More stories

  • in

    Q&A: Gabriela Sá Pessoa on Brazilian politics, human rights in the Amazon, and AI

    Gabriela Sá Pessoa is a journalist passionate about the intersection of human rights and climate change. She came to MIT from The Washington Post, where she worked from her home country of Brazil as a news researcher reporting on the Amazon, human rights violations, and environmental crimes. Before that, she held roles at two of the most influential media outlets in Brazil: Folha de S.Paulo, covering local and national politics, and UOL, where she was assigned to coronavirus coverage and later joined the investigative desk.

    Sá Pessoa was awarded the 2023 Elizabeth Neuffer Fellowship by the International Women’s Media Foundation, which supports its recipient with research opportunities at MIT and further training at The Boston Globe and The New York Times. She is currently based at the MIT Center for International Studies. Recently, she sat down to talk about her work on the Amazon, recent changes in Brazilian politics, and her experience at MIT.

    Q: One focus of your reporting is human rights and environmental issues in the Amazon. As part of your fellowship, you contributed to a recent editorial in The Boston Globe on fighting deforestation in the region. Why is reporting on this topic important?

    A: For many Brazilians, the Amazon is a remote and distant territory, and people living in other parts of the country aren’t fully aware of all of its problems and all of its potential. This is similar to the United States — like many people here, they don’t see how they could be related to the human rights violations and the destruction of the rainforest that are happening.

    But, we are all complicit in the destruction in some ways because the economic forces driving the deforestation of the rainforest all have a market, and these markets are everywhere, in Brazil and here in the U.S. I think it is part of journalism to show people in the U.S., Brazil, and elsewhere that we are part of the problem, and as part of the problem, we should be part of the solution by being aware of it, caring about it, and taking actions that are within our power.

    In the U.S., for example, voters can influence policy like the current negotiations for financial support for fighting deforestation in the Amazon. And as consumers, we can be more aware — is the beef we are consuming related to deforestation? Is the timber on our construction sites coming from the Amazon?

    Truth is, in Brazil, we have turned our backs to the Amazon for so long. It’s our duty to protect it for the sake of climate change. If we don’t take care of it, there will be serious consequences to our local climate, our local communities, and for the whole world. It’s a huge matter of human rights because our living depends on that, both locally and globally.

    Q: Before coming to MIT, you were at The Washington Post in São Paulo, where you contributed to reporting on the recent presidential election. What changes do you expect to see with the new Lula administration?

    A: To climate and environment, the first signs were positive. But the optimism did not last a semester, as politics is imposing itself. Lula is facing increasing difficulty building a majority in a conservative Congress, over which agribusiness holds tremendous power and influence. As we speak, environmental policy is under Congress’s attack. A committee in the House has just passed a ruling drowning power from the environmental minister, Marina Silva, and from the recently created National Indigenous People Ministry, led by Sonia Guajajara. Both Marina and Sonia are global ecological and human rights champions, and I wonder what the impact would be if Congress ratifies these changes. It is still unclear how it would impact the efforts to fight deforestation.

    In addition, there is an internal dispute in the government between environmentalists and those in favor of mining and big infrastructure projects. Petrobras, the state-run oil company, is trying to get authorization to research and drill offshore oil reserves in the mouth of the Amazon River. The federal environmental protection agency did a conclusive report suspending the operation, saying it is critical and threatens the region’s sensitive environment and indigenous communities. And, of course, it would be another source of greenhouse gas emissions. ​

    That said, it’s not a denialist government. I should mention the quick response from the administration to the Yanomami genocide earlier this year. In January, an independent media organization named Sumaúma reported on the deaths of over five hundred indigenous children from the Yanomami community in the Amazon over the past four years. This was a huge shock in Brazil, and the administration responded immediately. They sent task forces to the region and are now expelling the illegal miners that were bringing diseases and were ultimately responsible for these humanitarian tragedies. To be clear: It is still a problem. It’s not solved. But this is already a good example of positive action.

    Fighting deforestation in the Amazon and the Cerrado, another biome critical to climate regulation in Brazil, will not be easy. Rebuilding the environmental policy will take time, and the agencies responsible for enforcement are understaffed. In addition, environmental crime has become more sophisticated, connecting with other major criminal organizations in the country. In April, for the first time, there was a reduction in deforestation in the Amazon after two consecutive months of higher numbers. These are still preliminary data, and it is still too early to confirm whether they signal a turning point and may indicate a tendency for deforestation to decrease. On the other hand, the Cerrado registered record deforestation in April.

    There are problems everywhere in the economy and politics that Lula will have to face. In the first week of the new term, on Jan. 8, we saw an insurrection in Brasília, the country’s capital, from Bolsonaro voters who wouldn’t accept the election results. The events resembled what Americans saw in the Capitol attacks in 2021. We also seem to have imported problems from the United States, like mass killings in schools. We never used to have them in Brazil, but we are seeing them now. I’m curious to see how the country will address those problems and if the U.S. can also inspire solutions to that. That’s something I’m thinking about, being here: Are there solutions here? What are they?

    Q: What have you learned so far from MIT and your fellowship?

    A: It’s hard to put everything into words! I’m mostly taking courses and attending lectures on pressing issues to humanity, like existential threats such as climate change, artificial intelligence, biosecurity, and more.

    I’m learning about all these issues, but also, as a journalist, I think that I’m learning more about how I can incorporate the scientific approach into my work; for example, being more pro-positive. I am already a rigorous journalist, but I am thinking about how I can be more rigorous and more transparent about my methods. Being in the academic and scientific environment is inspiring that way.

    I am also learning a lot about how to cover scientific topics and thinking about how technology can offer us solutions (and problems). I’m learning so much that I think I will need some time to digest and fully understand what this period means for me!

    Q: You mentioned artificial intelligence. Would you like to weigh in on this subject and what you have been learning?

    A: It has been a particularly good semester to be at MIT. Generative artificial intelligence, which became more popular after ChatGPT, has been a topic of intense discussion this semester, and I was able to attend many classes, seminars, and events about AI here, especially from a policy perspective.

    Algorithms have influenced the economy, society, and public health for many years. It has had great outcomes, but also injustice. Popular systems like ChatGPT have made this technology incredibly popular and accessible, even for those with no computer knowledge. This is scary and, at the same time, very exciting. Here, I learned that we need guardrails for artificial intelligence, just like other technologies. Think of the pharmaceutical or automobile industries, which have to meet safety criteria before putting a new product on the market. But with artificial intelligence, it’s going to be different; supply chains are very complex and sometimes not very transparent, and the speed at which new resources develop is so fast that it challenges the policymaker’s ability to respond.

    Artificial intelligence is changing the world radically. It’s exciting to have the privilege of being here and seeing these discussions take place. After all, I have a future to report on. At least, I hope so!

    Q: What are you working on going forward?

    A: After MIT, I am going to New York, where I’ll be working with The New York Times in their internship program. I’m really excited about that because it will be a different pace from MIT. I am also doing research on carbon credit markets and hope to continue that project, either in a reporting or academic environment. 

    Honestly, I feel inspired to keep studying. I would love to spend more time here at MIT. I would love to do a master’s or join any program here. I’m going to work on coming back to academia because I think that I need to learn more from the academic environment. I hope that it’s at MIT because honestly, it’s the most exciting environment that I’ve ever been in, with all the people here from different fields and different backgrounds. I’m not a scientist, but it’s inspiring to be with them, and if there’s a way that I could contribute to their work in a way that they’re contributing to my work, I’ll be thrilled to spend more time here. More

  • in

    MIT junior Anushree Chaudhuri named 2023 Udall Scholar

    MIT junior Anushree Chaudhuri has been selected as a 2023 Morris K. Udall and Stewart L. Udall Foundation Scholar. She is only the second MIT student to win this award and the first winner since 2008.

    The Udall Scholarship honors students who have demonstrated a commitment to the environment, Native American health care, or tribal public policy. Chaudhuri is one of 55 Udall Scholars selected nationally out of 384 nominated applicants.

    Chaudhuri, who hails from San Diego, studies urban studies and planning as well as economics at MIT. She plans to work across the public and private sectors to drive structural changes that connect the climate crisis to local issues and inequities. Chaudhuri has conducted research with the MIT Environmental Solutions Initiative Rapid Response Group, which develops science-based analysis on critical environmental issues for community partners in civil society, government, and industry.

    Throughout her sophomore year, Chaudhuri worked with MIT’s Office of Sustainability, creating data visualizations for travel and Scope 3 emissions as a resource for MIT departments, labs, and centers. As an MIT Washington intern at the U.S. Department of Energy, she also developed the Buildings Upgrade Equity Tool to assist local governments in identifying areas for decarbonization investments.

    While taking Bruno Verdini’s class 11.011 (Art and Science of Negotiation) in fall 2021, Chaudhuri became deeply interested in the field of dispute resolution as a way of engaging diverse stakeholders in collaborative problem-solving, and she began work with Professor Lawrence Susskind at the MIT Science Impact Collaborative. She has now completed multiple projects with the group, as part of the MIT Renewable Energy Siting Clinic, including creating qualitative case studies to inform mediated siting processes and developing an open-access website and database for 60 renewable energy siting conflicts from findings published in Energy Policy. Through the MIT Climate and Sustainability Consortium’s Climate Scholars Program and a DUSP-PKG Fellowship, she is conducting an ethnographic and econometric study on the energy justice impacts of clean infrastructure on local communities.

    As part of a yearlong campaign to revise MIT’s Fast Forward Climate Action Plan, Chaudhuri led the Investments Student Working Group, which advocated for institutional social responsibility and active engagement in the Climate Action 100+ investor coalition. She also served as chair of the Undergraduate Association Committee on Sustainability and co-leads the Student Sustainability Coalition. Her work led her to be selected by MIT as an undergraduate delegate to the U.N. Framework Convention on Climate Change Summit (COP27).

    Chaudhuri’s research experiences and leadership in campus sustainability organizations have strengthened her belief in deep community engagement as a catalyst for change. By taking an interdisciplinary approach that combines law, planning, conflict resolution, participatory research, and data science, she’s committed to a public service career creating policies that are human-centered and address climate injustices, creating co-benefits for diverse communities. More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    Finding “hot spots” where compounding environmental and economic risks converge

    A computational tool developed by researchers at the MIT Joint Program on the Science and Policy of Global Change pinpoints specific counties within the United States that are particularly vulnerable to economic distress resulting from a transition from fossil fuels to low-carbon energy sources. By combining county-level data on employment in fossil fuel (oil, natural gas, and coal) industries with data on populations below the poverty level, the tool identifies locations with high risks for transition-driven economic hardship. It turns out that many of these high-risk counties are in the south-central U.S., with a heavy concentration in the lower portions of the Mississippi River.

    The computational tool, which the researchers call the System for the Triage of Risks from Environmental and Socio-economic Stressors (STRESS) platform, almost instantly displays these risk combinations on an easy-to-read visual map, revealing those counties that stand to gain the most from targeted green jobs retraining programs.  

    Drawing on data that characterize land, water, and energy systems; biodiversity; demographics; environmental equity; and transportation networks, the STRESS platform enables users to assess multiple, co-evolving, compounding hazards within a U.S. geographical region from the national to the county level. Because of its comprehensiveness and precision, this screening-level visualization tool can pinpoint risk “hot spots” that can be subsequently investigated in greater detail. Decision-makers can then plan targeted interventions to boost resilience to location-specific physical and economic risks.

    The platform and its applications are highlighted in a new study in the journal Frontiers in Climate.

    “As risks to natural and managed resources — and to the economies that depend upon them — become more complex, interdependent, and compounding amid rapid environmental and societal changes, they require more and more human and computational resources to understand and act upon,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “The STRESS platform provides decision-makers with an efficient way to combine and analyze data on those risks that matter most to them, identify ‘hot spots’ of compounding risk, and design interventions to minimize that risk.”

    In one demonstration of the STRESS platform’s capabilities, the study shows that national and global actions to reduce greenhouse gas emissions could simultaneously reduce risks to land, water, and air quality in the upper Mississippi River basin while increasing economic risks in the lower basin, where poverty and unemployment are already disproportionate. In another demonstration, the platform finds concerning “hot spots” where flood risk, poverty, and nonwhite populations coincide.

    The risk triage platform is based on an emerging discipline called multi-sector dynamics (MSD), which seeks to understand and model compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in natural and managed resources. With funding from the U.S. Department of Energy, the MIT Joint Program has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States.

    Current STRESS platform data includes more than 100 risk metrics at the county-level scale, but data collection is ongoing. MIT Joint Program researchers are continuing to develop the STRESS platform as an “open-science tool” that welcomes input from academics, researchers, industry and the general public. More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    Governing for our descendants

    Social scientists worry that too often we think only of ourselves. 

    “There’s been an increasing recognition that over the last few decades the economy and society have become incredibly focused on the individual, to the detriment of our social fabric,” says Lily L. Tsai, the Ford Professor of Political Science at MIT.

    Tsai, who is also the director and founder of the MIT Governance LAB (MIT GOV/LAB) and is the current chair of the MIT faculty, is interested in distributive justice — allocating resources fairly across different groups of people. Typically, that might mean splitting resources between different socioeconomic groups, or between different nations. 

    But in an essay in the journal Dædalus, Tsai discusses policies and institutions that consider the needs of people in the future when determining who deserves what resources. That is, they broaden our concept of a collective society to include people who haven’t been born yet and will bear the brunt of climate change in the future.

    Some groups of people do actually consider the needs of future people when making decisions. For example, Wales has a Future Generations Commissioner who monitors whether the government’s actions compromise the needs of future generations. Norway’s Petroleum Fund invests parts of its oil profits for future generations. And MIT’s endowment “is explicitly charged” with ensuring that future students are just as well-off as current students, Tsai says.

    But in other ways, societies place a lower value on the needs of their descendants. For example, to determine the total return on an investment, governments use something called a discount rate that places more value in the present return on the investment than the future return on the investment. And humans are currently using up the planet’s resources at an unsustainable rate, which in turn is raising global temperatures and making earth less habitable for our children and our children’s children.

    The purpose of Tsai’s essay is not to suggest how, say, governments might set discount rates that more fairly consider future people. “I’m interested in the things that make people care about setting the discount rate lower and therefore valuing the future more,” she says. “What are the moral commitments and the kinds of cultural practices or social institutions that make people care more?”

    Tsai thinks the volatility of the modern world and anxiety about the future — say, the future habitability of the planet — make it harder for people to consider the needs of their descendants. In Tsai’s 2021 book “When People Want Punishment,” she argues that this volatility and anxiety make people seek out more stability and order. “The more uncertain the future is, the less you can be sure that saving for the future is going to be valuable to anybody,” she says. So, part of the solution could be making people feel less unsettled and more stable, which Tsai says can be done with institutions we already have, like social welfare systems.

    She also thinks the rate at which things change in the modern world has hurt our ability to consider the long view. “We no longer think in terms of decades and centuries the way in which we used to,” she says.

    MIT GOV/LAB is working with partners to figure out how to experiment in a lab setting with developing democratic practices or institutions that might better distribute resources between current people and future people. That would allow researchers to assess if structuring interactions or decision-making in a particular way encourages people to save more for future people. 

    Tsai thinks getting people to care about their descendants is a problem researchers can work on, and that humans have a natural inclination to consider the future. People have a desire to be entrusted with things of importance, to leave a legacy, and for conservation. “I think many humans actually naturally conserve things that are valuable and scarce, and there’s a strange way in which society has eroded that human instinct in favor of a culture of consumption,” she says. We need to “re-imagine the kinds of practices that encourage conservation rather than consumption,” she adds. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Benjamin Mangrum receives the 2023 Levitan Prize in the Humanities

    Benjamin Mangrum, assistant professor of literature at MIT, has been awarded the 2023 Levitan Prize in the Humanities. This award, presented each year by a faculty committee, empowers a member of the MIT School of Humanities, Arts, and Social Sciences (SHASS) faculty with funding to enable research in their field. With an award of $30,000, this annual prize continues to power substantial projects among the members of the SHASS community.

    Mangrum will use the award to support research for his upcoming book, which is a cultural and intellectual history of environmental rights. In the book, Mangrum discusses the cultural structures that have helped link rights language to environmental concerns. Mangrum plans to use the funding from the Levitan Prize for research into a chapter involving literary personhood.

    “Assertions of environmental rights are typically the result of pragmatic or strategic alignments between, say, naturalists and labor organizers or indigenous communities and governments,” he writes. “My book examines the compromises and conceptual negotiations that occur for ‘environmental rights’ to be a workable concept.”

    The notion of environmental rights can refer to the right of citizens to live in a healthy environment, but it can also include the attribution of rights to nonhuman entities. Such designation received increased attention when New Zealand gave the Whanganui River a legal identity, bringing the longest-running litigation in New Zealand history to an end. India has named rivers legal entities and Bangladesh has given all its rivers legal rights.

    “Personhood status was a compromise between the government and a group of Māori tribes who demanded recognition for the river based on past treaties,” Mangrum writes. “I’m interested in how these very different kinds of discourse — political rights, environmental science, indigenous culture, public health — have come together during the 20th and 21st centuries.”

    For the chapter, Mangrum explores the argument made by legal theorist Christopher Stone in “Should Trees Have Standing?” First published in 1972, Stone’s essay is a foundational argument in environmental law. Stone maintains that natural objects can be given legal personhood, an argument that is often cited in legal framings of environmental rights. Mangrum explores the literary dimensions of legal personhood.

    “I argue that the intellectual and cultural history of legal personhood shares unacknowledged debts to the evolution in theories of literary personhood,” Mangrum writes. “A reader’s attribution of personhood does not serve the same social and moral functions as the attribution of personhood to corporations and other nonhuman entities. However, I argue that modern ideas about literary personhood are cognitively homologous with legal personhood: despite serving different functions, these conceptions of personhood share conceptual structures and intellectual origins.”

    In one recently published article, he examines the language used by Rachel Carson and others in the nascent environmental movement. In 1963, Carson testified before a U.S. Senate subcommittee on the threat of pesticides. It was considered a watershed moment for environmentalism, but notable also for intellectual history. Her use of the vocabulary of rights and her advocacy for environmental regulations in a public forum were significant forces in the institutionalization of environmental rights.

    Mangrum notes Carson’s claim of “the right of the citizen to be secure in his own home against the intrusion of poisons applied by other persons.” Carson uses the language of rights to introduce environmental concerns within the public sphere, but this language also has implications for how we understand our relationship to the nonhuman world.

    Before arriving at MIT in 2022, Mangrum taught at the University of the South, the University of Michigan, and Davidson College. He is the author of “Land of Tomorrow: Postwar Fiction and the Crisis of American Liberalism” (Oxford 2019), which examines 20th-century literary fiction and popular philosophy to understand shifts in American liberalism after World War II. He received his PhD from the University of North Carolina at Chapel Hill. More