More stories

  • in

    Robert van der Hilst to step down as head of the Department of Earth, Atmospheric and Planetary Sciences

    Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, has announced his decision to step down as the head of the Department of Earth, Atmospheric and Planetary Sciences at the end of this academic year.  A search committee will convene later this spring to recommend candidates for Van der Hilst’s successor.

    “Rob is a consummate seismologist whose images of Earth’s interior structure have deepened our understanding of how tectonic plates move, how mantle convection works, and why some areas of the Earth are hot-spots for seismic and geothermal activity,” says Nergis Mavalvala, the Curtis and Kathleen Marble Professor of Astrophysics and the dean of the MIT School of Science. “As an academic leader, Rob has been a steadfast champion of the department’s cross-cutting research and education missions, especially regarding climate sciences writ large at MIT. His commitment to diversity and community have made the department — and indeed, MIT — a better place to do our best work.”

    “For 12 years, it has been my honor to lead this department and collaborate with all our community members — faculty, staff, and students,” says Van der Hilst. “EAPS is at the vanguard of climate science research at MIT, as well Earth and planetary sciences and studies into the co-evolution of life and changing environments.”

    Among his other leadership roles on campus, Van der Hilst most recently served as co-chair of the faculty review committee for MIT’s Climate Grand Challenges in which EAPS researchers secured nine finalists and two, funded flagship projects. He also serves on the Institute’s Climate Nucleus to help enact Fast Forward: MIT’s Climate Action Plan for the Decade.

    In his more-than-decade as department head, one of Van der Hilst’s major initiatives has been developing, funding, and constructing the Tina and Hamid Moghadam Building, rapidly nearing completion adjacent to Building 54. The $35 million, LEED-platinum Building 55 will be a vital center and showcase for environmental and climate research on MIT’s campus. With assistance from the Institute and generous donors, the renovations and expansion will add classrooms, meeting, and event spaces, and bring headquarters offices for EAPS, the MIT/Woods Hole Oceanographic Institution (WHOI) Joint Program in Oceanography/Applied Ocean Science, and MIT’s Environmental Solutions Initiative (ESI) together, all under one roof.

    He also helped secure the generous gift that funded the Norman C. Rasmussen Laboratory for climate research in Building 4, as well as the Peter H. Stone and Paola Malanotte Stone Professorship, now held by prominent atmospheric scientist Arlene Fiore.

    On the academic side of the house, Van der Hilst and his counterpart from the Department of Civil and Environmental Engineering (CEE), Ali Jadbabaie, the JR East Professor and CEE department head, helped develop MIT’s new bachelor of science in climate system science and engineering (Course 1-12), jointly offered by EAPS and CEE.

    As part of MIT’s commitment to aid the global response to climate change, the new degree program is designed to train the next generation of leaders, providing a foundational understanding of both the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge.

    Beyond climate research, Van der Hilst’s tenure at the helm of the department has seen many research breakthroughs and accomplishments: from high-profile NASA missions with EAPS science leadership, including the most recent launch of the Psyche mission and the successful asteroid sample return from OSIRIS-REx, to the development of next-generation models capable of describing Earth systems with increasing detail and accuracy. Van der Hilst helped enable such scientific advancements through major improvements to experimental facilities across the department, and, more generally, his mission to double the number of fellowships available to EAPS graduate students.

    “By reducing the silos and inequities created by our disciplinary groups, we were able to foster collaborations that allow faculty, students, and researchers to explore fundamental science questions in novel ways that expand our understanding of the natural world — with profound implications for helping to guide communities and policymakers toward a sustainable future,” says Van der Hilst.

    Community-focused

    In 2019, Van der Hilst began looking ahead to the department’s 40th anniversary in 2023 and charged a number of working groups to evaluate the department’s past and present, and to re-imagine its future. Led by faculty, staff, and students, Task Force 2023 was a yearlong exercise of data-gathering and community deliberation, looking broadly at three focus areas: Image, Visibility, and Relevance; External Synergies: collaboration and partnerships across campus; and Departmental Organization and Cohesion. Despite being interrupted by the pandemic, the resulting reports became a detailed blueprint for EAPS to capitalize on its strengths and begin to effect systemic improvements in areas like undergraduate education, external messaging, and recognition and belonging for administrative and research staff.

    In addition to helping the department mark its 40th anniversary with a celebration this coming spring, Van der Hilst will oversee the dedication of the Moghadam Building, including the renaming of lecture hall 54-100 for Dixie Lee Bryant, the first recipient (woman or man) of a geology degree from MIT in 1891.

    As department head, faculty renewal and retention were key areas of focus for Van der Hilst. In addition to improvements in the faculty search process, he was responsible for the appointment of 20 new faculty members, and in the process shifted the gender ratio from one-fifth to one-third of the faculty identifying as female; he also oversaw the development and implementation of a successful junior faculty mentoring program within EAPS in 2013.

    Van der Hilst also made great strides toward improving diversity, equity, and inclusion within the department in other ways. In 2016, he formed the inaugural EAPS Diversity Council (now the Diversity, Equity and Inclusion Committee) and, in 2020, made EAPS the first department at MIT to appoint an associate department head for diversity, equity, and inclusion, tapping Associate Professor David McGee to guide ongoing community dialogues and initiatives supporting improvements in composition, achievement, belonging, engagement, and accountability.

    With McGee and EAPS student leadership, Van der Hilst supported the EAPS response to calls for social justice leadership and participation in national initiatives such as the American Geophysical Union’s Unlearning Racism in Geoscience program, and he helped navigate the changes brought on by the Covid-19 pandemic while maintaining a sense of community.

    Seismic shift

    After stepping down from his current role, Van der Hilst will have more time to catch up on research aimed at understanding of Earth’s deep interior structure and its evolution. With research collaborators, he developed seismic imaging methods to explore Earth’s interior from sedimentary basins near its surface down to the core–mantle boundary some 2,800 kilometers under the surface. Recently, he authored a Nature Communications paper with doctoral student Shujuan Mao PhD ’21 on a pilot application that uses seismometers as a cost-effective way to monitor and map groundwater fluctuations in order to measure groundwater reserves.

    Before becoming department head, Van der Hilst served as the director of the Earth Resources Laboratory (ERL). In the eight years he served as director, he helped to integrate across disciplines, departments, and schools, transforming ERL into MIT’s primary home for research and education focused on subsurface energy resources.

    Van der Hilst was named a fellow of the American Geophysical Union (AGU) in 1997 and became a fellow of the American Academy of Arts and Sciences in 2014. Before he was named the Schlumberger Professor in 2011, Van der Hilst held a Cecil and Ida Green professorship chair. He has received many awards, including the Doornbos Memorial Prize from the International Association of Seismology and Physics of the Earth’s Interior, AGU’s James B. Macelwane Medal, a Packard Fellowship, and a VICI Innovative Research Award from the Dutch National Science Foundation.

    Van der Hilst received his PhD in geophysics from Utrecht University in 1990. After postdoctoral research at the University of Leeds and the Australian National University, he joined the MIT faculty in 1996. He was ERL director from 2004 to 2012, when he was then named EAPS department head, succeeding Maria Zuber, the E. A. Griswold Professor of Geophysics, MIT vice president for research, and presidential advisor for science and technology policy. More

  • in

    Supporting sustainability, digital health, and the future of work

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected three new research projects that will receive support from the initiative. The research projects aim to accelerate progress in meeting complex societal needs through new business convergence insights in technology and innovation.

    Established in MIT’s School of Engineering and now in its third year, the MIT and Accenture Convergence Initiative is furthering its mission to bring together technological experts from across business and academia to share insights and learn from one another. Recently, Thomas W. Malone, the Patrick J. McGovern (1959) Professor of Management, joined the initiative as its first-ever faculty lead. The research projects relate to three of the initiative’s key focus areas: sustainability, digital health, and the future of work.

    “The solutions these research teams are developing have the potential to have tremendous impact,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “They embody the initiative’s focus on advancing data-driven research that addresses technology and industry convergence.”

    “The convergence of science and technology driven by advancements in generative AI, digital twins, quantum computing, and other technologies makes this an especially exciting time for Accenture and MIT to be undertaking this joint research,” says Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences. “Our three new research projects focusing on sustainability, digital health, and the future of work have the potential to help guide and shape future innovations that will benefit the way we work and live.”

    The MIT and Accenture Convergence Initiative charter project researchers are described below.

    Accelerating the journey to net zero with industrial clusters

    Jessika Trancik is a professor at the Institute for Data, Systems, and Society (IDSS). Trancik’s research examines the dynamic costs, performance, and environmental impacts of energy systems to inform climate policy and accelerate beneficial and equitable technology innovation. Trancik’s project aims to identify how industrial clusters can enable companies to derive greater value from decarbonization, potentially making companies more willing to invest in the clean energy transition.

    To meet the ambitious climate goals that have been set by countries around the world, rising greenhouse gas emissions trends must be rapidly reversed. Industrial clusters — geographically co-located or otherwise-aligned groups of companies representing one or more industries — account for a significant portion of greenhouse gas emissions globally. With major energy consumers “clustered” in proximity, industrial clusters provide a potential platform to scale low-carbon solutions by enabling the aggregation of demand and the coordinated investment in physical energy supply infrastructure.

    In addition to Trancik, the research team working on this project will include Aliza Khurram, a postdoc in IDSS; Micah Ziegler, an IDSS research scientist; Melissa Stark, global energy transition services lead at Accenture; Laura Sanderfer, strategy consulting manager at Accenture; and Maria De Miguel, strategy senior analyst at Accenture.

    Eliminating childhood obesity

    Anette “Peko” Hosoi is the Neil and Jane Pappalardo Professor of Mechanical Engineering. A common theme in her work is the fundamental study of shape, kinematic, and rheological optimization of biological systems with applications to the emergent field of soft robotics. Her project will use both data from existing studies and synthetic data to create a return-on-investment (ROI) calculator for childhood obesity interventions so that companies can identify earlier returns on their investment beyond reduced health-care costs.

    Childhood obesity is too prevalent to be solved by a single company, industry, drug, application, or program. In addition to the physical and emotional impact on children, society bears a cost through excess health care spending, lost workforce productivity, poor school performance, and increased family trauma. Meaningful solutions require multiple organizations, representing different parts of society, working together with a common understanding of the problem, the economic benefits, and the return on investment. ROI is particularly difficult to defend for any single organization because investment and return can be separated by many years and involve asymmetric investments, returns, and allocation of risk. Hosoi’s project will consider the incentives for a particular entity to invest in programs in order to reduce childhood obesity.

    Hosoi will be joined by graduate students Pragya Neupane and Rachael Kha, both of IDSS, as well a team from Accenture that includes Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences; Kaveh Safavi, senior managing director in Accenture Health Industry; and Elizabeth Naik, global health and public service research lead.

    Generating innovative organizational configurations and algorithms for dealing with the problem of post-pandemic employment

    Thomas Malone is the Patrick J. McGovern (1959) Professor of Management at the MIT Sloan School of Management and the founding director of the MIT Center for Collective Intelligence. His research focuses on how new organizations can be designed to take advantage of the possibilities provided by information technology. Malone will be joined in this project by John Horton, the Richard S. Leghorn (1939) Career Development Professor at the MIT Sloan School of Management, whose research focuses on the intersection of labor economics, market design, and information systems. Malone and Horton’s project will look to reshape the future of work with the help of lessons learned in the wake of the pandemic.

    The Covid-19 pandemic has been a major disrupter of work and employment, and it is not at all obvious how governments, businesses, and other organizations should manage the transition to a desirable state of employment as the pandemic recedes. Using natural language processing algorithms such as GPT-4, this project will look to identify new ways that companies can use AI to better match applicants to necessary jobs, create new types of jobs, assess skill training needed, and identify interventions to help include women and other groups whose employment was disproportionately affected by the pandemic.

    In addition to Malone and Horton, the research team will include Rob Laubacher, associate director and research scientist at the MIT Center for Collective Intelligence, and Kathleen Kennedy, executive director at the MIT Center for Collective Intelligence and senior director at MIT Horizon. The team will also include Nitu Nivedita, managing director of artificial intelligence at Accenture, and Thomas Hancock, data science senior manager at Accenture. More

  • in

    Andrea Lo ’21 draws on ecological lessons for life, work, and education

    Growing up in Los Angeles about 10 minutes away from the Ballona Wetlands, Andrea Lo ’21 has long been interested in ecology. She witnessed, in real-time, the effects of urbanization and the impacts that development had on the wetlands. 

    “In hindsight, it really helped shape my need for a career — and a life — where I can help improve my community and the environment,” she says.

    Lo, who majored in biology at MIT, says a recurring theme in her life has been the pursuit of balance, valuing both extracurricular and curricular activities. She always felt an equal pull toward STEM and the humanities, toward wet lab work and field work, and toward doing research and helping her community. 

    “One of the most important things I learned in 7.30[J] (Fundamentals of Ecology) was that there are always going to be trade-offs. That’s just the way of life,” she says. “The biology major at MIT is really flexible. I got a lot of room to explore what I was interested in and get a good balance overall, with humanities classes along with technical classes.” 

    Lo was drawn to MIT because of the focus on hands-on work — but many of the activities Lo was hoping to do, both extracurricular and curricular, were cut short because of the pandemic, including her lab-based Undergraduate Research Opportunities Program (UROP) project. 

    Instead, she pursued a UROP with MIT Sea Grant, working on a project in partnership with Northeastern University and the Charles River Conservancy with funding support from the MIT Community Service fund as part of STEAM Saturday.  

    She was involved in creating Floating Wetland kits, an educational activity directed at students in grades 4 to 6 to help students understand ecological concepts,the challenges the Charles River faces due to urbanization, and how floating wetlands improve the ecosystem. 

    “Our hope was to educate future generations of local students in Cambridge in order for them to understand the ecology surrounding where they live,” she says. 

    In recent years, many bodies of water in Massachusetts have become unusable during the warmer months due to the process of eutrophication: stormwater runoff picks up everything — from fertilizer and silt to animal excrement — and deposits it at the lowest point, which is often a body of water. This leads to an excess of nutrients in the body of water and, when combined with warm temperatures, can lead to harmful algal blooms, making the water sludgy, bright green, and dangerously toxic. 

    The wetland kits Lo worked with were mini ecosystems, replicating a full-sized floating wetland. One such floating wetland can be seen from the Longfellow Bridge at one end of MIT’s campus — the Charles River floating wetland is a patch of grass attached to a buoy like a boat, which is often visited by birds and inhabited by much smaller critters that cannot be seen from the shore.  

    The Charles River floating wetland has a variety of flora, but the kits Lo helped present use only wheat grass because it is easy to grow and has long, dangling roots that could penetrate the watery medium below. A water tray beneath the grass — the Charles river of the mini ecosystem — contains spirulina powder for replicating algae growth and daphnia, which are small, planktonic crustaceans that help keep freshwater clean and usable. 

    “This work was really fulfilling, but it’s also really important, because environmental sustainability relies on future generations to carry on the work that past generations have been doing,” she says. “MIT’s motto is ‘mens et manus’ — education for practical application, and applying theoretical knowledge to what we do in our daily lives. I think this project really helped reinforce that.” 

    Since 2021, Lo has been working in Denmark in a position she learned about through the MIT-Denmark program. 

    She chose Denmark because of its reputation for environmental and sustainability issues and because she didn’t know much about it except for it being one of the happiest countries in the world, often thought of synonymously with the word “hygge,” which has no direct translation but encapsulates coziness and comfort from the small joys in life. 

    “At MIT, we have a very strong work-hard, play-hard culture. I think we can learn a lot from the work-life balance that Denmark has a reputation for,” she says. “I really wanted to take the opportunity in between graduation and whatever came after to explore beyond my bubble. For me, it was important to step back, out of my comfort zone, step into a different environment — and just live.”

    Currently, her personal project is comparing the conditions of two lagoons on the island of Fyn in Denmark. Both are naturally occurring, but in different states of environmental health. 

    She’s been doing a mix of field work and lab work. She collects sediment and fauna samples using a steel corer, or “butter stick” in her lab’s slang. In the same way that one can use a metal tube-shaped tool to remove the core of an apple, she punches the steel corer into the ground, removing a plug of sample. She then sifts the sample through 1 millimeter mesh, preserves the filtered sample in formalin, and takes everything back to the lab. 

    Once there, she looks through the sample to find macrofauna — mollusks, barnacles, and polychaetes, a bristly-looking segmented worm, for example. Collected over time, sediment characteristics like organic matter content, sediment grain size, and the size and abundance of macrofauna, can reveal trends that can help determine the health of the ecosystem. 

    Lo doesn’t have any concrete results yet, but her data could help researchers project the recovery of a lagoon that was rehabilitated using a technique called managed realignment, where water is allowed to reclaim areas where it was once found. She says she’s glad she gets a mix of field work and lab work, even on Denmark’s stormiest days. 

    “Sometimes there are really cold days where it’s windy and I wish I was in the lab, but, at the same time, it’s nice to have a balance where I can be outside and really be hands-on with my work,” she says.  

    Reflecting her dual interests in the technical and the innovative, she will be back in the Greater Boston area in the fall, pursuing a master of science in innovation and management and an MS in civil and environmental engineering at the Tufts Gordon Institute.

    “So much has happened and changed due to the pandemic that it’s easy to dwell on what could’ve been, but I tell myself to be optimistic and take the positive aspects that have come out of the circumstances,” Lo says. “My opportunities with the Sea Grant, MISTI, and Tufts definitely wouldn’t have happened if the pandemic hadn’t happened.” More

  • in

    Manufacturing a cleaner future

    Manufacturing had a big summer. The CHIPS and Science Act, signed into law in August, represents a massive investment in U.S. domestic manufacturing. The act aims to drastically expand the U.S. semiconductor industry, strengthen supply chains, and invest in R&D for new technological breakthroughs. According to John Hart, professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity at MIT, the CHIPS Act is just the latest example of significantly increased interest in manufacturing in recent years.

    “You have multiple forces working together: reflections from the pandemic’s impact on supply chains, the geopolitical situation around the world, and the urgency and importance of sustainability,” says Hart. “This has now aligned incentives among government, industry, and the investment community to accelerate innovation in manufacturing and industrial technology.”

    Hand-in-hand with this increased focus on manufacturing is a need to prioritize sustainability.

    Roughly one-quarter of greenhouse gas emissions came from industry and manufacturing in 2020. Factories and plants can also deplete local water reserves and generate vast amounts of waste, some of which can be toxic.

    To address these issues and drive the transition to a low-carbon economy, new products and industrial processes must be developed alongside sustainable manufacturing technologies. Hart sees mechanical engineers as playing a crucial role in this transition.

    “Mechanical engineers can uniquely solve critical problems that require next-generation hardware technologies, and know how to bring their solutions to scale,” says Hart.

    Several fast-growing companies founded by faculty and alumni from MIT’s Department of Mechanical Engineering offer solutions for manufacturing’s environmental problem, paving the path for a more sustainable future.

    Gradiant: Cleantech water solutions

    Manufacturing requires water, and lots of it. A medium-sized semiconductor fabrication plant uses upward of 10 million gallons of water a day. In a world increasingly plagued by droughts, this dependence on water poses a major challenge.

    Gradiant offers a solution to this water problem. Co-founded by Anurag Bajpayee SM ’08, PhD ’12 and Prakash Govindan PhD ’12, the company is a pioneer in sustainable — or “cleantech” — water projects.

    As doctoral students in the Rohsenow Kendall Heat Transfer Laboratory, Bajpayee and Govindan shared a pragmatism and penchant for action. They both worked on desalination research — Bajpayee with Professor Gang Chen and Govindan with Professor John Lienhard.

    Inspired by a childhood spent during a severe drought in Chennai, India, Govindan developed for his PhD a humidification-dehumidification technology that mimicked natural rainfall cycles. It was with this piece of technology, which they named Carrier Gas Extraction (CGE), that the duo founded Gradiant in 2013.

    The key to CGE lies in a proprietary algorithm that accounts for variability in the quality and quantity in wastewater feed. At the heart of the algorithm is a nondimensional number, which Govindan proposes one day be called the “Lienhard Number,” after his doctoral advisor.

    “When the water quality varies in the system, our technology automatically sends a signal to motors within the plant to adjust the flow rates to bring back the nondimensional number to a value of one. Once it’s brought back to a value of one, you’re running in optimal condition,” explains Govindan, who serves as chief operating officer of Gradiant.

    This system can treat and clean the wastewater produced by a manufacturing plant for reuse, ultimately conserving millions of gallons of water each year.

    As the company has grown, the Gradiant team has added new technologies to their arsenal, including Selective Contaminant Extraction, a cost-efficient method that removes only specific contaminants, and a brine-concentration method called Counter-Flow Reverse Osmosis. They now offer a full technology stack of water and wastewater treatment solutions to clients in industries including pharmaceuticals, energy, mining, food and beverage, and the ever-growing semiconductor industry.

    “We are an end-to-end water solutions provider. We have a portfolio of proprietary technologies and will pick and choose from our ‘quiver’ depending on a customer’s needs,” says Bajpayee, who serves as CEO of Gradiant. “Customers look at us as their water partner. We can take care of their water problem end-to-end so they can focus on their core business.”

    Gradiant has seen explosive growth over the past decade. With 450 water and wastewater treatment plants built to date, they treat the equivalent of 5 million households’ worth of water each day. Recent acquisitions saw their total employees rise to above 500.

    The diversity of Gradiant’s solutions is reflected in their clients, who include Pfizer, AB InBev, and Coca-Cola. They also count semiconductor giants like Micron Technology, GlobalFoundries, Intel, and TSMC among their customers.

    “Over the last few years, we have really developed our capabilities and reputation serving semiconductor wastewater and semiconductor ultrapure water,” says Bajpayee.

    Semiconductor manufacturers require ultrapure water for fabrication. Unlike drinking water, which has a total dissolved solids range in the parts per million, water used to manufacture microchips has a range in the parts per billion or quadrillion.

    Currently, the average recycling rate at semiconductor fabrication plants — or fabs — in Singapore is only 43 percent. Using Gradiant’s technologies, these fabs can recycle 98-99 percent of the 10 million gallons of water they require daily. This reused water is pure enough to be put back into the manufacturing process.

    “What we’ve done is eliminated the discharge of this contaminated water and nearly eliminated the dependence of the semiconductor fab on the public water supply,” adds Bajpayee.

    With new regulations being introduced, pressure is increasing for fabs to improve their water use, making sustainability even more important to brand owners and their stakeholders.

    As the domestic semiconductor industry expands in light of the CHIPS and Science Act, Gradiant sees an opportunity to bring their semiconductor water treatment technologies to more factories in the United States.

    Via Separations: Efficient chemical filtration

    Like Bajpayee and Govindan, Shreya Dave ’09, SM ’12, PhD ’16 focused on desalination for her doctoral thesis. Under the guidance of her advisor Jeffrey Grossman, professor of materials science and engineering, Dave built a membrane that could enable more efficient and cheaper desalination.

    A thorough cost and market analysis brought Dave to the conclusion that the desalination membrane she developed would not make it to commercialization.

    “The current technologies are just really good at what they do. They’re low-cost, mass produced, and they worked. There was no room in the market for our technology,” says Dave.

    Shortly after defending her thesis, she read a commentary article in the journal Nature that changed everything. The article outlined a problem. Chemical separations that are central to many manufacturing processes require a huge amount of energy. Industry needed more efficient and cheaper membranes. Dave thought she might have a solution.

    After determining there was an economic opportunity, Dave, Grossman, and Brent Keller PhD ’16 founded Via Separations in 2017. Shortly thereafter, they were chosen as one of the first companies to receive funding from MIT’s venture firm, The Engine.

    Currently, industrial filtration is done by heating chemicals at very high temperatures to separate compounds. Dave likens it to making pasta by boiling all of the water off until it evaporates and all you are left with is the pasta noodles. In manufacturing, this method of chemical separation is extremely energy-intensive and inefficient.

    Via Separations has created the chemical equivalent of a “pasta strainer.” Rather than using heat to separate, their membranes “strain” chemical compounds. This method of chemical filtration uses 90 percent less energy than standard methods.

    While most membranes are made of polymers, Via Separations’ membranes are made with graphene oxide, which can withstand high temperatures and harsh conditions. The membrane is calibrated to the customer’s needs by altering the pore size and tuning the surface chemistry.

    Currently, Dave and her team are focusing on the pulp and paper industry as their beachhead market. They have developed a system that makes the recovery of a substance known as “black liquor” more energy efficient.

    “When tree becomes paper, only one-third of the biomass is used for the paper. Currently the most valuable use for the remaining two-thirds not needed for paper is to take it from a pretty dilute stream to a pretty concentrated stream using evaporators by boiling off the water,” says Dave.

    This black liquor is then burned. Most of the resulting energy is used to power the filtration process.

    “This closed-loop system accounts for an enormous amount of energy consumption in the U.S. We can make that process 84 percent more efficient by putting the ‘pasta strainer’ in front of the boiler,” adds Dave.

    VulcanForms: Additive manufacturing at industrial scale

    The first semester John Hart taught at MIT was a fruitful one. He taught a course on 3D printing, broadly known as additive manufacturing (AM). While it wasn’t his main research focus at the time, he found the topic fascinating. So did many of the students in the class, including Martin Feldmann MEng ’14.

    After graduating with his MEng in advanced manufacturing, Feldmann joined Hart’s research group full time. There, they bonded over their shared interest in AM. They saw an opportunity to innovate with an established metal AM technology, known as laser powder bed fusion, and came up with a concept to realize metal AM at an industrial scale.

    The pair co-founded VulcanForms in 2015.

    “We have developed a machine architecture for metal AM that can build parts with exceptional quality and productivity,” says Hart. “And, we have integrated our machines in a fully digital production system, combining AM, postprocessing, and precision machining.”

    Unlike other companies that sell 3D printers for others to produce parts, VulcanForms makes and sells parts for their customers using their fleet of industrial machines. VulcanForms has grown to nearly 400 employees. Last year, the team opened their first production factory, known as “VulcanOne,” in Devens, Massachusetts.

    The quality and precision with which VulcanForms produces parts is critical for products like medical implants, heat exchangers, and aircraft engines. Their machines can print layers of metal thinner than a human hair.

    “We’re producing components that are difficult, or in some cases impossible to manufacture otherwise,” adds Hart, who sits on the company’s board of directors.

    The technologies developed at VulcanForms may help lead to a more sustainable way to manufacture parts and products, both directly through the additive process and indirectly through more efficient, agile supply chains.

    One way that VulcanForms, and AM in general, promotes sustainability is through material savings.

    Many of the materials VulcanForms uses, such as titanium alloys, require a great deal of energy to produce. When titanium parts are 3D-printed, substantially less of the material is used than in a traditional machining process. This material efficiency is where Hart sees AM making a large impact in terms of energy savings.

    Hart also points out that AM can accelerate innovation in clean energy technologies, ranging from more efficient jet engines to future fusion reactors.

    “Companies seeking to de-risk and scale clean energy technologies require know-how and access to advanced manufacturing capability, and industrial additive manufacturing is transformative in this regard,” Hart adds.

    LiquiGlide: Reducing waste by removing friction

    There is an unlikely culprit when it comes to waste in manufacturing and consumer products: friction. Kripa Varanasi, professor of mechanical engineering, and the team at LiquiGlide are on a mission to create a frictionless future, and substantially reduce waste in the process.

    Founded in 2012 by Varanasi and alum David Smith SM ’11, LiquiGlide designs custom coatings that enable liquids to “glide” on surfaces. Every last drop of a product can be used, whether it’s being squeezed out of a tube of toothpaste or drained from a 500-liter tank at a manufacturing plant. Making containers frictionless substantially minimizes wasted product, and eliminates the need to clean a container before recycling or reusing.

    Since launching, the company has found great success in consumer products. Customer Colgate utilized LiquiGlide’s technologies in the design of the Colgate Elixir toothpaste bottle, which has been honored with several industry awards for design. In a collaboration with world- renowned designer Yves Béhar, LiquiGlide is applying their technology to beauty and personal care product packaging. Meanwhile, the U.S. Food and Drug Administration has granted them a Device Master Filing, opening up opportunities for the technology to be used in medical devices, drug delivery, and biopharmaceuticals.

    In 2016, the company developed a system to make manufacturing containers frictionless. Called CleanTanX, the technology is used to treat the surfaces of tanks, funnels, and hoppers, preventing materials from sticking to the side. The system can reduce material waste by up to 99 percent.

    “This could really change the game. It saves wasted product, reduces wastewater generated from cleaning tanks, and can help make the manufacturing process zero-waste,” says Varanasi, who serves as chair at LiquiGlide.

    LiquiGlide works by creating a coating made of a textured solid and liquid lubricant on the container surface. When applied to a container, the lubricant remains infused within the texture. Capillary forces stabilize and allow the liquid to spread on the surface, creating a continuously lubricated surface that any viscous material can slide right down. The company uses a thermodynamic algorithm to determine the combinations of safe solids and liquids depending on the product, whether it’s toothpaste or paint.

    The company has built a robotic spraying system that can treat large vats and tanks at manufacturing plants on site. In addition to saving companies millions of dollars in wasted product, LiquiGlide drastically reduces the amount of water needed to regularly clean these containers, which normally have product stuck to the sides.

    “Normally when you empty everything out of a tank, you still have residue that needs to be cleaned with a tremendous amount of water. In agrochemicals, for example, there are strict regulations about how to deal with the resulting wastewater, which is toxic. All of that can be eliminated with LiquiGlide,” says Varanasi.

    While the closure of many manufacturing facilities early in the pandemic slowed down the rollout of CleanTanX pilots at plants, things have picked up in recent months. As manufacturing ramps up both globally and domestically, Varanasi sees a growing need for LiquiGlide’s technologies, especially for liquids like semiconductor slurry.

    Companies like Gradiant, Via Separations, VulcanForms, and LiquiGlide demonstrate that an expansion in manufacturing industries does not need to come at a steep environmental cost. It is possible for manufacturing to be scaled up in a sustainable way.

    “Manufacturing has always been the backbone of what we do as mechanical engineers. At MIT in particular, there is always a drive to make manufacturing sustainable,” says Evelyn Wang, Ford Professor of Engineering and former head of the Department of Mechanical Engineering. “It’s amazing to see how startups that have an origin in our department are looking at every aspect of the manufacturing process and figuring out how to improve it for the health of our planet.”

    As legislation like the CHIPS and Science Act fuels growth in manufacturing, there will be an increased need for startups and companies that develop solutions to mitigate the environmental impact, bringing us closer to a more sustainable future. More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19

    We know proper indoor ventilation is key to reducing the spread of Covid-19. Now, a study by MIT researchers finds that indoor relative humidity may also influence transmission of the virus.

    Relative humidity is the amount of moisture in the air compared to the total moisture the air can hold at a given temperature before saturating and forming condensation.

    In a study appearing today in the Journal of the Royal Society Interface, the MIT team reports that maintaining an indoor relative humidity between 40 and 60 percent is associated with relatively lower rates of Covid-19 infections and deaths, while indoor conditions outside this range are associated with worse Covid-19 outcomes. To put this into perspective, most people are comfortable between 30 and 50 percent relative humidity, and an airplane cabin is at around 20 percent relative humidity.

    The findings are based on the team’s analysis of Covid-19 data combined with meteorological measurements from 121 countries, from January 2020 through August 2020. Their study suggests a strong connection between regional outbreaks and indoor relative humidity.

    In general, the researchers found that whenever a region experienced a rise in Covid-19 cases and deaths prevaccination, the estimated indoor relative humidity in that region, on average, was either lower than 40 percent or higher than 60 percent regardless of season. Nearly all regions in the study experienced fewer Covid-19 cases and deaths during periods when estimated indoor relative humidity was within a “sweet spot” between 40 and 60 percent.

    “There’s potentially a protective effect of this intermediate indoor relative humidity,” suggests lead author Connor Verheyen, a PhD student in medical engineering and medical physics in the Harvard-MIT Program in Health Sciences and Technology.

    “Indoor ventilation is still critical,” says co-author Lydia Bourouiba, director of the MIT Fluid Dynamics of Disease Transmission Laboratory and associate professor in the departments of Civil and Environmental Engineering and Mechanical Engineering, and at the Institute for Medical Engineering and Science at MIT. “However, we find that maintaining an indoor relative humidity in that sweet spot — of 40 to 60 percent — is associated with reduced Covid-19 cases and deaths.”

    Seasonal swing?

    Since the start of the Covid-19 pandemic, scientists have considered the possibility that the virus’ virulence swings with the seasons. Infections and associated deaths appear to rise in winter and ebb in summer. But studies looking to link the virus’ patterns to seasonal outdoor conditions have yielded mixed results.

    Verheyen and Bourouiba examined whether Covid-19 is influenced instead by indoor — rather than outdoor — conditions, and, specifically, relative humidity. After all, they note that most societies spend more than 90 percent of their time indoors, where the majority of viral transmission has been shown to occur. What’s more, indoor conditions can be quite different from outdoor conditions as a result of climate control systems, such as heaters that significantly dry out indoor air.

    Could indoor relative humidity have affected the spread and severity of Covid-19 around the world? And could it help explain the differences in health outcomes from region to region?

    Tracking humidity

    For answers, the team focused on the early period of the pandemic when vaccines were not yet available, reasoning that vaccinated populations would obscure the influence of any other factor such as indoor humidity. They gathered global Covid-19 data, including case counts and reported deaths, from January 2020 to August 2020,  and identified countries with at least 50 deaths, indicating at least one outbreak had occurred in those countries.

    In all, they focused on 121 countries where Covid-19 outbreaks occurred. For each country, they also tracked the local Covid-19 related policies, such as isolation, quarantine, and testing measures, and their statistical association with Covid-19 outcomes.

    For each day that Covid-19 data was available, they used meteorological data to calculate a country’s outdoor relative humidity. They then estimated the average indoor relative humidity, based on outdoor relative humidity and guidelines on temperature ranges for human comfort. For instance, guidelines report that humans are comfortable between 66 to 77 degrees Fahrenheit indoors. They also assumed that on average, most populations have the means to heat indoor spaces to comfortable temperatures. Finally, they also collected experimental data, which they used to validate their estimation approach.

    For every instance when outdoor temperatures were below the typical human comfort range, they assumed indoor spaces were heated to reach that comfort range. Based on the added heating, they calculated the associated drop in indoor relative humidity.

    In warmer times, both outdoor and indoor relative humidity for each country was about the same, but they quickly diverged in colder times. While outdoor humidity remained around 50 percent throughout the year, indoor relative humidity for countries in the Northern and Southern Hemispheres dropped below 40 percent in their respective colder periods, when Covid-19 cases and deaths also spiked in these regions.

    For countries in the tropics, relative humidity was about the same indoors and outdoors throughout the year, with a gradual rise indoors during the region’s summer season, when high outdoor humidity likely raised the indoor relative humidity over 60 percent. They found this rise mirrored the gradual increase in Covid-19 deaths in the tropics.

    “We saw more reported Covid-19 deaths on the low and high end of indoor relative humidity, and less in this sweet spot of 40 to 60 percent,” Verheyen says. “This intermediate relative humidity window is associated with a better outcome, meaning fewer deaths and a deceleration of the pandemic.”

    “We were very skeptical initially, especially as the Covid-19 data can be noisy and inconsistent,” Bourouiba says. “We thus were very thorough trying to poke holes in our own analysis, using a range of approaches to test the limits and robustness of the findings, including taking into account factors such as government intervention. Despite all our best efforts, we found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes.”

    It’s still unclear how indoor relative humidity affects Covid-19 outcomes. The team’s follow-up studies suggest that pathogens may survive longer in respiratory droplets in both very dry and very humid conditions.

    “Our ongoing work shows that there are emerging hints of mechanistic links between these factors,” Bourouiba says. “For now however, we can say that indoor relative humidity emerges in a robust manner as another mitigation lever that organizations and individuals can monitor, adjust, and maintain in the optimal 40 to 60 percent range, in addition to proper ventillation.”

    This research was made possible, in part, by an MIT Alumni Class fund, the Richard and Susan Smith Family Foundation, the National Institutes of Health, and the National Science Foundation. More

  • in

    Assay determines the percentage of Omicron, other variants in Covid wastewater

    Wastewater monitoring emerged amid the Covid-19 pandemic as an effective and noninvasive way to track a viral outbreak, and advances in the technology have enabled researchers to not only identify but also quantify the presence of particular variants of concern (VOCs) in wastewater samples.

    Last year, researchers with the Singapore-MIT Alliance for Research and Technology (SMART) made the news for developing a quantitative assay for the Alpha variant of SARS-CoV-2 in wastewater, while also working on a similar assay for the Delta variant. Previously, conventional wastewater detection methods could only detect the presence of SARS-CoV-2 viral material in a sample, without identifying the variant of the virus.

    Now, a team at SMART has developed a quantitative RT-qPCR assay that can detect the Omicron variant of SARS-CoV-2. This type of assay enables wastewater surveillance to accurately trace variant dynamics in any given community or population, and support and inform the implementation of appropriate public health measures tailored according to the specific traits of a particular viral pathogen.

    The capacity to count and assess particular VOCs is unique to SMART’s open-source assay, and allows researchers to accurately determine displacement trends in a community. Hence, the new assay can reveal what proportion of SARS-CoV-2 virus circulating in a community belongs to a particular variant. This is particularly significant, as different SARS-CoV-2 VOCs — Alpha, Delta, Omicron, and their offshoots — have emerged at various points throughout the pandemic, each causing a new wave of infections to which the population was more susceptible.

    The team’s new allele-specific RT-qPCR assay is described in a paper, “Rapid displacement of SARS-CoV-2 variant Delta by Omicron revealed by allele-specific PCR in wastewater,” published this month in Water Research. Senior author on the work is Eric Alm, professor of biological engineering at MIT and a principal investigator in the Antimicrobial Resistance (AMR) interdisciplinary research group within SMART, MIT’s research enterprise in Singapore. Co-authors include researchers from Nanyang Technological University (NTU), Singapore National University (NUS), MIT, Singapore Centre for Environmental Life Sciences Engineering (SCELSE), and Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) in Italy.

    Omicron overtakes delta within three weeks in Italy study

    In their study, SMART researchers found that the increase in booster vaccine population coverage in Italy concurred with the complete displacement of the Delta variant by the Omicron variant in wastewater samples obtained from the Torbole Casaglia wastewater treatment plant, with a catchment size of 62,722 people. Taking less than three weeks, the rapid pace of this displacement can be attributed to Omicron’s infection advantage over the previously dominant Delta in vaccinated individuals, which may stem from Omicron’s more efficient evasion of vaccination-induced immunity.

    “In a world where Covid-19 is endemic, the monitoring of VOCs through wastewater surveillance will be an effective tool for the tracking of variants circulating in the community and will play an increasingly important role in guiding public health response,” says paper co-author Federica Armas, a senior postdoc at SMART AMR. “This work has demonstrated that wastewater surveillance can be used to quickly and quantitatively trace VOCs present in a community.”

    Wastewater surveillance vital for future pandemic responses

    As the global population becomes increasingly vaccinated and exposed to prior infections, nations have begun transitioning toward the classification of SARS-CoV-2 as an endemic disease, rolling back active clinical surveillance toward decentralized antigen rapid tests, and consequently reducing sequencing of patient samples. However, SARS-CoV-2 has been shown to produce novel VOCs that can swiftly emerge and spread rapidly across populations, displacing previously dominant variants of the virus. This was observed when Delta displaced Alpha across the globe after the former’s emergence in India in December 2020, and again when Omicron displaced Delta at an even faster rate following its discovery in South Africa in November 2021. The continuing emergence of novel VOCs therefore necessitates continued vigilance on the monitoring of circulating SARS-CoV-2 variants in communities.

    In a separate review paper on wastewater surveillance titled “Making Waves: Wastewater Surveillance of SARS-CoV-2 in an Endemic Future,” published in the journal Water Research, SMART researchers and collaborators found that the utility of wastewater surveillance in the near future could include 1) monitoring the trend of viral loads in wastewater for quantified viral estimates circulating in a community; 2) sampling of wastewater at the source — e.g., taking samples from particular neighborhoods or buildings — for pinpointing infections in neighborhoods and at the building level; 3) integrating wastewater and clinical surveillance for cost-efficient population surveillance; and 4) genome sequencing wastewater samples to track circulating and emerging variants in the population.

    “Our experience with SARS-CoV-2 has shown that clinical testing can often only paint a limited picture of the true extent of an outbreak or pandemic. With Covid-19 becoming prevalent and with the anticipated emergence of further variants of concern, qualitative and quantitative data from wastewater surveillance will be an integral component of a cost- and resource-efficient public health surveillance program, empowering authorities to make more informed policy decisions,” adds corresponding author Janelle Thompson, associate professor at SCELSE and NTU. “Our review provides a roadmap for the wider deployment of wastewater surveillance, with opportunities and challenges that, if addressed, will enable us to not only better manage Covid-19, but also future-proof societies for other viral pathogens and future pandemics.”

    In addition, the review suggests that future wastewater research should comply with a set of standardized wastewater processing methods to reduce inconsistencies in wastewater data toward improving epidemiological inference. Methods developed in the context of SARS-CoV-2 and its analyses could be of invaluable benefit for future wastewater monitoring work on discovering emerging zoonotic pathogens — pathogens that can be transmitted from animals to humans — and for early detection of future pandemics.

    Furthermore, far from being confined to SARS-CoV-2, wastewater surveillance has already been adapted for use in combating other viral pathogens. Another paper from September 2021 described an advance in the development of effective wastewater surveillance for dengue, Zika, and yellow fever viruses, with SMART researchers successfully measuring decay rates of these medically significant arboviruses in wastewater. This was followed by another review paper by SMART published in July 2022 that explored current progress and future challenges and opportunities in wastewater surveillance for arboviruses. These developments represent an important first step toward establishing arbovirus wastewater surveillance, which would help policymakers in Singapore and beyond make better informed and more targeted public health measures in controlling arbovirus outbreaks such as dengue, which is a significant public health concern in Singapore.

    “Our learnings from using wastewater surveillance as a key tool over the course of Covid-19 will be crucial in helping researchers develop similar methods to monitor and tackle other viral pathogens and future pandemics,” says Lee Wei Lin, first author of the latest SMART paper and research scientist at SMART AMR. “Wastewater surveillance has already shown promising utility in helping to fight other viral pathogens, including some of the world’s most prevalent mosquito-borne diseases, and there is significant potential for the technology to be adapted for use against other infectious viral diseases.”

    The research is carried out by SMART and its collaborators at SCELSE, NTU, and NUS, co-led by Professor Eric Alm (SMART and MIT) and Associate Professor Janelle Thompson (SCELSE and NTU), and is supported by Singapore’sNational Research Foundation (NRF) under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The research is part of an initiative funded by the NRF to develop sewage-based surveillance for rapid outbreak detection and intervention in Singapore.

    SMART was established by MIT in partnership with the NRF in 2007. SMART is the first entity in CREATE developed by NRF and serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Centre and five interdisciplinary research groups: AMR, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive & Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The AMR IRG is a translational research and entrepreneurship program that tackles the growing threat of antimicrobial resistance. By leveraging talent and convergent technologies across Singapore and MIT, they tackle AMR head-on by developing multiple innovative and disruptive approaches to identify, respond to, and treat drug-resistant microbial infections. Through strong scientific and clinical collaborations, our goal is to provide transformative, holistic solutions for Singapore and the world. More

  • in

    New J-WAFS-led project combats food insecurity

    Today the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT announced a new research project, supported by Community Jameel, to tackle one of the most urgent crises facing the planet: food insecurity. Approximately 276 million people worldwide are severely food insecure, and more than half a million face famine conditions.     To better understand and analyze food security, this three-year research project will develop a comprehensive index assessing countries’ food security vulnerability, called the Jameel Index for Food Trade and Vulnerability. Global changes spurred by social and economic transitions, energy and environmental policy, regional geopolitics, conflict, and of course climate change, can impact food demand and supply. The Jameel Index will measure countries’ dependence on global food trade and imports and how these regional-scale threats might affect the ability to trade food goods across diverse geographic regions. A main outcome of the research will be a model to project global food demand, supply balance, and bilateral trade under different likely future scenarios, with a focus on climate change. The work will help guide policymakers over the next 25 years while the global population is expected to grow, and the climate crisis is predicted to worsen.    

    The work will be the foundational project for the J-WAFS-led Food and Climate Systems Transformation Alliance, or FACT Alliance. Formally launched at the COP26 climate conference last November, the FACT Alliance is a global network of 20 leading research institutions and stakeholder organizations that are driving research and innovation and informing better decision-making for healthy, resilient, equitable, and sustainable food systems in a rapidly changing climate. The initiative is co-directed by Greg Sixt, research manager for climate and food systems at J-WAFS, and Professor Kenneth Strzepek, climate, water, and food specialist at J-WAFS.

    The dire state of our food systems

    The need for this project is evidenced by the hundreds of millions of people around the globe currently experiencing food shortages. While several factors contribute to food insecurity, climate change is one of the most notable. Devastating extreme weather events are increasingly crippling crop and livestock production around the globe. From Southwest Asia to the Arabian Peninsula to the Horn of Africa, communities are migrating in search of food. In the United States, extreme heat and lack of rainfall in the Southwest have drastically lowered Lake Mead’s water levels, restricting water access and drying out farmlands. 

    Social, political, and economic issues also disrupt food systems. The effects of the Covid-19 pandemic, supply chain disruptions, and inflation continue to exacerbate food insecurity. Russia’s invasion of Ukraine is dramatically worsening the situation, disrupting agricultural exports from both Russia and Ukraine — two of the world’s largest producers of wheat, sunflower seed oil, and corn. Other countries like Lebanon, Sri Lanka, and Cuba are confronting food insecurity due to domestic financial crises.

    Few countries are immune to threats to food security from sudden disruptions in food production or trade. When an enormous container ship became lodged in the Suez Canal in March 2021, the vital international trade route was blocked for three months. The resulting delays in international shipping affected food supplies around the world. These situations demonstrate the importance of food trade in achieving food security: a disaster in one part of the world can drastically affect the availability of food in another. This puts into perspective just how interconnected the earth’s food systems are and how vulnerable they remain to external shocks. 

    An index to prepare for the future of food

    Despite the need for more secure food systems, significant knowledge gaps exist when it comes to understanding how different climate scenarios may affect both agricultural productivity and global food supply chains and security. The Global Trade Analysis Project database from Purdue University, and the current IMPACT modeling system from the International Food Policy Research Institute (IFPRI), enable assessments of existing conditions but cannot project or model changes in the future.

    In 2021, Strzepek and Sixt developed an initial Food Import Vulnerability Index (FIVI) as part of a regional assessment of the threat of climate change to food security in the Gulf Cooperation Council states and West Asia. FIVI is also limited in that it can only assess current trade conditions and climate change threats to food production. Additionally, FIVI is a national aggregate index and does not address issues of hunger, poverty, or equity that stem from regional variations within a country.

    “Current models are really good at showing global food trade flows, but we don’t have systems for looking at food trade between individual countries and how different food systems stressors such as climate change and conflict disrupt that trade,” says Greg Sixt of J-WAFS and the FACT Alliance. “This timely index will be a valuable tool for policymakers to understand the vulnerabilities to their food security from different shocks in the countries they import their food from. The project will also illustrate the stakeholder-guided, transdisciplinary approach that is central to the FACT Alliance,” Sixt adds.

    Phase 1 of the project will support a collaboration between four FACT Alliance members: MIT J-WAFS, Ethiopian Institute of Agricultural Research, IFPRI (which is also part of the CGIAR network), and the Martin School at the University of Oxford. An external partner, United Arab Emirates University, will also assist with the project work. This first phase will build on Strzepek and Sixt’s previous work on FIVI by developing a comprehensive Global Food System Modeling Framework that takes into consideration climate and global changes projected out to 2050, and assesses their impacts on domestic production, world market prices, and national balance of payments and bilateral trade. The framework will also utilize a mixed-modeling approach that includes the assessment of bilateral trade and macroeconomic data associated with varying agricultural productivity under the different climate and economic policy scenarios. In this way, consistent and harmonized projections of global food demand and supply balance, and bilateral trade under climate and global change can be achieved. 

    “Just like in the global response to Covid-19, using data and modeling are critical to understanding and tackling vulnerabilities in the global supply of food,” says George Richards, director of Community Jameel. “The Jameel Index for Food Trade and Vulnerability will help inform decision-making to manage shocks and long-term disruptions to food systems, with the aim of ensuring food security for all.”

    On a national level, the researchers will enrich the Jameel Index through country-level food security analyses of regions within countries and across various socioeconomic groups, allowing for a better understanding of specific impacts on key populations. The research will present vulnerability scores for a variety of food security metrics for 126 countries. Case studies of food security and food import vulnerability in Ethiopia and Sudan will help to refine the applicability of the Jameel Index with on-the-ground information. The case studies will use an IFPRI-developed tool called the Rural Investment and Policy Analysis model, which allows for analysis of urban and rural populations and different income groups. Local capacity building and stakeholder engagement will be critical to enable the use of the tools developed by this research for national-level planning in priority countries, and ultimately to inform policy.  Phase 2 of the project will build on phase 1 and the lessons learned from the Ethiopian and Sudanese case studies. It will entail a number of deeper, country-level analyses to assess the role of food imports on future hunger, poverty, and equity across various regional and socioeconomic groups within the modeled countries. This work will link the geospatial national models with the global analysis. A scholarly paper is expected to be submitted to show findings from this work, and a website will be launched so that interested stakeholders and organizations can learn more information. More