth-year anthropology student. “This was empowering, especially as a Latin American researcher, because it emphasized that my perspective and contributions are important.”Hoffecker says this pilot run with UVG undergrads produced “high-quality research that can inform evidence-based decision-making on development issues of top regional priority” — a key goal for ASPIRE. Hoffecker plans to “develop a pathway that other UVG students can follow to conduct similar research.”MIT undergraduate research will continue. “Our students’ activities have been very valuable in Guatemala, so much so that the snow pea, chitosan, and essential oils teams would like to continue working with our students this year,” says Leith.  She anticipates a new round of MIT UROPs for next summer.Youssef, for one, is eager to get to work on refining the snow pea cart. “I like the idea of working outside my comfort zone, thinking about things that seem unsolvable and coming up with a solution to fix some aspect of the problem,” she says. More

  • in

    Bubble findings could unlock better electrode and electrolyzer designs

    Industrial electrochemical processes that use electrodes to produce fuels and chemical products are hampered by the formation of bubbles that block parts of the electrode surface, reducing the area available for the active reaction. Such blockage reduces the performance of the electrodes by anywhere from 10 to 25 percent.But new research reveals a decades-long misunderstanding about the extent of that interference. The findings show exactly how the blocking effect works and could lead to new ways of designing electrode surfaces to minimize inefficiencies in these widely used electrochemical processes.It has long been assumed that the entire area of the electrode shadowed by each bubble would be effectively inactivated. But it turns out that a much smaller area — roughly the area where the bubble actually contacts the surface — is blocked from its electrochemical activity. The new insights could lead directly to new ways of patterning the surfaces to minimize the contact area and improve overall efficiency.The findings are reported today in the journal Nanoscale, in a paper by recent MIT graduate Jack Lake PhD ’23, graduate student Simon Rufer, professor of mechanical engineering Kripa Varanasi, research scientist Ben Blaiszik, and six others at the University of Chicago and Argonne National Laboratory. The team has made available an open-source, AI-based software tool that engineers and scientists can now use to automatically recognize and quantify bubbles formed on a given surface, as a first step toward controlling the electrode material’s properties.

    Play video

    Gas-evolving electrodes, often with catalytic surfaces that promote chemical reactions, are used in a wide variety of processes, including the production of “green” hydrogen without the use of fossil fuels, carbon-capture processes that can reduce greenhouse gas emissions, aluminum production, and the chlor-alkali process that is used to make widely used chemical products.These are very widespread processes. The chlor-alkali process alone accounts for 2 percent of all U.S. electricity usage; aluminum production accounts for 3 percent of global electricity; and both carbon capture and hydrogen production are likely to grow rapidly in coming years as the world strives to meet greenhouse-gas reduction targets. So, the new findings could make a real difference, Varanasi says.“Our work demonstrates that engineering the contact and growth of bubbles on electrodes can have dramatic effects” on how bubbles form and how they leave the surface, he says. “The knowledge that the area under bubbles can be significantly active ushers in a new set of design rules for high-performance electrodes to avoid the deleterious effects of bubbles.”“The broader literature built over the last couple of decades has suggested that not only that small area of contact but the entire area under the bubble is passivated,” Rufer says. The new study reveals “a significant difference between the two models because it changes how you would develop and design an electrode to minimize these losses.”To test and demonstrate the implications of this effect, the team produced different versions of electrode surfaces with patterns of dots that nucleated and trapped bubbles at different sizes and spacings. They were able to show that surfaces with widely spaced dots promoted large bubble sizes but only tiny areas of surface contact, which helped to make clear the difference between the expected and actual effects of bubble coverage.Developing the software to detect and quantify bubble formation was necessary for the team’s analysis, Rufer explains. “We wanted to collect a lot of data and look at a lot of different electrodes and different reactions and different bubbles, and they all look slightly different,” he says. Creating a program that could deal with different materials and different lighting and reliably identify and track the bubbles was a tricky process, and machine learning was key to making it work, he says.Using that tool, he says, they were able to collect “really significant amounts of data about the bubbles on a surface, where they are, how big they are, how fast they’re growing, all these different things.” The tool is now freely available for anyone to use via the GitHub repository.By using that tool to correlate the visual measures of bubble formation and evolution with electrical measurements of the electrode’s performance, the researchers were able to disprove the accepted theory and to show that only the area of direct contact is affected. Videos further proved the point, revealing new bubbles actively evolving directly under parts of a larger bubble.The researchers developed a very general methodology that can be applied to characterize and understand the impact of bubbles on any electrode or catalyst surface. They were able to quantify the bubble passivation effects in a new performance metric they call BECSA (Bubble-induced electrochemically active surface), as opposed to ECSA (electrochemically active surface area), that is used in the field. “The BECSA metric was a concept we defined in an earlier study but did not have an effective method to estimate until this work,” says Varanasi.The knowledge that the area under bubbles can be significantly active ushers in a new set of design rules for high-performance electrodes. This means that electrode designers should seek to minimize bubble contact area rather than simply bubble coverage, which can be achieved by controlling the morphology and chemistry of the electrodes. Surfaces engineered to control bubbles can not only improve the overall efficiency of the processes and thus reduce energy use, they can also save on upfront materials costs. Many of these gas-evolving electrodes are coated with catalysts made of expensive metals like platinum or iridium, and the findings from this work can be used to engineer electrodes to reduce material wasted by reaction-blocking bubbles.Varanasi says that “the insights from this work could inspire new electrode architectures that not only reduce the usage of precious materials, but also improve the overall electrolyzer performance,” both of which would provide large-scale environmental benefits.The research team included Jim James, Nathan Pruyne, Aristana Scourtas, Marcus Schwarting, Aadit Ambalkar, Ian Foster, and Ben Blaiszik at the University of Chicago and Argonne National Laboratory. The work was supported by the U.S. Department of Energy under the ARPA-E program. More