More stories

  • in

    Transforming fusion from a scientific curiosity into a powerful clean energy source

    If you’re looking for hard problems, building a nuclear fusion power plant is a pretty good place to start. Fusion — the process that powers the sun — has proven to be a difficult thing to recreate here on Earth despite decades of research.“There’s something very attractive to me about the magnitude of the fusion challenge,” Hartwig says. “It’s probably true of a lot of people at MIT. I’m driven to work on very hard problems. There’s something intrinsically satisfying about that battle. It’s part of the reason I’ve stayed in this field. We have to cross multiple frontiers of physics and engineering if we’re going to get fusion to work.”The problem got harder when, in Hartwig’s last year in graduate school, the Department of Energy announced plans to terminate funding for the Alcator C-Mod tokamak, a major fusion experiment in MIT’s Plasma Science and Fusion Center that Hartwig needed to do to graduate. Hartwig was able to finish his PhD, and the scare didn’t dissuade him from the field. In fact, he took an associate professor position at MIT in 2017 to keep working on fusion.“It was a pretty bleak time to take a faculty position in fusion energy, but I am a person who loves to find a vacuum,” says Hartwig, who is a newly tenured associate professor at MIT. “I adore a vacuum because there’s enormous opportunity in chaos.”Hartwig did have one very good reason for hope. In 2012, he had taken a class taught by Professor Dennis Whyte that challenged students to design and assess the economics of a nuclear fusion power plant that incorporated a new kind of high-temperature superconducting magnet. Hartwig says the magnets enable fusion reactors to be much smaller, cheaper, and faster.Whyte, Hartwig, and a few other members of the class started working nights and weekends to prove the reactors were feasible. In 2017, the group founded Commonwealth Fusion Systems (CFS) to build the world’s first commercial-scale fusion power plants.Over the next four years, Hartwig led a research project at MIT with CFS that further developed the magnet technology and scaled it to create a 20-Tesla superconducting magnet — a suitable size for a nuclear fusion power plant.The magnet and subsequent tests of its performance represented a turning point for the industry. Commonwealth Fusion Systems has since attracted more than $2 billion in investments to build its first reactors, while the fusion industry overall has exceeded $8 billion in private investment.The old joke in fusion is that the technology is always 30 years away. But fewer people are laughing these days.“The perspective in 2024 looks quite a bit different than it did in 2016, and a huge part of that is tied to the institutional capability of a place like MIT and the willingness of people here to accomplish big things,” Hartwig says.A path to the starsAs a child growing up in St. Louis, Hartwig was interested in sports and playing outside with friends but had little interest in physics. When he went to Boston University as an undergraduate, he studied biomedical engineering simply because his older brother had done it, so he thought he could get a job. But as he was introduced to tools for structural experiments and analysis, he found himself more interested in how the tools worked than what they could do.“That led me to physics, and physics ended up leading me to nuclear science, where I’m basically still doing applied physics,” Hartwig explains.Joining the field late in his undergraduate studies, Hartwig worked hard to get his physics degree on time. After graduation, he was burnt out, so he took two years off and raced his bicycle competitively while working in a bike shop.“There’s so much pressure on people in science and engineering to go straight through,” Hartwig says. “People say if you take time off, you won’t be able to get into graduate school, you won’t be able to get recommendation letters. I always tell my students, ‘It depends on the person.’ Everybody’s different, but it was a great period for me, and it really set me up to enter graduate school with a more mature mindset and to be more focused.”Hartwig returned to academia as a PhD student in MIT’s Department of Nuclear Science and Engineering in 2007. When his thesis advisor, Dennis Whyte, announced a course focused on designing nuclear fusion power plants, it caught Hartwig’s eye. The final projects showed a surprisingly promising path forward for a fusion field that had been stagnant for decades. The rest was history.“We started CFS with the idea that it would partner deeply with MIT and MIT’s Plasma Science and Fusion Center to leverage the infrastructure, expertise, people, and capabilities that we have MIT,” Hartwig says. “We had to start the company with the idea that it would be deeply partnered with MIT in an innovative way that hadn’t really been done before.”Guided by impactHartwig says the Department of Nuclear Science and Engineering, and the Plasma Science and Fusion Center in particular, have seen a huge influx in graduate student applications in recent years.“There’s so much demand, because people are excited again about the possibilities,” Hartwig says. “Instead of having fusion and a machine built in one or two generations, we’ll hopefully be learning how these things work in under a decade.”Hartwig’s research group is still testing CFS’ new magnets, but it is also partnering with other fusion companies in an effort to advance the field more broadly.Overall, when Hartwig looks back at his career, the thing he is most proud of is switching specialties every six years or so, from building equipment for his PhD to conducting fundamental experiments to designing reactors to building magnets.“It’s not that traditional in academia,” Hartwig says. “Where I’ve found success is coming into something new, bringing a naivety but also realism to a new field, and offering a different toolkit, a different approach, or a different idea about what can be done.”Now Hartwig is onto his next act, developing new ways to study materials for use in fusion and fission reactors.“I’m already interested in moving on to the next thing; the next field where I’m not a trained expert,” Hartwig says. “It’s about identifying where there’s stagnation in fusion and in technology, where innovation is not happening where we desperately need it, and bringing new ideas to that.” More

  • in

    Catherine Wolfram: High-energy scholar

    In the mid 2000s, Catherine Wolfram PhD ’96 reached what she calls “an inflection point” in her career. After about a decade of studying U.S. electricity markets, she had come to recognize that “you couldn’t study the energy industries without thinking about climate mitigation,” as she puts it.At the same time, Wolfram understood that the trajectory of energy use in the developing world was a massively important part of the climate picture. To get a comprehensive grasp on global dynamics, she says, “I realized I needed to start thinking about the rest of the world.”An accomplished scholar and policy expert, Wolfram has been on the faculty at Harvard University, the University of California at Berkeley — and now MIT, where she is the William Barton Rogers Professor in Energy. She has also served as deputy assistant secretary for climate and energy economics at the U.S. Treasury.Yet even leading experts want to keep learning. So, when she hit that inflection point, Wolfram started carving out a new phase of her research career.“One of the things I love about being an academic is, I could just decide to do that,” Wolfram says. “I didn’t need to check with a boss. I could just pivot my career to being more focused to thinking about energy in the developing world.”Over the last decade, Wolfram has published a wide array of original studies about energy consumption in the developing world. From Kenya to Mexico to South Asia, she has shed light on the dynamics of economics growth and energy consumption — while spending some of that time serving the government too. Last year, Wolfram joined the faculty of the MIT Sloan School of Management, where her work bolsters the Institute’s growing effort to combat climate change.Studying at MITWolfram largely grew up in Minnesota, where her father was a legal scholar, although he moved to Cornell University around the time she started high school. As an undergraduate, she majored in economics at Harvard University, and after graduation she worked first for a consultant, then for the Massachusetts Department of Public Utilities, the agency regulating energy rates. In the latter job, Wolfram kept noticing that people were often citing the research of an MIT scholar named Paul Joskow (who is now the Elizabeth and James Killian Professor of Economics Emeritus in MIT’s Department of Economics) and Richard Schmalensee (a former dean of the MIT Sloan School of Management and now the Howard W. Johnson Professor of Management Emeritus). Seeing how consequential economics research could be for policymaking, Wolfram decided to get a PhD in the field and was accepted into MIT’s doctoral program.“I went into graduate school with an unusually specific view of what I wanted to do,” Wolfram says. “I wanted to work with Paul Joskow and Dick Schmalensee on electricity markets, and that’s how I wound up here.”At MIT, Wolfram also ended up working extensively with Nancy Rose, the Charles P. Kindleberger Professor of Applied Economics and a former head of the Department of Economics, who helped oversee Wolfram’s thesis; Rose has extensively studied market regulation as well.Wolfram’s dissertation research largely focused on price-setting behavior in the U.K.’s newly deregulated electricity markets, which, it turned out, applied handily to the U.S., where a similar process was taking place. “I was fortunate because this was around the time California was thinking about restructuring, as it was known,” Wolfram says. She spent four years on the faculty at Harvard, then moved to UC Berkeley. Wolfram’s studies have shown that deregulation has had some medium-term benefits, for instance in making power plants operate more efficiently.Turning on the ACBy around 2010, though, Wolfram began shifting her scholarly focus in earnest, conducting innovative studies about energy in the developing world. One strand of her research has centered on Kenya, to better understand how more energy access for people without electricity might fit into growth in the developing world.In this case, Wolfram’s perhaps surprising conclusion is that electrification itself is not a magic ticket to prosperity; people without electricity are more eager to adopt it when they have a practical economic need for it. Meanwhile, they have other essential needs that are not necessarily being addressed.“The 800 million people in the world who don’t have electricity also don’t have access to good health care or running water,” Wolfram says. “Giving them better housing infrastructure is important, and harder to tackle. It’s not clear that bringing people electricity alone is the single most useful thing from a development perspective. Although electricity is a super-important component of modern living.”Wolfram has even delved into topics such as air conditioner use in the developing world — an important driver of energy use. As her research shows, many countries, with a combined population far bigger than the U.S., are among the fastest-growing adopters of air conditioners and have an even greater need for them, based on their climates. Adoption of air conditioning within those countries also is characterized by marked economic inequality.From early 2021 until late 2022, Wolfram also served in the administration of President Joe Biden, where her work also centered on global energy issues. Among other things, Wolfram was part of the team working out a price-cap policy for Russian oil exports, a concept that she thinks could be applied to many other products globally. Although, she notes, working with countries heavily dependent on exporting energy materials will always require careful engagement.“We need to be mindful of that dependence and importance as we go through this massive effort to decarbonize the energy sector and shift it to a whole new paradigm,” Wolfram says.At MIT againStill, she notes, the world does need a whole new energy paradigm, and fast. Her arrival at MIT overlaps with the emergence of a new Institute-wide effort, the Climate Project at MIT, that aims to accelerate and scale climate solutions and good climate policy, including through the new Climate Policy Center at MIT Sloan. That kind of effort, Wolfram says, matters to her.“It’s part of why I’ve come to MIT,” Wolfram says. “Technology will be one part of the climate solution, but I do think an innovative mindset, how can we think about doing things better, can be productively applied to climate policy.” On being at MIT, she adds: “It’s great, it’s awesome. One of the things that pleasantly surprised me is how tight-knit and friendly the MIT faculty all are, and how many interactions I’ve had with people from other departments.”Wolfram has also been enjoying her teaching at MIT, and will be offering a large class in spring 2025, 15.016 (Climate and Energy in the Global Economy), that she debuted this past academic year.“It’s super fun to have students from around the world, who have personal stories and knowledge of energy systems in their countries and can contribute to our discussions,” she says.When it comes to tackling climate change, many things seem daunting. But there is still a world of knowledge to be acquired while we try to keep the planet from overheating, and Wolfram has a can-do attitude about learning more and applying those lessons.“We’ve made a lot of progress,” Wolfram says. “But we still have a lot more to do.” More

  • in

    Admir Masic: Using lessons from the past to build a better future

    As a teenager living in a small village in what was then Yugoslavia, Admir Masic witnessed the collapse of his home country and the outbreak of the Bosnian war. When his childhood home was destroyed by a tank, his family was forced to flee the violence, leaving their remaining possessions to enter a refugee camp in northern Croatia.It was in Croatia that Masic found what he calls his “magic.”“Chemistry really forcefully entered my life,” recalls Masic, who is now an associate professor in MIT’s Department of Civil and Environmental Engineering. “I’d leave school to go back to my refugee camp, and you could either play ping-pong or do chemistry homework, so I did a lot of homework, and I began to focus on the subject.”Masic has never let go of his magic. Long after chemistry led him out of Croatia, he’s come to understand that the past holds crucial lessons for building a better future. That’s why he started the MIT Refugee Action Hub (now MIT Emerging Talent) to provide educational opportunities to students displaced by war. It’s also what led him to study ancient materials, whose secrets he believes have potential to solve some of the modern world’s most pressing problems.“We’re leading this concept of paleo-inspired design: that there are some ideas behind these ancient materials that are useful today,” Masic says. “We should think of these materials as a source of valuable information that we can try to translate to today. These concepts have the potential to revolutionize how we think about these materials.”One key research focus for Masic is cement. His lab is working on ways to transform the ubiquitous material into a carbon sink, a medium for energy storage, and more. Part of that work involves studying ancient Roman concrete, whose self-healing properties he has helped to illuminate.At the core of each of Masic’s research endeavors is a desire to translate a better understanding of materials into improvements in how we make things around the world.“Roman concrete to me is fascinating: It’s still standing after all this time and constantly repairing,” Masic says. “It’s clear there’s something special about this material, so what is it? Can we translate part of it into modern analogues? That’s what I love about MIT. We are put in a position to do cutting-edge research and then quickly translate that research into the real world. Impact for me is everything.”Finding a purposeMasic’s family fled to Croatia in 1992, just as he was set to begin high school. Despite excellent grades, Masic was told Bosnian refugees couldn’t enroll in the local school. It was only after a school psychologist advocated for Masic that he was allowed to sit in on classes as a nonmatriculating student.Masic did his best to be a ghost in the back of classrooms, silently absorbing everything he could. But in one subject he stood out. Within six months of joining the school, in January of 1993, a teacher suggested Masic compete in a local chemistry competition.“It was kind of the Olympiads of chemistry, and I won,” Masic recalls. “I literally floated onto the stage. It was this ‘Aha’ moment. I thought, ‘Oh my god, I’m good at chemistry!’”In 1994, Masic’s parents immigrated to Germany in search of a better life, but he decided to stay behind to finish high school, moving into a friend’s basement and receiving food and support from local families as well as a group of volunteers from Italy.“I just knew I had to stay,” Masic says. “With all the highs and lows of life to that point, I knew I had this talent and I had to make the most of it. I realized early on that knowledge was the one thing no one could take away from me.”Masic continued competing in chemistry competitions — and continued winning. Eventually, after a change to a national law, the high school he was attending agreed to give him a diploma. With the help of the Italian volunteers, he moved to Italy to attend the University of Turin, where he entered a five-year joint program that earned him a master’s degree in inorganic chemistry. Masic stayed at the university for his PhD, where he studied parchment, a writing material that’s been used for centuries to record some of humanity’s most sacred texts.With a classmate, Masic started a company that helped restore ancient documents. The work took him to Germany to work on a project studying the Dead Sea Scrolls, a set of manuscripts that date as far back as the third century BCE. In 2008, Masic joined the Max Planck Institute in Germany, where he also began to work with biological materials, studying water’s interaction with collagen at the nanoscale.Through that work, Masic became an expert in Raman spectroscopy, a type of chemical imaging that uses lasers to record the vibrations of molecules without leaving a trace, which he still uses to characterize materials.“Raman became a tool for me to contribute in the field of biological materials and bioinspired materials,” Masic says. “At the same time, I became the ‘Raman guy.’ It was a remarkable period for me professionally, as these tools provided unparalleled information and I published a lot of papers.”After seven years at Max Planck, Masic joined the Department of Civil and Environmental Engineering (CEE) at MIT.“At MIT, I felt I could truly be myself and define the research I wanted to do,” Masic says. “Especially in CEE, I could connect my work in heritage science and this tool, Raman spectroscopy, to tackle our society’s big challenges.”From labs to the worldRaman spectroscopy is a relatively new approach to studying cement, a material that contributes significantly to carbon dioxide emissions worldwide. At MIT, Masic has explored ways cement could be used to store carbon dioxide and act as an energy-storing supercapacitor. He has also solved ancient mysteries about the lasting strength of ancient Roman concrete, with lessons for the $400 billion cement industry today.“We really don’t think we should replace ordinary Portland cement completely, because it’s an extraordinary material that everyone knows how to work with, and industry produces so much of it. We need to introduce new functionalities into our concrete that will compensate for cement’s sustainability issues through avoided emissions,” Masic explains. “The concept we call ‘multifunctional concrete’ was inspired by our work with biological materials. Bones, for instance, sacrifice mechanical performance to be able to do things like self-healing and energy storage. That’s how you should imagine construction over next 10 years or 20 years. There could be concrete columns and walls that primarily offer support but also do things like store energy and continuously repair themselves.”Masic’s work across academia and industry allows him to apply his multifunctional concrete research at scale. He serves as a co-director of the MIT ec3 hub, a principal investigator within MIT Concrete Sustainability Hub, and a co-founder and advisor at the technology development company DMAT.“It’s great to be at the forefront of sustainability but also to be directly interacting with key industry players that can change the world,” Masic says. “What I appreciate about MIT is how you can engage in fundamental science and engineering while also translating that work into practical applications. The CSHub and ec3 hub are great examples of this. Industry is eager for us to develop solutions that they can help support.”And Masic will never forget where he came from. He now lives in Somerville, Massachusetts, with his wife Emina, a fellow former refugee, and their son, Benjamin, and the family shares a deep commitment to supporting displaced and underserved communities. Seven years ago, Masic founded the MIT Refugee Action Hub (ReACT), which provides computer and data science education programs for refugees and displaced communities. Today thousands of refugees apply to the program every year, and graduates have gone on to successful careers at places like Microsoft and Meta. The ReACT program was absorbed by MIT’s Emerging Talent program earlier this year to further its reach.“It’s really a life-changing experience for them,” Masic says. “It’s an amazing opportunity for MIT to nurture talented refugees around the world through this simple certification program. The more people we can involve, the more impact we will have on the lives of these truly underserved communities.” More

  • in

    Smart handling of neutrons is crucial to fusion power success

    In fall 2009, when Ethan Peterson ’13 arrived at MIT as an undergraduate, he already had some ideas about possible career options. He’d always liked building things, even as a child, so he imagined his future work would involve engineering of some sort. He also liked physics. And he’d recently become intent on reducing our dependence on fossil fuels and simultaneously curbing greenhouse gas emissions, which made him consider studying solar and wind energy, among other renewable sources.Things crystallized for him in the spring semester of 2010, when he took an introductory course on nuclear fusion, taught by Anne White, during which he discovered that when a deuterium nucleus and a tritium nucleus combine to produce a helium nucleus, an energetic (14 mega electron volt) neutron — traveling at one-sixth the speed of light — is released. Moreover, 1020 (100 billion billion) of these neutrons would be produced every second that a 500-megawatt fusion power plant operates. “It was eye-opening for me to learn just how energy-dense the fusion process is,” says Peterson, who became the Class of 1956 Career Development Professor of nuclear science and engineering in July 2024. “I was struck by the richness and interdisciplinary nature of the fusion field. This was an engineering discipline where I could apply physics to solve a real-world problem in a way that was both interesting and beautiful.”He soon became a physics and nuclear engineering double major, and by the time he graduated from MIT in 2013, the U.S. Department of Energy (DoE) had already decided to cut funding for MIT’s Alcator C-Mod fusion project. In view of that facility’s impending closure, Peterson opted to pursue graduate studies at the University of Wisconsin. There, he acquired a basic science background in plasma physics, which is central not only to nuclear fusion but also to astrophysical phenomena such as the solar wind.When Peterson received his PhD from Wisconsin in 2019, nuclear fusion had rebounded at MIT with the launch, a year earlier, of the SPARC project — a collaborative effort being carried out with the newly founded MIT spinout Commonwealth Fusion Systems. He returned to his alma mater as a postdoc and then a research scientist in the Plasma Science and Fusion Center, taking his time, at first, to figure out how to best make his mark in the field.Minding your neutronsAround that time, Peterson was participating in a community planning process, sponsored by the DoE, that focused on critical gaps that needed to be closed for a successful fusion program. In the course of these discussions, he came to realize that inadequate attention had been paid to the handling of neutrons, which carry 80 percent of the energy coming out of a fusion reaction — energy that needs to be harnessed for electrical generation. However, these neutrons are so energetic that they can penetrate through many tens of centimeters of material, potentially undermining the structural integrity of components and damaging vital equipment such as superconducting magnets. Shielding is also essential for protecting humans from harmful radiation.One goal, Peterson says, is to minimize the number of neutrons that escape and, in so doing, to reduce the amount of lost energy. A complementary objective, he adds, “is to get neutrons to deposit heat where you want them to and to stop them from depositing heat where you don’t want them to.” These considerations, in turn, can have a profound influence on fusion reactor design. This branch of nuclear engineering, called neutronics — which analyzes where neutrons are created and where they end up going — has become Peterson’s specialty.It was never a high-profile area of research in the fusion community — as plasma physics, for example, has always garnered more of the spotlight and more of the funding. That’s exactly why Peterson has stepped up. “The impacts of neutrons on fusion reactor design haven’t been a high priority for a long time,” he says. “I felt that some initiative needed to be taken,” and that prompted him to make the switch from plasma physics to neutronics. It has been his principal focus ever since — as a postdoc, a research scientist, and now as a faculty member.A code to design byThe best way to get a neutron to transfer its energy is to make it collide with a light atom. Lithium, with an atomic number of three, or lithium-containing materials are normally good choices — and necessary for producing tritium fuel. The placement of lithium “blankets,” which are intended to absorb energy from neutrons and produce tritium, “is a critical part of the design of fusion reactors,” Peterson says. High-density materials, such as lead and tungsten, can be used, conversely, to block the passage of neutrons and other types of radiation. “You might want to layer these high- and low-density materials in a complicated way that isn’t immediately intuitive” he adds. Determining which materials to put where — and of what thickness and mass — amounts to a tricky optimization problem, which will affect the size, cost, and efficiency of a fusion power plant.To that end, Peterson has developed modelling tools that can make analyses of these sorts easier and faster, thereby facilitating the design process. “This has traditionally been the step that takes the longest time and causes the biggest holdups,” he says. The models and algorithms that he and his colleagues are devising are general enough, moreover, to be compatible with a diverse range of fusion power plant concepts, including those that use magnets or lasers to confine the plasma.Now that he’s become a professor, Peterson is in a position to introduce more people to nuclear engineering, and to neutronics in particular. “I love teaching and mentoring students, sharing the things I’m excited about,” he says. “I was inspired by all the professors I had in physics and nuclear engineering at MIT, and I hope to give back to the community in the same way.”He also believes that if you are going to work on fusion, there is no better place to be than MIT, “where the facilities are second-to-none. People here are extremely innovative and passionate. And the sheer number of people who excel in their fields is staggering.” Great ideas can sometimes be sparked by off-the-cuff conversations in the hallway — something that happens more frequently than you expect, Peterson remarks. “All of these things taken together makes MIT a very special place.” More

  • in

    Applying risk and reliability analysis across industries

    On Feb. 1, 2003, the space shuttle Columbia disintegrated as it returned to Earth, killing all seven astronauts on board. The tragic incident compelled NASA to amp up their risk safety assessments and protocols. They knew whom to call: Curtis Smith PhD ’02, who is now the KEPCO Professor of the Practice of Nuclear Science and Engineering at MIT.The nuclear community has always been a leader in probabilistic risk analysis and Smith’s work in risk-related research had made him an established expert in the field. When NASA came knocking, Smith had been working for the Nuclear Regulatory Commission (NRC) at the Idaho National Laboratory (INL). He pivoted quickly. For the next decade, Smith worked with NASA’s Office of Safety and Mission Assurance supporting their increased use of risk analysis. It was a software tool that Smith helped develop, SAPHIRE, that NASA would adopt to bolster its own risk analysis program.At MIT, Smith’s focus is on both sides of system operation: risk and reliability. A research project he has proposed involves evaluating the reliability of 3D-printed components and parts for nuclear reactors.Growing up in IdahoMIT is a distance from where Smith grew up on the Shoshone-Bannock Native American reservation in Fort Hall, Idaho. His father worked at a chemical manufacturing plant, while his mother and grandmother operated a small restaurant on the reservation.Southeast Idaho had a significant population of migrant workers and Smith grew up with a diverse group of friends, mostly Native American and Hispanic. “It was a largely positive time and set a worldview for me in many wonderful ways,” Smith remembers. When he was a junior in high school, the family moved to Pingree, Idaho, a small town of barely 500. Smith attended Snake River High, a regional school, and remembered the deep impact his teachers had. “I learned a lot in grade school and had great teachers, so my love for education probably started there. I tried to emulate my teachers,” Smith says.Smith went to Idaho State University in Pocatello for college, a 45-minute drive from his family. Drawn to science, he decided he wanted to study a subject that would benefit humanity the most: nuclear engineering. Fortunately, Idaho State has a strong nuclear engineering program. Smith completed a master’s degree in the same field at ISU while working for the Federal Bureau of Investigation in the security department during the swing shift — 5 p.m. to 1 a.m. — at the FBI offices in Pocatello. “It was a perfect job while attending grad school,” Smith says.His KEPCO Professor of the Practice appointment is the second stint for Smith at MIT: He completed his PhD in the Department of Nuclear Science and Engineering (NSE) under the advisement of Professor George Apostolakis in 2002.A career in risk analysis and managementAfter a doctorate at MIT, Smith returned to Idaho, conducting research in risk analysis for the NRC. He also taught technical courses and developed risk analysis software. “We did a whole host of work that supported the current fleet of nuclear reactors that we have,” Smith says.He was 10 years into his career at INL when NASA recruited him, leaning on his expertise in risk analysis to translate it into space missions. “I didn’t really have a background in aerospace, but I was able to bring all the engineering I knew, conducting risk analysis for nuclear missions. It was really exciting and I learned a lot about aerospace,” Smith says.Risk analysis uses statistics and data to answer complex questions involving safety. Among his projects: analyzing the risk involved in a Mars rover mission with a radioisotope-generated power source for the rover. Even if the necessary plutonium is encased in really strong material, calculations for risk have to factor in all eventualities, including the rocket blowing up.When the Fukushima incident happened in 2011, the Department of Energy (DoE) was more supportive of safety and risk analysis research. Smith found himself in the center of the action again, supporting large DoE research programs. He then moved to become the director of the Nuclear Safety and Regulatory Research Division at the INL. Smith found he loved the role, mentoring and nurturing the careers of a diverse set of scientists. “It turned out to be much more rewarding than I had expected,” Smith says. Under his leadership, the division grew from 45 to almost 90 research staff and won multiple national awards.Return to MITMIT NSE came calling in 2022, looking to fill the position of professor of the practice, an offer Smith couldn’t refuse. The department was looking to bulk up its risk and reliability offerings and Smith made a great fit. The DoE division he had been supervising had grown wings enough for Smith to seek out something new.“Just getting back to Boston is exciting,” Smith says. The last go-around involved bringing the family to the city and included a lot of sleepless nights. Smith’s wife, Jacquie, is also excited about being closer to the New England fan base. The couple has invested in season tickets for the Patriots and look to attend as many sporting events as possible.Smith is most excited about adding to the risk and reliability offerings at MIT at a time when the subject has become especially important for nuclear power. “I’m grateful for the opportunity to bring my knowledge and expertise from the last 30 years to the field,” he says. Being a professor of the practice of NSE carries with it a responsibility to unite theory and practice, something Smith is especially good at. “We always have to answer the question of, ‘How do I take the research and make that practical,’ especially for something important like nuclear power, because we need much more of these ideas in industry,” he says.He is particularly excited about developing the next generation of nuclear scientists. “Having the ability to do this at a place like MIT is especially fulfilling and something I have been desiring my whole career,” Smith says. More

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Creating connection with science communication

    Before completing her undergraduate studies, Sophie Hartley, a student in MIT’s Graduate Program in Science Writing, had an epiphany that was years in the making.“The classes I took in my last undergraduate semester changed my career goals, but it started with my grandfather,” she says when asked about what led her to science writing. She’d been studying comparative human development at the University of Chicago, which Hartley describes as “a combination of psychology and anthropology,” when she took courses in environmental writing and digital science communications.“What if my life could be about learning more of life’s intricacies?” she thought.Hartley’s grandfather introduced her to photography when she was younger, which helped her develop an appreciation for the natural world. Each summer, they would explore tide pools, overgrown forests, and his sprawling backyard. He gave her a camera and encouraged her to take pictures of anything interesting.“Photography was a door into science journalism,” she notes. “It lets you capture the raw beauty of a moment and return to it later.”Lasting impact through storytellingHartley spent time in Wisconsin and Vermont while growing up. That’s when she noticed a divide between rural communities and urban spaces. She wants to tell stories about communities that are less likely to be covered, and “connect them to people in cities who might not otherwise understand what’s happening and why.”People have important roles to play in arresting climate change impacts, improving land management practices and policies, and taking better care of our natural resources, according to Hartley. Challenges related to conservation, land management, and farming affect us all, which is why she believes effective science writing is so important.“We’re way more connected than we believe or understand,” Hartley says. “Climate change is creating problems throughout the entire agricultural supply chain.”For her news writing course, Hartley wrote a story about how flooding in Vermont led to hay shortages, which impacted comestibles as diverse as goat cheese and beef. “When the hay can’t dry, it’s ruined,” she says. “That means cows and goats aren’t eating, which means they can’t produce our beef, milk, and cheese.”Ultimately, Hartley believes her work can build compassion for others while also educating people about how everything we do affects nature and one another.“The connective tissues between humans persist,” she said. “People who live in cities aren’t exempt from rural concerns.”Creating connections with science writingDuring her year-long study in the MIT Graduate Program in Science Writing, Hartley is also busy producing reporting for major news outlets.Earlier this year, Hartley authored a piece for Ars Technica that explored ongoing efforts to develop technology aimed at preventing car collisions with kangaroos. As Hartley reported, given the unique and unpredictable behavior of kangaroos, vehicle animal detection systems have proven ineffective. That’s forced Australian communities to develop alternative solutions, such as virtual fencing, to keep kangaroos away from the roads.In June, Hartley co-produced a story for GBH News with Hannah Richter, a fellow student in the science writing program. They reported on how and why officials at a new Peabody power plant are backtracking on an earlier pledge to run the facility on clean fuels.The story was a collaboration between GBH News and the investigative journalism class in the science writing program. Hartley recalls wonderful experience working with Richter. “We were able to lean on each other’s strengths and learn from each other,” she says. “The piece took a long time to report and write, and it was helpful to have a friend and colleague to continuously motivate me when we would pick it back up after a while.”Co-reporting can also help evenly divide what can sometimes become a massive workload, particularly with deeply, well-researched pieces like the Peabody story. “When there is so much research to do, it’s helpful to have another person to divvy up the work,” she continued. “It felt like everything was stronger and better, from the writing to the fact-checking, because we had two eyes on it during the reporting process.”Hartley’s favorite piece in 2024 focused on beech leaf disease, a deadly pathogen devastating North American forests. Her story, which was later published in The Boston Globe Magazine, followed a team of four researchers racing to discover how the disease works. Beech leaf disease kills swiftly and en masse, leaving space for invasive species to thrive on forest floors. Her interest in land management and natural resources shines through in much of her work.Local news organizations are an endangered species as newsrooms across America shed staff and increasingly rely on aggregated news accounts from larger organizations. What can be lost, however, are opportunities to tell small-scale stories with potentially large-scale impacts. “Small and rural accountability stories are being told less and less,” Hartley notes. “I think it’s important that communities are aware of what is happening around them, especially if it impacts them.” More

  • in

    Balancing economic development with natural resources protection

    It’s one of the paradoxes of economic development: Many countries currently offer large subsidies to their industrial fishing fleets, even though the harms of overfishing are well-known. Governments might be willing to end this practice, if they saw that its costs outweighed its benefits. But each country, acting individually, faces an incentive to keep subsidies in place.This trap evokes the classic “tragedy of the commons” that economists have studied for generations. But despite the familiarity of the problem in theory, they don’t yet have a lot of hard evidence to offer policymakers about solutions, especially on a global scale. PhD student Aaron Berman is working on a set of projects that may change that.“Our goal is to get some empirical traction on the problem,” he says.Berman and his collaborators are combining a variety of datasets — not only economic data but also projections from ecological models — to identify how these subsidies are impacting fish stocks. They also hope to determine whether countries might benefit instead from sustainability measures to help rebuild fisheries, say through new trade arrangements or other international policy agreements.As a fourth-year doctoral candidate in MIT’s Department of Economics, Berman has a variety of other research projects underway as well, all connected by the central question of how to balance economic development with the pressure it puts on the environment and natural resources. While his study of fishing subsidies is global in scope, other projects are distinctly local: He is studying air pollution generated by road infrastructure in Pakistan, groundwater irrigation in Texas, the scallop fishing industry in New England, and industrial carbon-reduction measures in Turkey. For all of these projects, Berman and his collaborators are bringing data and models from many fields of science to bear on economic questions, from seafloor images taken by NOAA to atmospheric models of pollution dispersion.“One thing I find really exciting and joyful about the work I’m doing in environmental economics is that all of these projects involve some kind of crossover into the natural sciences,” he says.Several of Berman’s projects are so ambitious that he hopes to continue working on them even after completing his PhD. He acknowledges that keeping so many irons in the fire is a lot of work, but says he finds motivation in the knowledge that his research could shape policy and benefit society in a concrete way.“Something that MIT has really instilled in me is the value of going into the field and learning about how the research you’re doing connects to real-world issues,” he says. “You want your findings as a researcher to ultimately be useful to someone.”Testing the watersThe son of two public school teachers, Berman grew up in Maryland and then attended Yale University, where he majored in global affairs as an undergraduate, then stayed to get his master’s in public health, concentrating on global health in both programs.A pivotal moment came while taking an undergraduate class in development economics. “That class helped me realize the same questions I cared a lot about from a public health standpoint were also being studied by economists using very rigorous methods,” Berman says. “Economics has a lot to say about very pressing societal issues.”After reading the work of MIT economists and Nobel laureates Esther Duflo and Abhijit Banerjee in that same class, he decided to pivot and “test the waters of economics a little bit more seriously.” The professor teaching that class also played an important role, by encouraging Berman to pursue a predoctoral research position as a first step toward a graduate degree in economics.Following that advice, Berman landed at the Harvard Kennedy School’s Evidence for Policy Design, a research initiative seeking to foster economic development by improving the policy design process. His time with this organization included five months in Jakarta, Indonesia, where he collaborated with professors Rema Hanna and Ben Olken — of Harvard and MIT, respectively — on a portfolio of projects focused on analyzing social protection and poverty alleviation.The work, which included working closely with government partners, “required me to think creatively about how to talk about economics research to several different types of audiences,” he says. “This also gave me experience thinking about the intersection between what is academically interesting and what is a policy priority.”The experience also gave him the skills and confidence to apply to the economics PhD program at MIT.(Re)discovering teachingAs an economist, Berman is now channeling his interests in global affairs to exploring the relationship between economic development and protecting the natural environment. (He’s aided by an affinity for languages — he speaks five, with varying degrees of proficiency, in addition to English: Mandarin, Cantonese, Spanish, Portuguese, and Indonesian.) His interest in natural resource governance was piqued while co-authoring a paper on the economic drivers of climate-altering tropical deforestation.The review article, written alongside Olken and two professors from the London School of Economics, explored questions such as “What does the current state of the evidence tell us about what causes deforestation in the tropics, and what further evidence is needed?” and “What are the economic barriers to implementing policies to prevent deforestation?” — the kinds of questions he seeks to answer broadly in his ongoing dissertation work.“I gained an appreciation for the importance and complexity of natural resource governance, both in developing and developed countries,” he says. “It really was a launching point for a lot of the things that I’m doing now.”These days, when not doing research, Berman can be found playing on MIT’s club tennis team or working as a teaching assistant, which he particularly enjoys. He’s ever mindful of the Yale professor whose encouragement shaped his own path, and he hopes that he can pay that forward in his own teaching roles.“The fact that he saw I had the ability to make this transition and encouraged me to take a leap of faith is really meaningful to me. I would like to be able to do that for others,” Berman says.His interest in teaching also connects him further with his family: His father is a middle school science teacher and mother is a paraeducator for students with special needs. He says they’ve encouraged him throughout his academic journey, even though they initially didn’t know much about what a PhD in economics entailed. Berman jokes that the most common question people ask economists is what stocks they should invest in, and his family was no exception.“But they’ve always been very excited to hear about the kinds of things I’m working on and very supportive,” he says. “It’s been a really amazing learning experience thus far,” Berman says about his doctoral program. “One of the coolest parts of economics research is to have a sense that you’re tangibly doing something that’s going to have an impact in the world.” More