More stories

  • in

    Anushree Chaudhuri: Involving local communities in renewable energy planning

    Anushree Chaudhuri has a history of making bold decisions. In fifth grade, she biked across her home state of California with little prior experience. In her first year at MIT, she advocated for student recommendations in the preparation of the Institute’s Climate Action Plan for the Decade. And recently, she led a field research project throughout California to document the perspectives of rural and Indigenous populations affected by climate change and clean energy projects.

    “It doesn’t matter who you are or how young you are, you can get involved with something and inspire others to do so,” the senior says.

    Initially a materials science and engineering major, Chaudhuri was quickly drawn to environmental policy issues and later decided to double-major in urban studies and planning and in economics. Chaudhuri will receive her bachelor’s degrees this month, followed by a master’s degree in city planning in the spring.

    The importance of community engagement in policymaking has become one of Chaudhuri’s core interests. A 2024 Marshall Scholar, she is headed to the U.K. next year to pursue a PhD related to environment and development. She hopes to build on her work in California and continue to bring attention to impacts that energy transitions can have on local communities, which tend to be rural and low-income. Addressing resistance to these projects can be challenging, but “ignoring it leaves these communities in the dust and widens the urban-rural divide,” she says.

    Silliness and sustainability 

    Chaudhuri classifies her many activities into two groups: those that help her unwind, like her living community, Conner Two, and those that require intensive deliberation, like her sustainability-related organizing.

    Conner Two, in the Burton-Conner residence hall, is where Chaudhuri feels most at home on campus. She describes the group’s activities as “silly” and emphasizes their love of jokes, even in the floor’s nickname, “the British Floor,” which is intentionally absurd, as the residents are rarely British.

    Chaudhuri’s first involvement with sustainability issues on campus was during the preparation of MIT’s Fast Forward Climate Action Plan in the 2020-2021 academic year. As a co-lead of one of several student working groups, she helped organize key discussions between the administration, climate experts, and student government to push for six main goals in the plan, including an ethical investing framework. Being involved with a significant student movement so early on in her undergraduate career was a learning opportunity for Chaudhuri and impressed upon her that young people can play critical roles in making far-reaching structural changes.

    The experience also made her realize how many organizations on campus shared similar goals even if their perspectives varied, and she saw the potential for more synergy among them.

    Chaudhuri went on to co-lead the Student Sustainability Coalition to help build community across the sustainability-related organizations on campus and create a centralized system that would make it easier for outsiders and group members to access information and work together. Through the coalition, students have collaborated on efforts including campus events, and off-campus matters such as the Cambridge Green New Deal hearings.

    Another benefit to such a network: It creates a support system that recognizes even small-scale victories. “Community is so important to avoid burnout when you’re working on something that can be very frustrating and an uphill battle like negotiating with leadership or seeking policy changes,” Chaudhuri says.

    Fieldwork

    For the past year, Chaudhuri has been doing independent research in California with the support of several advisory organizations to host conversations with groups affected by renewable energy projects, which, as she has documented, are often concentrated in rural, low-income, and Indigenous communities. The introduction of renewable energy facilities, such as wind and solar farms, can perpetuate existing inequities if they ignore serious community concerns, Chaudhuri says.

    As state or federal policymakers and private developers carry out the permitting process for these projects, “they can repeat histories of extraction, sometimes infringing on the rights of a local or Tribal government to decide what happens with their land,” she says.

    In her site visits, she is documenting community opposition to controversial solar and wind proposals and collecting oral histories. Doing fieldwork for the first time as an outsider was difficult for Chaudhuri, as she dealt with distrust, unpredictability, and needing to be completely flexible for her sources. “A lot of it was just being willing to drop everything and go and be a little bit adventurous and take some risks,” she says.

    Role models and reading

    Chaudhuri is quick to credit many of the role models and other formative influences in her life.

    After working on the Climate Action Plan, Chaudhuri attended a public narrative workshop at Harvard University led by Marshall Ganz, a grassroots community organizer who worked with Cesar Chavez and on the 2008 Obama presidential campaign. “That was a big inspiration and kind of shaped how I viewed leadership in, for example, campus advocacy, but also in other projects and internships.”

    Reading has also influenced Chaudhuri’s perspective on community organizing, “After the Climate Action Plan campaign, I realized that a lot of what made the campaign successful or not could track well with organizing and social change theories, and histories of social movements. So, that was a good experience for me, being able to critically reflect on it and tie it into these other things I was learning about.”

    Since beginning her studies at MIT, Chaudhuri has become especially interested in social theory and political philosophy, starting with ancient forms of Western and Eastern ethic, and up to 20th and 21st century philosophers who inspire her. Chaudhuri cites Amartya Sen and Olúfẹ́mi Táíwò as particularly influential. “I think [they’ve] provided a really compelling framework to guide a lot of my own values,” she says.

    Another role model is Brenda Mallory, the current chair of the U.S. Council on Environmental Quality, who Chaudhuri was grateful to meet at the United Nations COP27 Climate Conference. As an intern at the U.S. Department of Energy, Chaudhuri worked within a team on implementing the federal administration’s Justice40 initiative, which commits 40 percent of federal climate investments to disadvantaged communities. This initiative was largely directed by Mallory, and Chaudhuri admires how Mallory was able to make an impact at different levels of government through her leadership. Chaudhuri hopes to follow in Mallory’s footsteps someday, as a public official committed to just policies and programs.

     “Good leaders are those who empower good leadership in others,” Chaudhuri says. More

  • in

    Soaring high, in the Army and the lab

    Starting off as a junior helicopter pilot, Lt. Col. Jill Rahon deployed to Afghanistan three times. During the last one, she was an air mission commander, the  pilot who is designated to interface with the ground troops throughout the mission.

    Today, Rahon is a fourth-year doctoral student studying applied physics at the Department of Nuclear Science and Engineering (NSE). Under the supervision of Areg Danagoulian, she is working on engineering solutions for enforcement of nuclear nonproliferation treaties. Rahon and her husband have 2-year-old twins: “They have the same warm relationship with my advisor that I had with my dad’s (PhD) advisor,” she says.

    Jill Rahon: Engineering solutions for enforcement of nuclear nonproliferation treaties

    A path to the armed forces

    The daughter of a health physicist father and a food chemist mother, Rahon grew up in the Hudson Valley, very close to New York City. Nine-eleven was a life-altering event: “Many of my friends’ fathers and uncles were policemen and firefighters [who] died responding to the attacks,” Rahon says. A hurt and angry teenager, Rahon was determined to do her part to help: She joined the Army and decided to pursue science, becoming part of the first class to enter West Point after 9/11.

    Rahon started by studying strategic history, a field that covers treaties and geopolitical relationships. It would prove useful later. Inspired by her father, who works in the nuclear field, Rahon added on a nuclear science and engineering track.

    After graduating from West Point, Rahon wanted to join active combat and chose aviation. At flight school in Fort Novosel, Alabama, she discovered that she loved flying. It was there that Rahon learned to fly the legendary Chinook helicopter. In short order, Rahon was assigned to the 101st Airborne Division and deployed to Afghanistan quickly thereafter.

    As expected, flying in Afghanistan, especially on night missions, was adrenaline-charged. “You’re thinking on the fly, you’re talking on five different radios, you’re making decisions for all the helicopters that are part of the mission,” Rahon remembers. Very often Rahon and her cohorts did not have the luxury of time. “We would get information that would need to be acted on quickly,” she says. During the planning meetings, she would be delighted to see a classmate from West Point function as the ground forces commander. “It would be surprising to see somebody you knew from a different setting halfway around the world, working toward common goals,” Rahon says.

    Also awesome: helping launch the first training program for female pilots to be recruited in the Afghan National Air Force. “I got to meet [and mentor] these strong young women who maybe didn’t have the same encouragement that I had growing up and they were out there hanging tough,” Rahon says.

    Exploring physics and nuclear engineering

    After serving in the combat forces, Rahon decided she wanted to teach physics at West Point. She applied to become a part of the Functional Area (FA52) as a nuclear and countering weapons of mass destruction officer.

    FA52 officers provide nuclear technical advice to maneuver commanders about nuclear weapons, effects, and operating in a nuclear environment or battlefield. Rahon’s specialty is radiation detection and operations in a nuclear environment, which poses unique threats and challenges to forces.

    Knowing she wanted to teach at West Point, she “brushed up extensively on math and physics” and applied to MIT NSE to pursue a master’s degree. “My fellow students were such an inspiration. They might not have had the same life experiences that I had but were still so mature and driven and knowledgeable not only about nuclear engineering but how that fits in the energy sector and in politics,” Rahon says.

    Resonance analysis to verify treaties

    Rahon returned to NSE to pursue her doctorate, where she does a “lot of detection and treaty verification work.”

    When looking at nuclear fuels to verify safeguards for treaties, experts search for the presence and quantities of heavy elements such as uranium, plutonium, thorium, and any of their decay products. To do so nondestructively is of high importance so they don’t destroy a piece of the material or fuel to identify it.

    Rahon’s research is built on resonance analysis, the fact that most midrange to heavy isotopes have unique resonance signatures that are accessed by neutrons of epithermal energy, which is relatively low on the scale of possible neutron energies. This means they travel slowly — crossing a distance of 2 meters in tens of microseconds, permitting their detection time to be used to calculate their energy.

    Studying how neutrons of a particular energy interact with a sample to identify worrisome nuclear materials is much like studying fingerprints to solve crimes. Isotopes that have a spike in likelihood of interaction occurring over a small neutron energy are said to have resonances, and these resonance patterns are isotopically unique. Experts can use this technique to nondestructively assess an item, identifying the constituent isotopes and their concentrations.

    Resonance analysis can be used to verify that the fuels are what the nuclear plant owner says they are. “There are a lot of safeguards activities and verification protocols that are managed by the International Atomic Energy Agency (IAEA) to ensure that a state is not misusing nuclear power for ulterior motives,” Rahon points out. And her method helps.

    “Our technique that leverages resonance analysis is nothing new,” Rahon says, “It’s been applied practically since the ’70s at very large beam facilities, hundreds of meters long with a very large accelerator that pulses neutrons, and then you’re able to correlate a neutron time of flight with a resonance profile. What we’ve done that is novel is we’ve shrunk it down to a 3-meter system with a portable neutron residence generator and a 2-meter beam path,” she says.

    Mobility confers many significant advantages: “This is something that could be conceivably put on the back of a truck and moved to a fuel facility, then driven to the next one for inspections or put at a treaty verification site. It could be taken out to a silo field where they are dismantling nuclear weapons,” Rahon says. However, the miniaturization does come with significant challenges, such as the neutron generator’s impacts on the signal to noise ratio.

    Rahon is delighted her research can ensure that a necessary fuel source will not be misused. “We need nuclear power. We need low-carbon solutions for energy and we need safe ones. We need to ensure that this powerful technology is not being misused. And that’s why these engineering solutions are needed for these safeguards,” she says.

    Rahon sees parallels between her time in active duty and her doctoral research. Teamwork and communication are key in both, she says. Her dad is her role model and Rahon is a firm believer in mentorship, something she nurtured both in the armed forces and at MIT. “My advisor is genuinely a wonderful person who has always given me so much support from not only being a student, but also being a parent,” Rahon adds.

    In turn, Danagoulian has been impressed by Rahon’s remarkable abilities: “Raising twins, doing research in applied nuclear physics, and flying coalition forces into Taliban territory while evading ground fire … [Jill] developed her own research project with minimal help from me and defended it brilliantly during the first part of the exam,” he says. 

    It seems that Rahon flies high no matter which mission she takes on. More

  • in

    Food for thought

    MIT graduate student Juana De La O describes herself as a food-motivated organism, so it’s no surprise that she reaches for food and baking analogies when she’s discussing her thesis work in the lab of undergraduate officer and professor of biology Adam Martin. 

    Consider the formative stages of a croissant, she offers, occasionally providing homemade croissants to accompany the presentation: When one is forming the puff pastry, the dough is folded over the butter again and again. Tissues in a developing mouse embryo must similarly fold and bend, creating layers and structures that become the spine, head, and organs — but these tissues have no hands to induce those formative movements. 

    De La O is studying neural tube closure, the formation of the structure that becomes the spinal cord and the brain. Disorders like anencephaly and craniorachischisis occur when the head region fails to close in a developing fetus. It’s a heartbreaking defect, De La O says, because it’s 100 percent lethal — but the fetus fully develops otherwise. 

    “Your entire central nervous system hinges on this one event happening successfully,” she says. “On the fundamental level, we have a very limited understanding of the mechanisms required for neural closure to happen at all, much less an understanding of what goes wrong that leads to those defects.” 

    Hypothetically speaking

    De La O hails from Chicago, where she received an undergraduate degree from the University of Chicago and worked in the lab of Ilaria Rebay. De La O’s sister was the first person in her family to go to and graduate from college — De La O, in turn, is the first person in her family to pursue a PhD. 

    From her first time visiting campus, De La O could see MIT would provide a thrilling environment in which to study.

    “MIT was one of the few places where the students weren’t constantly complaining about how hard their life was,” she says. “At lunch with prospective students, they’d be talking to each other and then just organically slip into conversations about science.”

    The department emails acceptance letters and sends a physical copy via snail mail. De La O’s letter included a handwritten note from department head Amy Keating, then a graduate officer, who had interviewed De La O during her campus visit. 

    “That’s what really sold it for me,” she recalls. “I went to my PI [principal investigator]’s office and said, ‘I have new data’” and I showed her the letter, and there was lots of unintelligible crying.” 

    To prepare her for graduate school, her parents, both immigrants from Mexico, spent the summer teaching De La O to make all her favorite dishes because “comfort food feels like home.”   

    When she reached MIT, however, the Covid-19 pandemic ground the world to a halt and severely limited what students could experience during rotations. Far from home and living alone, De La O taught herself to bake, creating the confections she craved but couldn’t leave her apartment to purchase. De La O didn’t get to work as extensively as she would have liked during her rotation in the Martin lab. 

    Martin had recently returned from a sabbatical that was spent learning a new research model; historically a fly lab, Martin was planning to delve into mouse research. 

    “My final presentation was, ‘Here’s a hypothetical project I would hypothetically do if I were hypothetically going to work with mice in a fly lab,’” De La O says. 

    Martin recalls being impressed. De La O is skilled at talking about science in an earnest and engaging way, and she dug deep into the literature and identified points Martin hadn’t considered. 

    “This is a level of independence that I look for in a student because it is important to the science to have someone who is contributing their ideas and independent reading and research to a project,” Martin says. 

    After agreeing to join the lab — news she shared with Martin via a meme — she got to work. 

    Charting mouse development

    The neural tube forms from a flat sheet whose sides rise and meet to create a hollow cylinder. De La O has observed patterns of actin and myosin changing in space and time as the embryo develops. Actin and myosin are fibrous proteins that provide structure in eukaryotic cells. They are responsible for some cell movement, like muscle contraction or cell division. Fibers of actin and myosin can also connect across cells, forming vast networks that coordinate the movements of whole tissues. By looking at the structure of these networks, researchers can make predictions about how force is affecting those tissues.

    De La O has found indications of a difference in the tension across the tissue during the critical stages of neural tube closure, which contributes to the tissue’s ability to fold and form a tube. They are not the first research group to propose this, she notes, but they’re suggesting that the patterns of tension are not uniform during a single stage of development.

    “My project, on a really fundamental level, is an atlas for a really early stage of mouse development for actin and myosin,” De La O says. “This dataset doesn’t exist in the field yet.” 

    However, De La O has been performing analyses exclusively in fixed samples, so she may be quantifying phenomena that are not actually how tissues behave. To determine whether that’s the case, De La O plans to analyze live samples.

    The idea is that if one could carefully cut tissue and observe how quickly it recoils, like slicing through a taught rubber band, those measurements could be used to approximate force across the tissue. However, the techniques required are still being developed, and the greater Boston area currently lacks the equipment and expertise needed to attempt those experiments. 

    A big part of her work in the lab has been figuring out how to collect and analyze relevant data. This research has already taken her far and wide, both literally and virtually. 

    “We’ve found that people have been very generous with their time and expertise,” De La O says. “One of the benefits we, as fly people, brought into this field is we don’t know anything — so we’re going to question everything.”

    De La O traveled to the University of Virginia to learn live imaging techniques from associate professor of cell biology Ann Sutherland, and she’s also been in contact with Gabriel Galea at University College London, where Martin and De La O are considering a visit for further training. 

    “There are a lot of reasons why these experiments could go wrong, and one of them is that I’m not trained yet,” she says. “Once you know how to do things on an optimal setup, you can figure out how to make it work on a less-optimal setup.”

    Collaboration and community

    De La O has now expanded her cooking repertoire far beyond her family’s recipes and shares her new creations when she visits home. At MIT, she hosts dinner parties, including one where everything from the savory appetizers to the sweet desserts contained honey, thanks to an Independent Activities Period course about the producers of the sticky substance, and she made and tried apple pie for the first time with her fellow graduate students after an afternoon of apple picking. 

    De La O says she’s still learning how to say no to taking on additional work outside of her regular obligations as a PhD student; she’s found there’s a lot of pressure for underrepresented students to be at the forefront of diversity efforts, and although she finds that work extremely fulfilling, she can, and has, stretched herself too thin in the past. 

    “Every time I see an application that asks ‘How will you work to increase diversity,’ my strongest instinct is just to write ‘I’m brown and around — you’re welcome,’” she jokes. “The greatest amount of diversity work I will do is to get where I’m going. Me achieving my goals increases diversity inherently, but I also want to do well because I know if I do, I will make everything better for people coming after me.”

    De La O is confident her path will be in academia, and troubleshooting, building up protocols, and setting up standards for her work in the Martin Lab has been “an excellent part of my training program.” 

    De La O and Martin embarked on a new project in a new model for the lab for De La O’s thesis, so much of her graduate studies will be spent laying the groundwork for future research. 

    “I hope her travels open Juana’s eyes to science being a larger community and to teach her about how to lead a collaboration,” Martin says. “Overall, I think this project is excellent for a student with aspirations to be a PI. I benefited from extremely open-ended projects as a student and see, in retrospect, how they prepared me for my work today.” More

  • in

    Climate action, here and now

    A few years ago, David Hsu started taking a keen interest in some apartment buildings in Brooklyn and the Bronx — but not because he was looking for a place to live. Hsu, an associate professor at MIT, works on urban climate change solutions. The property owners were retrofitting their buildings to make them net-zero emitters of carbon dioxide via better insulation, ventilation, and electric heating and appliances. They also wanted to see the effect on interior air quality.

    In the process, the owners started working with Hsu and an MIT team to assess the results using top-grade air quality sensors. They found that beyond its climate benefits, retrofitting lowered indoor pollutants from high levels to almost-undetectable levels. It is a win-win outcome.

    “Not only are those buildings cleaner and use less energy and do not emit greenhouse gases, they also have better air quality,” Hsu says. “The hopeful thing is that as we remake our buildings for decarbonization, a lot of technologies are so superior that our lives will be better, too.”

    Hsu’s projects frequently yield practical, concrete steps for climate action. In New York City, Hsu found, mandating the measurement of energy use lowered consumption 13 to 14 percent over four years. In a 2017 paper, he and his co-authors studied which climate actions would most reduce carbon emissions in 11 major U.S. cities. Cleveland and Denver can greatly reduce use of fossil fuels, for example, while better energy efficiency in new homes would make a big difference in Houston and Phoenix.

    “You have to figure out what works and doesn’t work,” Hsu says. “I try to figure out how we can have cleaner and healthier cities that will be more sustainable, equitable, and more just.”

    Significantly, Hsu does not just prescribe climate action elsewhere, he also works for change at MIT. He helped create a zero-emissions roadmap for MIT’s School of Architecture and Planning as well as the Department of Urban Studies and Planning, where he is an associate professor of urban and environmental planning and is part of Fast Forward: MIT’s Climate Action Plan for the Decade, serving in the Climate Education Working Group.

    “People can get depressed about how you tackle this large, civilization-wide problem, and then you realize lots of other people care about this. Lots of smart people at MIT and other places are working on it, and there are lots of things we can do, individually and collectively,” Hsu says.

    And as Hsu’s work shows, lots of people tackle the climate crisis by working on local issues. For his research and teaching, Hsu was granted tenure at MIT this year.

    Urban planning by way of Amherst

    Hsu studies cities, but is not from one. Growing up in the college town of Amherst, Massachusetts, Hsu could walk out of his home and “be in the woods in a minute.” He attended Yale University as an undergraduate, majoring in physics, and started venturing into New York City with friends. After graduation, Hsu moved there and got a job.

    Or three jobs, really. Over the next 10 years, Hsu worked as an engineer, in real estate finance, and for the New York City government as a vice president at the NYC Economic Development Corporation, where he helped manage the city’s post-September 11 redevelopment of the East River waterfront. Eventually, he decided to pursue graduate studies in urban planning, building on his experience.

    “Engineering, finance, and government, you put those three things together and they’re basically urban planning,” Hsu says. “It took me a decade after school to realize urban planning is a thing I could do. I say to students, ‘You’re lucky, you have this major. I never had this in college.’”

    As a graduate student, Hsu received an MS from Cornell University in applied and engineering physics, then an MSc from the London School of Economics and Political Science in city design and social science, before getting his PhD in urban design and planning at the University of Washington in Seattle. He served on the faculty at the University of Pennsylvania before moving to MIT in 2015.

    Hsu studies an array of topics involving local governments and climate policy. He has published multiple papers on Philadelphia’s attempts to refurbish its stormwater infrastructure, for example. His studies about retrofitted apartment buildings are forthcoming as three papers. A 2022 Hsu paper, “Straight out of Cape Cod,” looked at the origins of Community Choice Aggregation, an approach to purchasing clean energy that started in a few Massachusetts communities and now involves 11 percent of the U.S. population.

    “I joke that the ideal reader of my articles is not a mayor and it’s not an academic, it’s a midcareer bureaucrat trying to implement a policy,” Hsu says.

    Actually, that’s no mere joke. At MIT, City of Cambridge officials have contacted Hsu to discuss his studies of New York and Philadelphia, something he welcomes. Even if not in local government himself, Hsu says, “I know I can do research that might move some of those projects along. It’s my way of trying to contribute to the world outside of academia.”

    “It’s all important”

    There is still another way Hsu contributes to climate action: by influencing what MIT does. He helped craft the climate policies of the School of Architecture and Planning and the Department of Urban Studies and Planning, which aim to produce net zero emissions for the department through the use of tools like carbon offsets for travel. As part of the Institute-wide Climate Education Working Group convened under the Fast Forward plan, Hsu is busy thinking about how to integrate climate studies into MIT education.

    “Our Fast Forward team does great work together. David McGee, Lisa Ghaffari, Kate Trimble, Antje Danielson, Curt Newton, they’re so engaged,” says Hsu. “Our students are terrifically hard-working and skilled and care about climate change, but don’t know how to affect it necessarily. We want to give them on-ramps and skills.”

    He is also chair of the fast-growing 11-6 major that combines urban studies and planning with computer science.

    “Climate change is happening so fast, and is so big, that every job could be climate-change related,” Hsu says. “If people leave MIT with a higher base understanding of climate change, then you can be a lawyer or consultant or work in finance or computer science and address the unsolved problems.”

    Indeed, Hsu thinks many students, who he believes increasingly recognize the severity of climate change, need to prioritize the battle against it when shaping their careers.

    “Our fight against climate change is not going to be over by 2050, but 25 years from now, we’re going to know if we transitioned to a net-zero-emitting society for the sake of humanity,” Hsu says. “The students are more aware than ever that climate change is going to dominate their lives. I want students to look back with satisfaction that they helped society.”

    More bluntly, he says: “Are you going to say, ‘Oh, I made some money and enhanced my career, but the planet’s going to be destroyed? Or ideally will you find a job that’s satisfying and can support your future hopes for yourself and your family, and also save the planet? Because I think there are a lot of [job] options like that out there.”

    Hsu adds, “We’re going to need people pulling in different directions. It’s all important. That’s the message to our students. Go find something you think is important and use your skills. We’re going to need that many people to work on climate change.” More

  • in

    The science and art of complex systems

    As a high school student, Gosha Geogdzhayev attended Saturday science classes at Columbia University, including one called The Physics of Climate Change. “They showed us a satellite image of the Earth’s atmosphere, and I thought, ‘Wow, this is so beautiful,’” he recalls. Since then, climate science has been one of his driving interests.

    With the MIT Department of Earth, Atmospheric and Planetary Sciences and the BC3 Climate Grand Challenges project, Geogdzhayev is creating climate model “emulators” in order to localize the large-scale data provided by global climate models (GCMs). As he explains, GCMs can make broad predictions about climate change, but they are not proficient at analyzing impacts in localized areas. However, simpler “emulator” models can learn from GCMs and other data sources to answer specialized questions. The model Geogdzhayev is currently working on will project the frequency of extreme heat events in Nigeria.

    A senior majoring in physics, Geogdzhayev hopes that his current and future research will help reshape the scientific approach to studying climate trends. More accurate predictions of climate conditions could have benefits far beyond scientific analysis, and affect the decisions of policymakers, businesspeople, and truly anyone concerned about climate change.

    “I have this fascination with complex systems, and reducing that complexity and picking it apart,” Geogdzhayev says.

    His pursuit of discovery has led him from Berlin, Germany, to Princeton, New Jersey, with stops in between. He has worked with Transsolar KlimaEngineering, NASA, NOAA, FU Berlin, and MIT, including through the MIT Climate Stability Consortium’s Climate Scholars Program, in research positions that explore climate science in different ways. His projects have involved applications such as severe weather alerts, predictions of late seasonal freezes, and eco-friendly building design. 

    The written word

    Originating even earlier than his passion for climate science is Geogdzhayev’s love of writing. He recently discovered original poetry dating back all the way to middle school. In this poetry he found a coincidental throughline to his current life: “There was one poem about climate, actually. It was so bad,” he says, laughing. “But it was cool to see.”

    As a scientist, Geogdzhayev finds that poetry helps quiet his often busy mind. Writing provides a vehicle to understand himself, and therefore to communicate more effectively with others, which he sees as necessary for success in his field.

    “A lot of good work comes from being able to communicate with other people. And poetry is a way for me to flex those muscles. If I can communicate with myself, and if I can communicate myself to others, that is transferable to science,” he says.

    Since last spring Geogdzhayev has attended poetry workshop classes at Harvard University, which he enjoys partly because it nudges him to explore spaces outside of MIT.

    He has contributed prolifically to platforms on campus as well. Since his first year, he has written as a staff blogger for MIT Admissions, creating posts about his life at MIT for prospective students. He has also written for the yearly fashion publication “Infinite Magazine.”

    Merging both science and writing, a peer-reviewed publication by Geogdzhayev will soon be published in the journal “Physica D: Nonlinear Phenomena.” The piece explores the validity of climate statistics under climate change through an abstract mathematical system.

    Leading with heart

    Geogdzhayev enjoys being a collaborator, but also excels in leadership positions. When he first arrived at MIT, his dorm, Burton Conner, was closed for renovation, and he could not access that living community directly. Once his sophomore year arrived however, he was quick to volunteer to streamline the process to get new students involved, and eventually became floor chair for his living community, Burton 1.

    Following the social stagnation caused by the Covid-19 pandemic and the dorm renovation, he helped rebuild a sense of community for his dorm by planning social events and governmental organization for the floor. He now regards the members of Burton 1 as his closest friends and partners in “general tomfoolery.”

    This sense of leadership is coupled with an affinity for teaching. Geogdzhayev is a peer mentor in the Physics Mentorship Program and taught climate modeling classes to local high school students as a part of SPLASH. He describes these experiences as “very fun” and can imagine himself as a university professor dedicated to both teaching and research.

    Following graduation, Geogdzhayev intends to pursue a PhD in climate science or applied math. “I can see myself working on research for the rest of my life,” he says. More

  • in

    Making nuclear energy facilities easier to build and transport

    For the United States to meet its net zero goals, nuclear energy needs to be on the smorgasbord of options. The problem: Its production still suffers from a lack of scale. To increase access rapidly, we need to stand up reactors quickly, says Isabel Naranjo De Candido, a third-year doctoral student advised by Professor Koroush Shirvan.

    One option is to work with microreactors, transportable units that can be wheeled to areas that need clean electricity. Naranjo De Candido’s master’s thesis at MIT, supervised by Professor Jacopo Buongiorno, focused on such reactors.

    Another way to improve access to nuclear energy is to develop reactors that are modular so their component units can be manufactured quickly while still maintaining quality. “The idea is that you apply the industrialization techniques of manufacturing so companies produce more [nuclear] vessels, with a more predictable supply chain,” she says. The assumption is that working with standardized recipes to manufacture just a few designed components over and over again improves speed and reliability and decreases cost.

    As part of her doctoral studies, Naranjo De Candido is working on optimizing the operations and management of these small, modular reactors so they can be efficient in all stages of their lifecycle: building; operations and maintenance; and decommissioning. The motivation for her research is simple: “We need nuclear for climate change because we need a reliable and stable source of energy to fight climate change,” she says.

    Play video

    A childhood in Italy

    Despite her passion for nuclear energy and engineering today, Naranjo De Candido was unsure what she wanted to pursue after high school in Padua, Italy. The daughter of a physician Italian mother and an architect Spanish father, she enrolled in a science-based high school shortly after middle school, as she knew that was the track she enjoyed best.

    Having earned very high marks in school, she won a full scholarship to study in Pisa, at the special Sant’Anna School of Advanced Studies. Housed in a centuries-old convent, the school granted only masters and doctoral degrees. “I had to select what to study but I was unsure. I knew I was interested in engineering,” she recalls, “so I selected mechanical engineering because it’s more generic.”

    It turns out Sant’Anna was a perfect fit for Naranjo De Candido to explore her passions. An inspirational nuclear engineering course during her studies set her on the path toward studying the field as part of her master’s studies in Pisa. During her time there, she traveled around the world — to China as part of a student exchange program and to Switzerland and the United States for internships. “I formed a good background and curriculum and that allowed me to [gain admission] to MIT,” she says.

    At an internship at NASA’s Jet Propulsion Lab, she met an MIT mechanical engineering student who encouraged her to apply to the school for doctoral studies. Yet another mentor in the Italian nuclear sector had also suggested she apply to MIT to pursue nuclear engineering, so she decided to take the leap.

    And she is glad she did.

    Improving access to nuclear energy

    At MIT, Naranjo De Candido is working on improving access to nuclear energy by scaling down reactor size and, in the case of microreactors, making them mobile enough to travel to places where they’re needed. “The idea with a microreactor is that when the fuel is exhausted, you replace the entire microreactor onsite with a freshly fueled unit and take the old one back to a central facility where it’s going to be refueled,” she says. One of the early use cases for such microreactors has been remote mining sites which need reliable power 24/7.

    Modular reactors, about 10 times the size of microreactors, ensure access differently: The components can be manufactured and installed at scale. These reactors don’t just deliver electricity but also cater to the market for industrial heat, she says. “You can locate them close to industrial facilities and use the heat directly to power ammonia or hydrogen production or water desalinization for example,” she adds.

    As more of these modular reactors are installed, the industry is expected to expand to include enterprises that choose to simply build them and hand off operations to other companies. Whereas traditional nuclear energy reactors might have a full suite of staff on board, smaller-scale reactors such as modular ones cannot afford to staff in large numbers, so talent needs to be optimized and staff shared among many units. “Many of these companies are very interested in knowing exactly how many people and how much money to allocate, and how to organize resources to serve more than one reactor at the same time,” she says.

    Naranjo De Candido is working on a complex software program that factors in a large range of variables — from raw materials cost and worker training, reactor size, megawatt output and more — and leans on historical data to predict what resources newer plants might need. The program also informs operators about the tradeoffs they need to accept. For example, she explains, “if you reduce people below the typical level assigned, how does that impact the reliability of the plant, that is, the number of hours that it is able to operate without malfunctions and failures?”

    And managing and operating a nuclear reactor is particularly complex because safety standards limit how much time workers can work in certain areas and how safe zones need to be handled.

    “There’s a shortage of [qualified talent] in the industry so this is not just about reducing costs but also about making it possible to have plants out there,” Naranjo De Candido says. Different types of talent are needed, from professionals who specialize in mechanical components to electronic controls. The model that she is working on considers the need for such specialized skillsets as well as making room for cross-training talent in multiple fields as needed.

    In keeping with her goal of making nuclear energy more accessible, the optimization software will be open-source, available for all to use. “We want this to be a common ground for utilities and vendors and other players to be able to communicate better,” Naranjo De Candido says, Doing so will accelerate the operation of nuclear energy plants at scale, she hopes — an achievement that will come not a moment too soon. More

  • in

    Unlocking the secrets of natural materials

    Growing up in Milan, Benedetto Marelli liked figuring out how things worked. He repaired broken devices simply to have the opportunity to take them apart and put them together again. Also, from a young age, he had a strong desire to make a positive impact on the world. Enrolling at the Polytechnic University of Milan, he chose to study engineering.

    “Engineering seemed like the right fit to fulfill my passions at the intersection of discovering how the world works, together with understanding the rules of nature and harnessing this knowledge to create something new that could positively impact our society,” says Marelli, MIT’s Paul M. Cook Career Development Associate Professor of Civil and Environmental Engineering.

    Marelli decided to focus on biomedical engineering, which at the time was the closest thing available to biological engineering. “I liked the idea of pursuing studies that provided me a background to engineer life,” in order to improve human health and agriculture, he says.

    Marelli went on to earn a PhD in materials science and engineering at McGill University and then worked in Tufts University’s biomaterials Silklab as a postdoc. After his postdoc, Marelli was drawn to MIT’s Department of Civil and Environmental in large part because of the work of Markus Buehler, MIT’s McAfee Professor of Engineering, who studies how to design new materials by understanding the architecture of natural ones.

    “This resonated with my training and idea of using nature’s building blocks to build a more sustainable society,” Marelli says. “It was a big leap forward for me to go from biomedical engineering to civil and environmental engineering. It meant completely changing my community, understanding what I could teach and how to mentor students in a new engineering branch. As Markus is working with silk to study how to engineer better materials, this made me see a clear connection with what I was doing and what I could be doing. I consider him one of my mentors here at MIT and was fortunate to end up collaborating with him.”

    Marelli’s research is aimed at mitigating several pressing global problems, he says.

    “Boosting food production to provide food security to an ever-increasing population, soil restoration, decreasing the environmental impact of fertilizers, and addressing stressors coming from climate change are societal challenges that need the development of rapidly scalable and deployable technologies,” he says.

    Marelli and his fellow researchers have developed coatings derived from natural silk that extend the shelf life of food, deliver biofertilizers to seeds planted in salty, unproductive soils, and allow seeds to establish healthier plants and increase crop yield in drought-stricken lands. The technologies have performed well in field tests being conducted in Morocco in collaboration with the Mohammed VI Polytechnic University in Ben Guerir, according to Marelli, and offer much potential.

    “I believe that with this technology, together with the common efforts shared by the MIT PIs participating in the Climate Grand Challenge on Revolutionizing Agriculture, we have a  real opportunity to positively impact planetary health and find new solutions that work in both rural settings and highly modernized agricultural fields,” says Marelli, who recently earned tenure.

    As a researcher and entrepreneur with about 20 patents to his name and awards including a National Science Foundation CAREER award, the Presidential Early Career Award for Scientists and Engineers award, and the Ole Madsen Mentoring Award, Marelli says that in general his insights into structural proteins — and how to use that understanding to manufacture advanced materials at multiple scales — are among his proudest achievements.

    More specifically, Marelli cites one of his breakthroughs involving a strawberry. Having dipped the berry in an odorless, tasteless edible silk suspension as part of a cooking contest held in his postdoctoral lab, he accidentally left it on his bench, only to find a week or so later that it had been well-preserved.

    “The coating of the strawberry to increase its shelf life is difficult to beat when it comes to inspiring people that natural polymers can serve as technical materials that can positively impact our society” by lessening food waste and the need for energy-intensive refrigerated shipping, Marelli says.

    When Marelli won the BioInnovation Institute and Science Prize for Innovation in 2022, he told the journal Science that he thinks students should be encouraged to choose an entrepreneurial path. He acknowledged the steepness of the learning curve of being an entrepreneur but also pointed out how the impact of research can be exponentially increased.

    He expanded on this idea more recently.

    “I believe an increasing number of academics and graduate students should try to get their hands ‘dirty’ with entrepreneurial efforts. We live in a time where academics are called to have a tangible impact on our society, and translating what we study in our labs is clearly a good way to employ our students and enhance the global effort to develop new technology that can make our society more sustainable and equitable,” Marelli says.

    Referring to a spinoff company, Mori, that grew out of the coated strawberry discovery and that develops silk-based products to preserve a wide range of perishable foods, Marelli says he finds it very satisfying to know that Mori has a product on the market that came out of his research efforts — and that 80 people are working to translate the discovery from “lab to fork.”

    “Knowing that the technology can move the needle in crises such as food waste and food-related environmental impact is the highest reward of all,” he says.

    Marelli says he tells students who are seeking solutions to extremely complicated problems to come up with one solution, “however crazy it might be,” and then do an extensive literature review to see what other researchers have done and whether “there is any hint that points toward developing their solution.”

    “Once we understand the feasibility, I typically work with them to simplify it as much as we can, and then to break down the problem in small parts that are addressable in series and/or in parallel,” Marelli says.

    That process of discovery is ongoing. Asked which of his technologies will have the greatest impact on the world, Marelli says, “I’d like to think it’s the ones that still need to be discovered.” More

  • in

    Merging science and systems thinking to make materials more sustainable

    For Professor Elsa Olivetti, tackling a problem as large and complex as climate change requires not only lab research but also understanding the systems of production that power the global economy.

    Her career path reflects a quest to investigate materials at scales ranging from the microscopic to the mass-manufactured.

    “I’ve always known what questions I wanted to ask, and then set out to build the tools to help me ask those questions,” says Olivetti, the Jerry McAfee Professor in Engineering.

    Olivetti, who earned tenure in 2022 and was recently appointed associate dean of engineering, has sought to equip students with similar skills, whether in the classroom, in her lab group, or through the interdisciplinary programs she leads at MIT. Those efforts have earned her accolades including the Bose Award for Excellence in Teaching, a MacVicar Faculty Fellowship in 2021, and the McDonald Award for Excellence in Mentoring and Advising in 2023.

    “I think to make real progress in sustainability, materials scientists need to think in interdisciplinary, systems-level ways, but at a deep technical level,” Olivetti says. “Supporting my students so that’s something that a lot more people can do is very rewarding for me.”

    Her mission to make materials more sustainable also makes Olivetti grateful [EAO1] she’s at MIT, which has a long tradition of both interdisciplinary collaboration and technical know-how.

    “MIT’s core competencies are well-positioned for bold achievements in climate and sustainability — the deep expertise on the economics side, the frontier knowledge in science, the computational creativity,” Olivetti says. “It’s a really exciting time and place where the key ingredients for progress are simmering in transformative ways.”

    Answering the call

    The moment that set Olivetti on her life’s journey began when she was 8, with a knock at her door. Her parents were in the other room, so Olivetti opened the door and met an organizer for Greenpeace, a nonprofit that works to raise awareness of environmental issues.

    “I had a chat with that guy and got hooked on environmental concerns,” Olivetti says. “I still remember that conversation.”

    The interaction changed the way Olivetti thought about her place in the world, and her new perspective manifested itself in some unique ways. Her elementary school science fair projects became elaborate pursuits of environmental solutions involving burying various items in the backyard to test for biodegradability. There was also an awkward attempt at natural pesticide development, which lead to a worm hatching in her bedroom.

    As an undergraduate at the University of Virginia, Olivetti gravitated toward classes in environmentalism and materials science.

    “There was a link between materials science and a broader, systems way of framing design for environment, and that just clicked for me in terms of the way I wanted to think about environmental problems — from the atom to the system,” Olivetti recalls.

    That interest led Olivetti to MIT for a PhD in 2001, where she studied the feasibility of new materials for lithium-ion batteries.

    “I really wanted to be thinking of things at a systems level, but I wanted to ground that in lab-based research,” Olivetti says. “I wanted an experiential experience in grad school, and that’s why I chose MIT’s program.”

    Whether it was her undergraduate studies, her PhD, or her ensuing postdoc work at MIT, Olivetti sought to learn new skills to continue bridging the gap between materials science and environmental systems thinking.

    “I think of it as, ‘Here’s how I can build up the ways I ask questions,’” Olivetti explains. “How do we design these materials while thinking about their implications as early as possible?”

    Since joining MIT’s faculty in 2014, Olivetti has developed computational models to measure the cost and environmental impact of new materials, explored ways to adopt more sustainable and circular supply chains, and evaluated potential materials limitations as lithium-ion battery production is scaled. That work helps companies increase their use of greener, recyclable materials and more sustainably dispose of waste.

    Olivetti believes the wide scope of her research gives the students in her lab a more holistic understanding of the life cycle of materials.

    “When the group started, each student was working on a different aspect of the problem — like on the natural language processing pipeline, or on recycling technology assessment, or beneficial use of waste — and now each student can link each of those pieces in their research,” Olivetti explains.

    Beyond her research, Olivetti also co-directs the MIT Climate and Sustainability Consortium, which has established a set of eight areas of sustainability that it organizes coalitions around. Each coalition involves technical leaders at companies and researchers at MIT that work together to accelerate the impact of MIT’s research by helping companies adopt innovative and more sustainable technologies.

    “Climate change mitigation and resilience is such a complex problem, and at MIT we have practice in working together across disciplines on many challenges,” Olivetti says. “It’s been exciting to lean on that culture and unlock ways to move forward more effectively.”

    Bridging divides

    Today, Olivetti tries to maximize the impact of her and her students’ research in materials industrial ecology by maintaining close ties to applications. In her research, this means working directly with aluminum companies to design alloys that could incorporate more scrap material or with nongovernmental organizations to incorporate agricultural residues in building products. In the classroom, that means bringing in people from companies to explain how they think about concepts like heat exchange or fluid flow in their products.

    “I enjoy trying to ground what students are learning in the classroom with what’s happening in the world,” Olivetti explains.

    Exposing students to industry is also a great way to help them think about their own careers. In her research lab, she’s started using the last 30 minutes of meetings to host talks from people working in national labs, startups, and larger companies to show students what they can do after their PhDs. The talks are similar to the Industry Seminar series Olivetti started that pairs undergraduate students with people working in areas like 3D printing, environmental consulting, and manufacturing.

    “It’s about helping students learn what they’re excited about,” Olivetti says.

    Whether in the classroom, lab, or at events held by organizations like MCSC, Olivetti believes collaboration is humanity’s most potent tool to combat climate change.

    “I just really enjoy building links between people,” Olivetti says. “Learning about people and meeting them where they are is a way that one can create effective links. It’s about creating the right playgrounds for people to think and learn.” More