More stories

  • in

    MIT engineers develop a magnetic transistor for more energy-efficient electronics

    Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics. We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research,” says Chung-Tao Chou, an MIT graduate student in the departments of Electrical Engineering and Computer Science (EECS) and Physics, and co-lead author of a paper on this advance.Chou is joined on the paper by co-lead author Eugene Park, a graduate student in the Department of Materials Science and Engineering (DMSE); Julian Klein, a DMSE research scientist; Josep Ingla-Aynes, a postdoc in the MIT Plasma Science and Fusion Center; Jagadeesh S. Moodera, a senior research scientist in the Department of Physics; and senior authors Frances Ross, TDK Professor in DMSE; and Luqiao Liu, an associate professor in EECS, and a member of the Research Laboratory of Electronics; as well as others at the University of Chemistry and Technology in Prague. The paper appears today in Physical Review Letters.Overcoming the limitsIn an electronic device, silicon semiconductor transistors act like tiny light switches that turn a circuit on and off, or amplify weak signals in a communication system. They do this using a small input voltage.But a fundamental physical limit of silicon semiconductors prevents a transistor from operating below a certain voltage, which hinders its energy efficiency.To make more efficient electronics, researchers have spent decades working toward magnetic transistors that utilize electron spin to control the flow of electricity. Electron spin is a fundamental property that enables electrons to behave like tiny magnets.So far, scientists have mostly been limited to using certain magnetic materials. These lack the favorable electronic properties of semiconductors, constraining device performance.“In this work, we combine magnetism and semiconductor physics to realize useful spintronic devices,” Liu says.The researchers replace the silicon in the surface layer of a transistor with chromium sulfur bromide, a two-dimensional material that acts as a magnetic semiconductor.Due to the material’s structure, researchers can switch between two magnetic states very cleanly. This makes it ideal for use in a transistor that smoothly switches between “on” and “off.”“One of the biggest challenges we faced was finding the right material. We tried many other materials that didn’t work,” Chou says.They discovered that changing these magnetic states modifies the material’s electronic properties, enabling low-energy operation. And unlike many other 2D materials, chromium sulfur bromide remains stable in air.To make a transistor, the researchers pattern electrodes onto a silicon substrate, then carefully align and transfer the 2D material on top. They use tape to pick up a tiny piece of material, only a few tens of nanometers thick, and place it onto the substrate.“A lot of researchers will use solvents or glue to do the transfer, but transistors require a very clean surface. We eliminate all those risks by simplifying this step,” Chou says.Leveraging magnetismThis lack of contamination enables their device to outperform existing magnetic transistors. Most others can only create a weak magnetic effect, changing the flow of current by a few percent or less. Their new transistor can switch or amplify the electric current by a factor of 10.They use an external magnetic field to change the magnetic state of the material, switching the transistor using significantly less energy than would usually be required.The material also allows them to control the magnetic states with electric current. This is important because engineers cannot apply magnetic fields to individual transistors in an electronic device. They need to control each one electrically.The material’s magnetic properties could also enable transistors with built-in memory, simplifying the design of logic or memory circuits.A typical memory device has a magnetic cell to store information and a transistor to read it out. Their method can combine both into one magnetic transistor.“Now, not only are transistors turning on and off, they are also remembering information. And because we can switch the transistor with greater magnitude, the signal is much stronger so we can read out the information faster, and in a much more reliable way,” Liu says.Building on this demonstration, the researchers plan to further study the use of electrical current to control the device. They are also working to make their method scalable so they can fabricate arrays of transistors.This research was supported, in part, by the Semiconductor Research Corporation, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF), the U.S. Department of Energy, the U.S. Army Research Office, and the Czech Ministry of Education, Youth, and Sports. The work was partially carried out at the MIT.nano facilities. More

  • in

    New method could monitor corrosion and cracking in a nuclear reactor

    MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.They found that adding a buffer layer of silicon dioxide between the material and its substrate, and keeping the material under the X-ray beam for a longer period of time, improves the stability of the sample. This allows for real-time monitoring of material failure processes.By reconstructing 3D image data on the structure of a material as it fails, researchers could design more resilient materials that can better withstand the stress caused by irradiation inside a nuclear reactor.“If we can improve materials for a nuclear reactor, it means we can extend the life of that reactor. It also means the materials will take longer to fail, so we can get more use out of a nuclear reactor than we do now. The technique we’ve demonstrated here allows to push the boundary in understanding how materials fail in real-time,” says Ericmoore Jossou, who has shared appointments in the Department of Nuclear Science and Engineering (NSE), where he is the John Clark Hardwick Professor, and the Department of Electrical Engineering and Computer Science (EECS), and the MIT Schwarzman College of Computing.Jossou, senior author of a study on this technique, is joined on the paper by lead author David Simonne, an NSE postdoc; Riley Hultquist, a graduate student in NSE; Jiangtao Zhao, of the European Synchrotron; and Andrea Resta, of Synchrotron SOLEIL. The research was published Tuesday by the journal Scripta Materiala.“Only with this technique can we measure strain with a nanoscale resolution during corrosion processes. Our goal is to bring such novel ideas to the nuclear science community while using synchrotrons both as an X-ray probe and radiation source,” adds Simonne.Real-time imagingStudying real-time failure of materials used in advanced nuclear reactors has long been a goal of Jossou’s research group.Usually, researchers can only learn about such material failures after the fact, by removing the material from its environment and imaging it with a high-resolution instrument.“We are interested in watching the process as it happens. If we can do that, we can follow the material from beginning to end and see when and how it fails. That helps us understand a material much better,” he says.They simulate the process by firing an extremely focused X-ray beam at a sample to mimic the environment inside a nuclear reactor. The researchers must use a special type of high-intensity X-ray, which is only found in a handful of experimental facilities worldwide.For these experiments they studied nickel, a material incorporated into alloys that are commonly used in advanced nuclear reactors. But before they could start the X-ray equipment, they had to prepare a sample.To do this, the researchers used a process called solid state dewetting, which involves putting a thin film of the material onto a substrate and heating it to an extremely high temperature in a furnace until it transforms into single crystals.“We thought making the samples was going to be a walk in the park, but it wasn’t,” Jossou says.As the nickel heated up, it interacted with the silicon substrate and formed a new chemical compound, essentially derailing the entire experiment. After much trial-and-error, the researchers found that adding a thin layer of silicon dioxide between the nickel and substrate prevented this reaction.But when crystals formed on top of the buffer layer, they were highly strained. This means the individual atoms had moved slightly to new positions, causing distortions in the crystal structure.Phase retrieval algorithms can typically recover the 3D size and shape of a crystal in real-time, but if there is too much strain in the material, the algorithms will fail.However, the team was surprised to find that keeping the X-ray beam trained on the sample for a longer period of time caused the strain to slowly relax, due to the silicon buffer layer. After a few extra minutes of X-rays, the sample was stable enough that they could utilize phase retrieval algorithms to accurately recover the 3D shape and size of the crystal.“No one had been able to do that before. Now that we can make this crystal, we can image electrochemical processes like corrosion in real time, watching the crystal fail in 3D under conditions that are very similar to inside a nuclear reactor. This has far-reaching impacts,” he says.They experimented with a different substrate, such as niobium doped strontium titanate, and found that only a silicon dioxide buffered silicon wafer created this unique effect.An unexpected resultAs they fine-tuned the experiment, the researchers discovered something else.They could also use the X-ray beam to precisely control the amount of strain in the material, which could have implications for the development of microelectronics.In the microelectronics community, engineers often introduce strain to deform a material’s crystal structure in a way that boosts its electrical or optical properties.“With our technique, engineers can use X-rays to tune the strain in microelectronics while they are manufacturing them. While this was not our goal with these experiments, it is like getting two results for the price of one,” he adds.In the future, the researchers want to apply this technique to more complex materials like steel and other metal alloys used in nuclear reactors and aerospace applications. They also want to see how changing the thickness of the silicon dioxide buffer layer impacts their ability to control the strain in a crystal sample.“This discovery is significant for two reasons. First, it provides fundamental insight into how nanoscale materials respond to radiation — a question of growing importance for energy technologies, microelectronics, and quantum materials. Second, it highlights the critical role of the substrate in strain relaxation, showing that the supporting surface can determine whether particles retain or release strain when exposed to focused X-ray beams,” says Edwin Fohtung, an associate professor at the Rensselaer Polytechnic Institute, who was not involved with this work.This work was funded, in part, by the MIT Faculty Startup Fund and the U.S. Department of Energy. The sample preparation was carried out, in part, at the MIT.nano facilities. More

  • in

    Simpler models can outperform deep learning at climate prediction

    Environmental scientists are increasingly using enormous artificial intelligence models to make predictions about changes in weather and climate, but a new study by MIT researchers shows that bigger models are not always better.The team demonstrates that, in certain climate scenarios, much simpler, physics-based models can generate more accurate predictions than state-of-the-art deep-learning models.Their analysis also reveals that a benchmarking technique commonly used to evaluate machine-learning techniques for climate predictions can be distorted by natural variations in the data, like fluctuations in weather patterns. This could lead someone to believe a deep-learning model makes more accurate predictions when that is not the case.The researchers developed a more robust way of evaluating these techniques, which shows that, while simple models are more accurate when estimating regional surface temperatures, deep-learning approaches can be the best choice for estimating local rainfall.They used these results to enhance a simulation tool known as a climate emulator, which can rapidly simulate the effect of human activities onto a future climate.The researchers see their work as a “cautionary tale” about the risk of deploying large AI models for climate science. While deep-learning models have shown incredible success in domains such as natural language, climate science contains a proven set of physical laws and approximations, and the challenge becomes how to incorporate those into AI models.“We are trying to develop models that are going to be useful and relevant for the kinds of things that decision-makers need going forward when making climate policy choices. While it might be attractive to use the latest, big-picture machine-learning model on a climate problem, what this study shows is that stepping back and really thinking about the problem fundamentals is important and useful,” says study senior author Noelle Selin, a professor in the MIT Institute for Data, Systems, and Society (IDSS) and the Department of Earth, Atmospheric and Planetary Sciences (EAPS).Selin’s co-authors are lead author Björn Lütjens, a former EAPS postdoc who is now a research scientist at IBM Research; senior author Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in EAPS and co-director of the Lorenz Center; and Duncan Watson-Parris, assistant professor at the University of California at San Diego. Selin and Ferrari are also co-principal investigators of the Bringing Computation to the Climate Challenge project, out of which this research emerged. The paper appears today in the Journal of Advances in Modeling Earth Systems.Comparing emulatorsBecause the Earth’s climate is so complex, running a state-of-the-art climate model to predict how pollution levels will impact environmental factors like temperature can take weeks on the world’s most powerful supercomputers.Scientists often create climate emulators, simpler approximations of a state-of-the art climate model, which are faster and more accessible. A policymaker could use a climate emulator to see how alternative assumptions on greenhouse gas emissions would affect future temperatures, helping them develop regulations.But an emulator isn’t very useful if it makes inaccurate predictions about the local impacts of climate change. While deep learning has become increasingly popular for emulation, few studies have explored whether these models perform better than tried-and-true approaches.The MIT researchers performed such a study. They compared a traditional technique called linear pattern scaling (LPS) with a deep-learning model using a common benchmark dataset for evaluating climate emulators.Their results showed that LPS outperformed deep-learning models on predicting nearly all parameters they tested, including temperature and precipitation.“Large AI methods are very appealing to scientists, but they rarely solve a completely new problem, so implementing an existing solution first is necessary to find out whether the complex machine-learning approach actually improves upon it,” says Lütjens.Some initial results seemed to fly in the face of the researchers’ domain knowledge. The powerful deep-learning model should have been more accurate when making predictions about precipitation, since those data don’t follow a linear pattern.They found that the high amount of natural variability in climate model runs can cause the deep learning model to perform poorly on unpredictable long-term oscillations, like El Niño/La Niña. This skews the benchmarking scores in favor of LPS, which averages out those oscillations.Constructing a new evaluationFrom there, the researchers constructed a new evaluation with more data that address natural climate variability. With this new evaluation, the deep-learning model performed slightly better than LPS for local precipitation, but LPS was still more accurate for temperature predictions.“It is important to use the modeling tool that is right for the problem, but in order to do that you also have to set up the problem the right way in the first place,” Selin says.Based on these results, the researchers incorporated LPS into a climate emulation platform to predict local temperature changes in different emission scenarios.“We are not advocating that LPS should always be the goal. It still has limitations. For instance, LPS doesn’t predict variability or extreme weather events,” Ferrari adds.Rather, they hope their results emphasize the need to develop better benchmarking techniques, which could provide a fuller picture of which climate emulation technique is best suited for a particular situation.“With an improved climate emulation benchmark, we could use more complex machine-learning methods to explore problems that are currently very hard to address, like the impacts of aerosols or estimations of extreme precipitation,” Lütjens says.Ultimately, more accurate benchmarking techniques will help ensure policymakers are making decisions based on the best available information.The researchers hope others build on their analysis, perhaps by studying additional improvements to climate emulation methods and benchmarks. Such research could explore impact-oriented metrics like drought indicators and wildfire risks, or new variables like regional wind speeds.This research is funded, in part, by Schmidt Sciences, LLC, and is part of the MIT Climate Grand Challenges team for “Bringing Computation to the Climate Challenge.” More

  • in

    Surprisingly diverse innovations led to dramatically cheaper solar panels

    The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.The findings could help renewable energy companies make more effective R&D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.The researchers’ modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.“Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level, are at the heart of these cost reductions. A lot of knowledge was drawn from different domains and industries, and this network of knowledge is what makes these technologies improve,” says study senior author Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society.Trancik is joined on the paper by co-lead authors Goksin Kavlak, a former IDSS graduate student and postdoc who is now a senior energy associate at the Brattle Group; Magdalena Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at Johns Hopkins University; former MIT postdoc Ajinkya Kamat; as well as Brittany Smith and Robert Margolis of the National Renewable Energy Laboratory. The research appears today in PLOS ONE.Identifying innovationsThis work builds on mathematical models that the researchers previously developed that tease out the effects of engineering technologies on the cost of photovoltaic (PV) modules and systems.In this study, the researchers aimed to dig even deeper into the scientific advances that drove those cost declines.They combined their quantitative cost model with a detailed, qualitative analysis of innovations that affected the costs of PV system materials, manufacturing steps, and deployment processes.“Our quantitative cost model guided the qualitative analysis, allowing us to look closely at innovations in areas that are hard to measure due to a lack of quantitative data,” Kavlak says.Building on earlier work identifying key cost drivers — such as the number of solar cells per module, wiring efficiency, and silicon wafer area — the researchers conducted a structured scan of the literature for innovations likely to affect these drivers. Next, they grouped these innovations to identify patterns, revealing clusters that reduced costs by improving materials or prefabricating components to streamline manufacturing and installation. Finally, the team tracked industry origins and timing for each innovation, and consulted domain experts to zero in on the most significant innovations.All told, they identified 81 unique innovations that affected PV system costs since 1970, from improvements in antireflective coated glass to the implementation of fully online permitting interfaces.“With innovations, you can always go to a deeper level, down to things like raw materials processing techniques, so it was challenging to know when to stop. Having that quantitative model to ground our qualitative analysis really helped,” Trancik says.They chose to separate PV module costs from so-called balance-of-system (BOS) costs, which cover things like mounting systems, inverters, and wiring.PV modules, which are wired together to form solar panels, are mass-produced and can be exported, while many BOS components are designed, built, and sold at the local level.“By examining innovations both at the BOS level and within the modules, we identify the different types of innovations that have emerged in these two parts of PV technology,” Kavlak says.BOS costs depend more on soft technologies, nonphysical elements such as permitting procedures, which have contributed significantly less to PV’s past cost improvement compared to hardware innovations.“Often, it comes down to delays. Time is money, and if you have delays on construction sites and unpredictable processes, that affects these balance-of-system costs,” Trancik says.Innovations such as automated permitting software, which flags code-compliant systems for fast-track approval, show promise. Though not yet quantified in this study, the team’s framework could support future analysis of their economic impact and similar innovations that streamline deployment processes.Interconnected industriesThe researchers found that innovations from the semiconductor, electronics, metallurgy, and petroleum industries played a major role in reducing both PV and BOS costs, but BOS costs were also impacted by innovations in software engineering and electric utilities.Noninnovation factors, like efficiency gains from bulk purchasing and the accumulation of knowledge in the solar power industry, also reduced some cost variables.In addition, while most PV panel innovations originated in research organizations or industry, many BOS innovations were developed by city governments, U.S. states, or professional associations.“I knew there was a lot going on with this technology, but the diversity of all these fields and how closely linked they are, and the fact that we can clearly see that network through this analysis, was interesting,” Trancik says.“PV was very well-positioned to absorb innovations from other industries — thanks to the right timing, physical compatibility, and supportive policies to adapt innovations for PV applications,” Klemun adds.The analysis also reveals the role greater computing power could play in reducing BOS costs through advances like automated engineering review systems and remote site assessment software.“In terms of knowledge spillovers, what we’ve seen so far in PV may really just be the beginning,” Klemun says, pointing to the expanding role of robotics and AI-driven digital tools in driving future cost reductions and quality improvements.In addition to their qualitative analysis, the researchers demonstrated how this methodology could be used to estimate the quantitative impact of a particular innovation if one has the numerical data to plug into the cost equation.For instance, using information about material prices and manufacturing procedures, they estimate that wire sawing, a technique which was introduced in the 1980s, led to an overall PV system cost decrease of $5 per watt by reducing silicon losses and increasing throughput during fabrication.“Through this retrospective analysis, you learn something valuable for future strategy because you can see what worked and what didn’t work, and the models can also be applied prospectively. It is also useful to know what adjacent sectors may help support improvement in a particular technology,” Trancik says.Moving forward, the researchers plan to apply this methodology to a wide range of technologies, including other renewable energy systems. They also want to further study soft technology to identify innovations or processes that could accelerate cost reductions.“Although the process of technological innovation may seem like a black box, we’ve shown that you can study it just like any other phenomena,” Trancik says.This research is funded, in part, by the U.S. Department of Energy Solar Energies Technology Office. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    Theory-guided strategy expands the scope of measurable quantum interactions

    A new theory-guided framework could help scientists probe the properties of new semiconductors for next-generation microelectronic devices, or discover materials that boost the performance of quantum computers.Research to develop new or better materials typically involves investigating properties that can be reliably measured with existing lab equipment, but this represents just a fraction of the properties that scientists could potentially probe in principle. Some properties remain effectively “invisible” because they are too difficult to capture directly with existing methods.Take electron-phonon interaction — this property plays a critical role in a material’s electrical, thermal, optical, and superconducting properties, but directly capturing it using existing techniques is notoriously challenging.Now, MIT researchers have proposed a theoretically justified approach that could turn this challenge into an opportunity. Their method reinterprets neutron scattering, an often-overlooked interference effect as a potential direct probe of electron-phonon coupling strength.The procedure creates two interaction effects in the material. The researchers show that, by deliberately designing their experiment to leverage the interference between the two interactions, they can capture the strength of a material’s electron-phonon interaction.The researchers’ theory-informed methodology could be used to shape the design of future experiments, opening the door to measuring new quantities that were previously out of reach.“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” says Mingda Li, the Class of 1947 Career Development Professor and an associate professor of nuclear science and engineering, and senior author of a paper on this experimental method.Li is joined on the paper by co-lead authors Chuliang Fu, an MIT postdoc; Phum Siriviboon and Artittaya Boonkird, both MIT graduate students; as well as others at MIT, the National Institute of Standards and Technology, the University of California at Riverside, Michigan State University, and Oak Ridge National Laboratory. The research appears this week in Materials Today Physics.Investigating interferenceNeutron scattering is a powerful measurement technique that involves aiming a beam of neutrons at a material and studying how the neutrons are scattered after they strike it. The method is ideal for measuring a material’s atomic structure and magnetic properties.When neutrons collide with the material sample, they interact with it through two different mechanisms, creating a nuclear interaction and a magnetic interaction. These interactions can interfere with each other.“The scientific community has known about this interference effect for a long time, but researchers tend to view it as a complication that can obscure measurement signals. So it hasn’t received much focused attention,” Fu says.The team and their collaborators took a conceptual “leap of faith” and decided to explore this oft-overlooked interference effect more deeply.They flipped the traditional materials research approach on its head by starting with a multifaceted theoretical analysis. They explored what happens inside a material when the nuclear interaction and magnetic interaction interfere with each other.Their analysis revealed that this interference pattern is directly proportional to the strength of the material’s electron-phonon interaction.“This makes the interference effect a probe we can use to detect this interaction,” explains Siriviboon.Electron-phonon interactions play a role in a wide range of material properties. They affect how heat flows through a material, impact a material’s ability to absorb and emit light, and can even lead to superconductivity.But the complexity of these interactions makes them hard to directly measure using existing experimental techniques. Instead, researchers often rely on less precise, indirect methods to capture electron-phonon interactions.However, leveraging this interference effect enables direct measurement of the electron-phonon interaction, a major advantage over other approaches.“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” says Boonkird.Rethinking materials researchBased on their theoretical insights, the researchers designed an experimental setup to demonstrate their approach.Since the available equipment wasn’t powerful enough for this type of neutron scattering experiment, they were only able to capture a weak electron-phonon interaction signal — but the results were clear enough to support their theory.“These results justify the need for a new facility where the equipment might be 100 to 1,000 times more powerful, enabling scientists to clearly resolve the signal and measure the interaction,” adds Landry.With improved neutron scattering facilities, like those proposed for the upcoming Second Target Station at Oak Ridge National Laboratory, this experimental method could be an effective technique for measuring many crucial material properties.For instance, by helping scientists identify and harness better semiconductors, this approach could enable more energy-efficient appliances, faster wireless communication devices, and more reliable medical equipment like pacemakers and MRI scanners.   Ultimately, the team sees this work as a broader message about the need to rethink the materials research process.“Using theoretical insights to design experimental setups in advance can help us redefine the properties we can measure,” Fu says.To that end, the team and their collaborators are currently exploring other types of interactions they could leverage to investigate additional material properties.“This is a very interesting paper,” says Jon Taylor, director of the neutron scattering division at Oak Ridge National Laboratory, who was not involved with this research. “It would be interesting to have a neutron scattering method that is directly sensitive to charge lattice interactions or more generally electronic effects that were not just magnetic moments. It seems that such an effect is expectedly rather small, so facilities like STS could really help develop that fundamental understanding of the interaction and also leverage such effects routinely for research.”This work is funded, in part, by the U.S. Department of Energy and the National Science Foundation. More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    Study: Climate change may make it harder to reduce smog in some regions

    Global warming will likely hinder our future ability to control ground-level ozone, a harmful air pollutant that is a primary component of smog, according to a new MIT study.The results could help scientists and policymakers develop more effective strategies for improving both air quality and human health. Ground-level ozone causes a host of detrimental health impacts, from asthma to heart disease, and contributes to thousands of premature deaths each year.The researchers’ modeling approach reveals that, as the Earth warms due to climate change, ground-level ozone will become less sensitive to reductions in nitrogen oxide emissions in eastern North America and Western Europe. In other words, it will take greater nitrogen oxide emission reductions to get the same air quality benefits.However, the study also shows that the opposite would be true in northeast Asia, where cutting emissions would have a greater impact on reducing ground-level ozone in the future. The researchers combined a climate model that simulates meteorological factors, such as temperature and wind speeds, with a chemical transport model that estimates the movement and composition of chemicals in the atmosphere.By generating a range of possible future outcomes, the researchers’ ensemble approach better captures inherent climate variability, allowing them to paint a fuller picture than many previous studies.“Future air quality planning should consider how climate change affects the chemistry of air pollution. We may need steeper cuts in nitrogen oxide emissions to achieve the same air quality goals,” says Emmie Le Roy, a graduate student in the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and lead author of a paper on this study.Her co-authors include Anthony Y.H. Wong, a postdoc in the MIT Center for Sustainability Science and Strategy; Sebastian D. Eastham, principal research scientist in the MIT Center for Sustainability Science and Strategy; Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor of EAPS; and senior author Noelle Selin, a professor in the Institute for Data, Systems, and Society (IDSS) and EAPS. The research appears today in Environmental Science and Technology.Controlling ozoneGround-level ozone differs from the stratospheric ozone layer that protects the Earth from harmful UV radiation. It is a respiratory irritant that is harmful to the health of humans, animals, and plants.Controlling ground-level ozone is particularly challenging because it is a secondary pollutant, formed in the atmosphere by complex reactions involving nitrogen oxides and volatile organic compounds in the presence of sunlight.“That is why you tend to have higher ozone days when it is warm and sunny,” Le Roy explains.Regulators typically try to reduce ground-level ozone by cutting nitrogen oxide emissions from industrial processes. But it is difficult to predict the effects of those policies because ground-level ozone interacts with nitrogen oxide and volatile organic compounds in nonlinear ways.Depending on the chemical environment, reducing nitrogen oxide emissions could cause ground-level ozone to increase instead.“Past research has focused on the role of emissions in forming ozone, but the influence of meteorology is a really important part of Emmie’s work,” Selin says.To conduct their study, the researchers combined a global atmospheric chemistry model with a climate model that simulate future meteorology.They used the climate model to generate meteorological inputs for each future year in their study, simulating factors such as likely temperature and wind speeds, in a way that captures the inherent variability of a region’s climate.Then they fed those inputs to the atmospheric chemistry model, which calculates how the chemical composition of the atmosphere would change because of meteorology and emissions.The researchers focused on Eastern North America, Western Europe, and Northeast China, since those regions have historically high levels of the precursor chemicals that form ozone and well-established monitoring networks to provide data.They chose to model two future scenarios, one with high warming and one with low warming, over a 16-year period between 2080 and 2095. They compared them to a historical scenario capturing 2000 to 2015 to see the effects of a 10 percent reduction in nitrogen oxide emissions.Capturing climate variability“The biggest challenge is that the climate naturally varies from year to year. So, if you want to isolate the effects of climate change, you need to simulate enough years to see past that natural variability,” Le Roy says.They could overcome that challenge due to recent advances in atmospheric chemistry modeling and by taking advantage of parallel computing to simulate multiple years at the same time. They simulated five 16-year realizations, resulting in 80 model years for each scenario.The researchers found that eastern North America and Western Europe are especially sensitive to increases in nitrogen oxide emissions from the soil, which are natural emissions driven by increases in temperature.Due to that sensitivity, as the Earth warms and more nitrogen oxide from soil enters the atmosphere, reducing nitrogen oxide emissions from human activities will have less of an impact on ground-level ozone.“This shows how important it is to improve our representation of the biosphere in these models to better understand how climate change may impact air quality,” Le Roy says.On the other hand, since industrial processes in northeast Asia cause more ozone per unit of nitrogen oxide emitted, cutting emissions there would cause greater reductions in ground-level ozone in future warming scenarios.“But I wouldn’t say that is a good thing because it means that, overall, there are higher levels of ozone,” Le Roy adds.Running detailed meteorology simulations, rather than relying on annual average weather data, gave the researchers a more complete picture of the potential effects on human health.“Average climate isn’t the only thing that matters. One high ozone day, which might be a statistical anomaly, could mean we don’t meet our air quality target and have negative human health impacts that we should care about,” Le Roy says.In the future, the researchers want to continue exploring the intersection of meteorology and air quality. They also want to expand their modeling approach to consider other climate change factors with high variability, like wildfires or biomass burning.“We’ve shown that it is important for air quality scientists to consider the full range of climate variability, even if it is hard to do in your models, because it really does affect the answer that you get,” says Selin.This work is funded, in part, by the MIT Praecis Presidential Fellowship, the J.H. and E.V. Wade Fellowship, and the MIT Martin Family Society of Fellows for Sustainability. More