More stories

  • in

    Embracing the future we need

    When you picture MIT doctoral students taking small PhD courses together, you probably don’t imagine them going on class field trips. But it does happen, sometimes, and one of those trips changed Andy Sun’s career.

    Today, Sun is a faculty member at the MIT Sloan School of Management and a leading global expert on integrating renewable energy into the electric grid. Back in 2007, Sun was an operations research PhD candidate with a diversified academic background: He had studied electrical engineering, quantum computing, and analog computing but was still searching for a doctoral research subject involving energy. 

    One day, as part of a graduate energy class taught by visiting professor Ignacio J. Pérez Arriaga, the students visited the headquarters of ISO-New England, the organization that operates New England’s entire power grid and wholesale electricity market. Suddenly, it hit Sun. His understanding of engineering, used to design and optimize computing systems, could be applied to the grid as a whole, with all its connections, circuitry, and need for efficiency. 

    “The power grids in the U.S. continent are composed of two major interconnections, the Western Interconnection, the Eastern Interconnection, and one minor interconnection, the Texas grid,” Sun says. “Within each interconnection, the power grid is one big machine, essentially. It’s connected by tens of thousands of miles of transmission lines, thousands of generators, and consumers, and if anything is not synchronized, the system may collapse. It’s one of the most complicated engineering systems.”

    And just like that, Sun had a subject he was motivated to pursue. “That’s how I got into this field,” he says. “Taking a field trip.”Sun has barely looked back. He has published dozens of papers about optimizing the flow of intermittent renewable energy through the electricity grid, a major practical issue for grid operators, while also thinking broadly about the future form of the grid and the process of making almost all energy renewable. Sun, who in 2022 rejoined MIT as the Iberdrola-Avangrid Associate Professor in Electric Power Systems, and is also an associate professor of operations research, emphasizes the urgency of rapidly switching to renewables.

    “The decarbonization of our energy system is fundamental,” Sun says. “It will change a lot of things because it has to. We don’t have much time to get there. Two decades, three decades is the window in which we have to get a lot of things done. If you think about how much money will need to be invested, it’s not actually that much. We should embrace this future that we have to get to.”

    Successful operations

    Unexpected as it may have been, Sun’s journey toward being an electricity grid expert was informed by all the stages of his higher education. Sun grew up in China, and received his BA in electronic engineering from Tsinghua University in Beijing, in 2003. He then moved to MIT, joining the Media Lab as a graduate student. Sun intended to study quantum computing but instead began working on analog computer circuit design for Professor Neil Gershenfeld, another person whose worldview influenced Sun.  

    “He had this vision about how optimization is very important in things,” Sun says. “I had never heard of optimization before.” 

    To learn more about it, Sun started taking MIT courses in operations research. “I really enjoyed it, especially the nonlinear optimization course taught by Robert Freund in the Operations Research Center,” he recalls. 

    Sun enjoyed it so much that after a while, he joined MIT’s PhD program in operations research, thanks to the guidance of Freund. Later, he started working with MIT Sloan Professor Dimitri Bertsimas, a leading figure in the field. Still, Sun hadn’t quite nailed down what he wanted to focus on within operations research. Thinking of Sun’s engineering skills, Bertsimas suggested that Sun look for a research topic related to energy. 

    “He wasn’t an expert in energy at that time, but he knew that there are important problems there and encouraged me to go ahead and learn,” Sun says. 

    So it was that Sun found himself in ISO-New England headquarters one day in 2007, finally knowing what he wanted to study, and quickly finding opportunities to start learning from the organization’s experts on electricity markets. By 2011, Sun had finished his MIT PhD dissertation. Based in part on ISO-New England data, the thesis presented new modeling to more efficiently integrate renewable energy into the grid; built some new modeling tools grid operators could use; and developed a way to add fair short-term energy auctions to an efficient grid system.

    The core problem Sun deals with is that, unlike some other sources of electricity, renewables tend to be intermittent, generating power in an uneven pattern over time. That’s not an insurmountable problem for grid operators, but it does require some new approaches. Many of the papers Sun has written focus on precisely how to increasingly draw upon intermittent energy sources while ensuring that the grid’s current level of functionality remains intact. This is also the focus of his 2021 book, co-authored with Antonio J. Conejo, “Robust Optimiziation in Electric Energy Systems.”

    “A major theme of my research is how to achieve the integration of renewables and still operate the system reliably,” Sun says. “You have to keep the balance of supply and demand. This requires many time scales of operation from multidecade planning, to monthly or annual maintenance, to daily operations, down through second-by-second. I work on problems in all these timescales.”

    “I sit in the interface between power engineering and operations research,” Sun says. “I’m not a power engineer, but I sit in this boundary, and I keep the problems in optimization as my motivation.”

    Culture shift

    Sun’s presence on the MIT campus represents a homecoming of sorts. After receiving his doctorate from MIT, Sun spent a year as a postdoc at IBM’s Thomas J. Watson Research Center, then joined the faculty at Georgia Tech, where he remained for a decade. He returned to the Institute in January of 2022.

    “I’m just very excited about the opportunity of being back at MIT,” Sun says. “The MIT Energy Initiative is a such a vibrant place, where many people come together to work on energy. I sit in Sloan, but one very strong point of MIT is there are not many barriers, institutionally. I really look forward to working with colleagues from engineering, Sloan, everywhere, moving forward. We’re moving in the right direction, with a lot of people coming together to break the traditional academic boundaries.” 

    Still, Sun warns that some people may be underestimating the severity of the challenge ahead and the need to implement changes right now. The assets in power grids have long life time, lasting multiple decades. That means investment decisions made now could affect how much clean power is being used a generation from now. 

    “We’re talking about a short timeline, for changing something as huge as how a society fundamentally powers itself with energy,” Sun says. “A lot of that must come from the technology we have today. Renewables are becoming much better and cheaper, so their use has to go up.”

    And that means more people need to work on issues of how to deploy and integrate renewables into everyday life, in the electric grid, transportation, and more. Sun hopes people will increasingly recognize energy as a huge growth area for research and applied work. For instance, when MIT President Sally Kornbluth gave her inaugural address on May 1 this year, she emphasized tackling the climate crisis as her highest priority, something Sun noticed and applauded. 

    “I think the most important thing is the culture,” Sun says. “Bring climate up to the front, and create the platform to encourage people to come together and work on this issue.” More

  • in

    The curse of variety in transportation systems

    Cathy Wu has always delighted in systems that run smoothly. In high school, she designed a project to optimize the best route for getting to class on time. Her research interests and career track are evidence of a propensity for organizing and optimizing, coupled with a strong sense of responsibility to contribute to society instilled by her parents at a young age.

    As an undergraduate at MIT, Wu explored domains like agriculture, energy, and education, eventually homing in on transportation. “Transportation touches each of our lives,” she says. “Every day, we experience the inefficiencies and safety issues as well as the environmental harms associated with our transportation systems. I believe we can and should do better.”

    But doing so is complicated. Consider the long-standing issue of traffic systems control. Wu explains that it is not one problem, but more accurately a family of control problems impacted by variables like time of day, weather, and vehicle type — not to mention the types of sensing and communication technologies used to measure roadway information. Every differentiating factor introduces an exponentially larger set of control problems. There are thousands of control-problem variations and hundreds, if not thousands, of studies and papers dedicated to each problem. Wu refers to the sheer number of variations as the curse of variety — and it is hindering innovation.

    Play video

    “To prove that a new control strategy can be safely deployed on our streets can take years. As time lags, we lose opportunities to improve safety and equity while mitigating environmental impacts. Accelerating this process has huge potential,” says Wu.  

    Which is why she and her group in the MIT Laboratory for Information and Decision Systems are devising machine learning-based methods to solve not just a single control problem or a single optimization problem, but families of control and optimization problems at scale. “In our case, we’re examining emerging transportation problems that people have spent decades trying to solve with classical approaches. It seems to me that we need a different approach.”

    Optimizing intersections

    Currently, Wu’s largest research endeavor is called Project Greenwave. There are many sectors that directly contribute to climate change, but transportation is responsible for the largest share of greenhouse gas emissions — 29 percent, of which 81 percent is due to land transportation. And while much of the conversation around mitigating environmental impacts related to mobility is focused on electric vehicles (EVs), electrification has its drawbacks. EV fleet turnover is time-consuming (“on the order of decades,” says Wu), and limited global access to the technology presents a significant barrier to widespread adoption.

    Wu’s research, on the other hand, addresses traffic control problems by leveraging deep reinforcement learning. Specifically, she is looking at traffic intersections — and for good reason. In the United States alone, there are more than 300,000 signalized intersections where vehicles must stop or slow down before re-accelerating. And every re-acceleration burns fossil fuels and contributes to greenhouse gas emissions.

    Highlighting the magnitude of the issue, Wu says, “We have done preliminary analysis indicating that up to 15 percent of land transportation CO2 is wasted through energy spent idling and re-accelerating at intersections.”

    To date, she and her group have modeled 30,000 different intersections across 10 major metropolitan areas in the United States. That is 30,000 different configurations, roadway topologies (e.g., grade of road or elevation), different weather conditions, and variations in travel demand and fuel mix. Each intersection and its corresponding scenarios represents a unique multi-agent control problem.

    Wu and her team are devising techniques that can solve not just one, but a whole family of problems comprised of tens of thousands of scenarios. Put simply, the idea is to coordinate the timing of vehicles so they arrive at intersections when traffic lights are green, thereby eliminating the start, stop, re-accelerate conundrum. Along the way, they are building an ecosystem of tools, datasets, and methods to enable roadway interventions and impact assessments of strategies to significantly reduce carbon-intense urban driving.

    Play video

    Their collaborator on the project is the Utah Department of Transportation, which Wu says has played an essential role, in part by sharing data and practical knowledge that she and her group otherwise would not have been able to access publicly.

    “I appreciate industry and public sector collaborations,” says Wu. “When it comes to important societal problems, one really needs grounding with practitioners. One needs to be able to hear the perspectives in the field. My interactions with practitioners expand my horizons and help ground my research. You never know when you’ll hear the perspective that is the key to the solution, or perhaps the key to understanding the problem.”

    Finding the best routes

    In a similar vein, she and her research group are tackling large coordination problems. For example, vehicle routing. “Every day, delivery trucks route more than a hundred thousand packages for the city of Boston alone,” says Wu. Accomplishing the task requires, among other things, figuring out which trucks to use, which packages to deliver, and the order in which to deliver them as efficiently as possible. If and when the trucks are electrified, they will need to be charged, adding another wrinkle to the process and further complicating route optimization.

    The vehicle routing problem, and therefore the scope of Wu’s work, extends beyond truck routing for package delivery. Ride-hailing cars may need to pick up objects as well as drop them off; and what if delivery is done by bicycle or drone? In partnership with Amazon, for example, Wu and her team addressed routing and path planning for hundreds of robots (up to 800) in their warehouses.

    Every variation requires custom heuristics that are expensive and time-consuming to develop. Again, this is really a family of problems — each one complicated, time-consuming, and currently unsolved by classical techniques — and they are all variations of a central routing problem. The curse of variety meets operations and logistics.

    By combining classical approaches with modern deep-learning methods, Wu is looking for a way to automatically identify heuristics that can effectively solve all of these vehicle routing problems. So far, her approach has proved successful.

    “We’ve contributed hybrid learning approaches that take existing solution methods for small problems and incorporate them into our learning framework to scale and accelerate that existing solver for large problems. And we’re able to do this in a way that can automatically identify heuristics for specialized variations of the vehicle routing problem.” The next step, says Wu, is applying a similar approach to multi-agent robotics problems in automated warehouses.

    Wu and her group are making big strides, in part due to their dedication to use-inspired basic research. Rather than applying known methods or science to a problem, they develop new methods, new science, to address problems. The methods she and her team employ are necessitated by societal problems with practical implications. The inspiration for the approach? None other than Louis Pasteur, who described his research style in a now-famous article titled “Pasteur’s Quadrant.” Anthrax was decimating the sheep population, and Pasteur wanted to better understand why and what could be done about it. The tools of the time could not solve the problem, so he invented a new field, microbiology, not out of curiosity but out of necessity. More

  • in

    Helping the transportation sector adapt to a changing world

    After graduating from college, Nick Caros took a job as an engineer with a construction company, helping to manage the building of a new highway bridge right near where he grew up outside of Vancouver, British Columbia.  

    “I had a lot of friends that would use that new bridge to get to work,” Caros recalls. “They’d say, ‘You saved me like 20 minutes!’ That’s when I first realized that transportation could be a huge benefit to people’s lives.”

    Now a PhD candidate in the Urban Mobility Lab and the lead researcher for the MIT Transit Research Consortium, Caros works with seven transit agencies across the country to understand how workers’ transportation needs have changed as companies have adopted remote work policies.

    “Another cool thing about working on transportation is that everybody, even if they don’t engage with it on an academic level, has an opinion or wants to talk about it,” says Caros. “As soon as I mention I’ve worked with the T, they have something they want to talk about.”

    Caros is drawn to projects with social impact beyond saving his friends a few minutes during their commutes. He sees public transportation as a crucial component in combating climate change and is passionate about identifying and lowering the psychological barriers that prevent people around the world from taking advantage of their local transit systems.

    “The more I’ve learned about public transportation, the more I’ve come to realize it will play an essential part in decarbonizing urban transportation,” says Caros. “I want to continue working on these kinds of issues, like how we can make transportation more sustainable or promoting public transportation in places where it doesn’t exist or can be improved.”

    Caros says he doesn’t have a “transportation origin story,” like some of his peers who grew up in urban centers with robust public transit systems. As a child growing up in the Vancouver suburbs, he always enjoyed the outdoors, which were as close as his backyard. He chose to study engineering as an undergraduate at the University of British Columbia, fascinated by the hydroelectric dams that supply Vancouver with most of its power. But after two projects with the construction company, the second of which took him to Maryland to work on a fossil fuel project, he decided he needed a change.

    Not quite sure what he wanted to do next, Caros sought out the shortest master’s program he could find that interested him. That ended up being an 18-month master’s program in transportation planning and engineering at New York University. Initially intending to pursue the course-based program, Caros was soon offered the chance to be a research assistant in NYU’s Behavioral Urban Informatics, Logistics, and Transport Laboratory with Professor Joseph Chow. There, he worked to model an experimental transportation system of modular self-driving cars that could link and unlink with each other while in motion.

    “It was this really futuristic stuff,” says Caros. “It turned out to be a really cool project to work on because it’s kind of rare to have a blank-slate problem to try and solve. A lot of transportation engineering problems have largely been solved. We know how to make efficient and sustainable transportation systems; it’s just finding the political support and encouraging behavioral change that remains a challenge.”

    At NYU, Caros fell in love with research and the field of transportation. Later, he was drawn to MIT by its interdisciplinary PhD program that spans both urban studies and planning and civil engineering and the opportunity to work with Professor Jinhua Zhao.

    His research focuses on identifying “third places,” locations where some people go if their job gives them the flexibility to work remotely. Previously, transportation needs revolved around office spaces, typically located in city centers. With more people working from home, the first assumption is that transportation needs would decrease. But that’s not what Caros has found.

    “One major finding from our research is that people have changed where they’re going when they go to work,” says Caros. “A lot of people are working from home, but some are also working in other places, like coffee shops or co-working spaces. And these third places are not evenly distributed in Boston.”

    Identifying the concentration of these third places and what locations would benefit from them is the core of Caros’ dissertation. He’s building an algorithm that identifies ideal locations to build more shared workplaces based on both economic and social factors. Caros seeks to answer how you can minimize travel time across the board while leaving room for the spontaneous social interactions that drive a city’s productivity. His research is sponsored by seven of the largest transit agencies in the United States, who are members of the MIT Transit Research Consortium. Rather than a single agency sponsoring a single specific project, funding is pooled to tackle projects that address general topics that can apply to multiple cities.

    These kinds of problems require a multidisciplinary approach that appeals to Caros. Even when diving into the technical details of a solution, he always keeps the bigger picture in mind. He is certain that changing people’s views of public transportation will be crucial in the fight against climate change.

    “A lot of it is not necessarily engineering, but understanding what the motivations of people are,” says Caros. “Transportation is a leading sector for carbon emissions in the U.S., and so figuring out what makes people tick and how you can get them to ride public transit more, for example, would help to reduce the overall carbon cost.”

    Following the completion of his degree, Caros will join the Organization for Economic Cooperation and Development. He already spent six months at its Paris headquarters as an intern during a leave from MIT, something his lab encourages all of its students to do. Last fall, he worked on drafting policy guidelines for new mobility services such as vehicle-share scooters, and addressing transportation equity issues in Ghana. Plus, living in Paris gave him the opportunity to practice his French. Growing up in Canada, he attended a French immersion school, and his internship offered his first opportunity to use the language outside of an academic context.

    Looking forward, Caros hopes to keep tackling projects that promote sustainable public transportation. There is an urgency in getting ahead of the curve, especially in cities experiencing rapid growth.

    “You kind of get locked in,” says Caros. “It becomes much harder to build sustainable transportation systems after the fact. But it’s really just a geometry problem. Trains and buses are a way more efficient way to move people using the same amount of space as private cars.” More

  • in

    Andrea Lo ’21 draws on ecological lessons for life, work, and education

    Growing up in Los Angeles about 10 minutes away from the Ballona Wetlands, Andrea Lo ’21 has long been interested in ecology. She witnessed, in real-time, the effects of urbanization and the impacts that development had on the wetlands. 

    “In hindsight, it really helped shape my need for a career — and a life — where I can help improve my community and the environment,” she says.

    Lo, who majored in biology at MIT, says a recurring theme in her life has been the pursuit of balance, valuing both extracurricular and curricular activities. She always felt an equal pull toward STEM and the humanities, toward wet lab work and field work, and toward doing research and helping her community. 

    “One of the most important things I learned in 7.30[J] (Fundamentals of Ecology) was that there are always going to be trade-offs. That’s just the way of life,” she says. “The biology major at MIT is really flexible. I got a lot of room to explore what I was interested in and get a good balance overall, with humanities classes along with technical classes.” 

    Lo was drawn to MIT because of the focus on hands-on work — but many of the activities Lo was hoping to do, both extracurricular and curricular, were cut short because of the pandemic, including her lab-based Undergraduate Research Opportunities Program (UROP) project. 

    Instead, she pursued a UROP with MIT Sea Grant, working on a project in partnership with Northeastern University and the Charles River Conservancy with funding support from the MIT Community Service fund as part of STEAM Saturday.  

    She was involved in creating Floating Wetland kits, an educational activity directed at students in grades 4 to 6 to help students understand ecological concepts,the challenges the Charles River faces due to urbanization, and how floating wetlands improve the ecosystem. 

    “Our hope was to educate future generations of local students in Cambridge in order for them to understand the ecology surrounding where they live,” she says. 

    In recent years, many bodies of water in Massachusetts have become unusable during the warmer months due to the process of eutrophication: stormwater runoff picks up everything — from fertilizer and silt to animal excrement — and deposits it at the lowest point, which is often a body of water. This leads to an excess of nutrients in the body of water and, when combined with warm temperatures, can lead to harmful algal blooms, making the water sludgy, bright green, and dangerously toxic. 

    The wetland kits Lo worked with were mini ecosystems, replicating a full-sized floating wetland. One such floating wetland can be seen from the Longfellow Bridge at one end of MIT’s campus — the Charles River floating wetland is a patch of grass attached to a buoy like a boat, which is often visited by birds and inhabited by much smaller critters that cannot be seen from the shore.  

    The Charles River floating wetland has a variety of flora, but the kits Lo helped present use only wheat grass because it is easy to grow and has long, dangling roots that could penetrate the watery medium below. A water tray beneath the grass — the Charles river of the mini ecosystem — contains spirulina powder for replicating algae growth and daphnia, which are small, planktonic crustaceans that help keep freshwater clean and usable. 

    “This work was really fulfilling, but it’s also really important, because environmental sustainability relies on future generations to carry on the work that past generations have been doing,” she says. “MIT’s motto is ‘mens et manus’ — education for practical application, and applying theoretical knowledge to what we do in our daily lives. I think this project really helped reinforce that.” 

    Since 2021, Lo has been working in Denmark in a position she learned about through the MIT-Denmark program. 

    She chose Denmark because of its reputation for environmental and sustainability issues and because she didn’t know much about it except for it being one of the happiest countries in the world, often thought of synonymously with the word “hygge,” which has no direct translation but encapsulates coziness and comfort from the small joys in life. 

    “At MIT, we have a very strong work-hard, play-hard culture. I think we can learn a lot from the work-life balance that Denmark has a reputation for,” she says. “I really wanted to take the opportunity in between graduation and whatever came after to explore beyond my bubble. For me, it was important to step back, out of my comfort zone, step into a different environment — and just live.”

    Currently, her personal project is comparing the conditions of two lagoons on the island of Fyn in Denmark. Both are naturally occurring, but in different states of environmental health. 

    She’s been doing a mix of field work and lab work. She collects sediment and fauna samples using a steel corer, or “butter stick” in her lab’s slang. In the same way that one can use a metal tube-shaped tool to remove the core of an apple, she punches the steel corer into the ground, removing a plug of sample. She then sifts the sample through 1 millimeter mesh, preserves the filtered sample in formalin, and takes everything back to the lab. 

    Once there, she looks through the sample to find macrofauna — mollusks, barnacles, and polychaetes, a bristly-looking segmented worm, for example. Collected over time, sediment characteristics like organic matter content, sediment grain size, and the size and abundance of macrofauna, can reveal trends that can help determine the health of the ecosystem. 

    Lo doesn’t have any concrete results yet, but her data could help researchers project the recovery of a lagoon that was rehabilitated using a technique called managed realignment, where water is allowed to reclaim areas where it was once found. She says she’s glad she gets a mix of field work and lab work, even on Denmark’s stormiest days. 

    “Sometimes there are really cold days where it’s windy and I wish I was in the lab, but, at the same time, it’s nice to have a balance where I can be outside and really be hands-on with my work,” she says.  

    Reflecting her dual interests in the technical and the innovative, she will be back in the Greater Boston area in the fall, pursuing a master of science in innovation and management and an MS in civil and environmental engineering at the Tufts Gordon Institute.

    “So much has happened and changed due to the pandemic that it’s easy to dwell on what could’ve been, but I tell myself to be optimistic and take the positive aspects that have come out of the circumstances,” Lo says. “My opportunities with the Sea Grant, MISTI, and Tufts definitely wouldn’t have happened if the pandemic hadn’t happened.” More

  • in

    Preparing Colombia’s cities for life amid changing forests

    It was an uncharacteristically sunny morning as Marcela Angel MCP ’18, flanked by a drone pilot from the Boston engineering firm AirWorks and a data collection team from the Colombian regional environmental agency Corpoamazonia, climbed a hill in the Andes Mountains of southwest Colombia. The area’s usual mountain cloud cover — one of the major challenges to working with satellite imagery or flying UAVs (unpiloted aerial vehicles, or drones) in the Pacific highlands of the Amazon — would roll through in the hours to come. But for now, her team had chosen a good day to hike out for their first flight. Angel is used to long travel for her research. Raised in Bogotá, she maintained strong ties to Colombia throughout her master’s program in the MIT Department of Urban Studies and Planning (DUSP). Her graduate thesis, examining Bogotá’s management of its public green space, took her regularly back to her hometown, exploring how the city could offer residents more equal access to the clean air, flood protection and day-to-day health and social benefits provided by parks and trees. But the hill she was hiking this morning, outside the remote city of Mocoa, had taken an especially long time to climb: five years building relationships with the community of Mocoa and the Colombian government, recruiting project partners, and navigating the bureaucracy of bringing UAVs into the country. Now, her team finally unwrapped their first, knee-high drone from its tarp and set it carefully in the grass. Under the gathering gray clouds, the buzz of its rotors joined the hum of insects in the trees, and the machine at last took to the skies.

    From Colombia to Cambridge

    “I actually grew up on the last street before the eastern mountains reserve,” Angel says of her childhood in Bogotá. “I’ve always been at that border between city and nature.” This idea, that urban areas are married to the ecosystems around them, would inform Angel’s whole education and career. Before coming to MIT, she studied architecture at Bogotá’s Los Andes University; for her graduation project she proposed a plan to resettle an informal neighborhood on Bogotá’s outskirts to minimize environmental risks to its residents. Among her projects at MIT was an initiative to spatially analyze Bogotá’s tree canopy, providing data for the city to plan a tree-planting program as a strategy to give vulnerable populations in the city more access to nature. And she was naturally intrigued when Colombia’s former minister of environment and sustainable development came to MIT in 2017 to give a guest presentation to the DUSP master’s program. The minister, Luis Gilberto Murillo (now the Colombian ambassador to the United States), introduced the students to the challenges triggered by a recent disaster in the city of Mocoa, on the border between the lowland Amazon and the Andes Mountains. Unprecedented rainstorms had destabilized the surrounding forests, and that April a devastating flood and landslide had killed hundreds of people and destroyed entire neighborhoods. And as climate change contributed to growing rainfall in the region, the risks of more landslide events were rising. Murillo provided useful insights into how city planning decisions had contributed to the crisis. But he also asked for MIT’s support addressing future landslide risks in the area. Angel and Juan Camilo Osorio, a PhD candidate at DUSP, decided to take up the challenge, and in January 2018 and 2019, a research delegation from MIT traveled to Colombia for a newly-created graduate course. Returning once again to Bogotá, Angel interviewed government agencies and nonprofits to understand the state of landslide monitoring and public policy. In Mocoa, further interviews and a series of workshops helped clarify what locals needed most and what MIT could provide: better information on where and when landslides might strike, and a process to increase risk awareness and involve traditionally marginalized groups in decision-making processes around that risk. Over the coming year, a core team formed to put the insights from this trip into action, including Angel, Osorio, postdoc Norhan Bayomi of the MIT Environmental Solutions Initiative (ESI) and MIT Professor John Fernández, director of the ESI and one of Angel’s mentors at DUSP. After a second visit to Mocoa that brought into the fold Indigenous groups, environmental agencies, and the national army, a plan was formed: MIT would partner with Corpoamazonia and build a network of community researchers to deploy and test drone technology and machine learning models to monitor the mountain forests for both landslide risks and signs of forest health, while implementing a participatory planning process with residents. “What our projects aim to do is give the communities new tools to continue protecting and restoring the forest,” says Angel, “and support new and inclusive development models, even in the face of new challenges.”

    Lifelines for the climate

    The goal of tropical forest conservation is an urgent one. As forests are cut down, their trees and soils release carbon they have stored over millennia, adding huge amounts of heat-trapping carbon dioxide to the atmosphere. Deforestation, mainly in the tropics, is now estimated to contribute more to climate change than any country besides the United States and China — and once lost, tropical forests are exceptionally hard to restore. “Tropical forests should be a natural way to slow and reverse climate change,” says Angel. “And they can be. But today, we are reaching critical tipping points where it is just the opposite.” This became the motivating force for Angel’s career after her graduation. In 2019, Fernández invited her to join the ESI and lead a new Natural Climate Solutions Program, with the Mocoa project as its first centerpiece. She quickly mobilized the partners to raise funding for the project from the Global Environmental Facility and the CAF Development Bank of Latin America and the Caribbean, and recruited additional partners including MIT Lincoln Laboratories, AirWorks, and the Pratt Institute, where Osorio had become an assistant professor. She hired machine learning specialists from MIT to begin design on UAVs’ data processing, and helped assemble a local research network in Mocoa to increase risk awareness, promote community participation, and better understand what information city officials and community groups needed for city planning and conservation. “This is the amazing thing about MIT,” she says. “When you study a problem here, you’re not just playing in a sandbox. Everyone I’ve worked with is motivated by the complexity of the technical challenge and the opportunity for meaningful engagement in Mocoa, and hopefully in many more places besides.” At the same time, Angel created opportunities for the next generation of MIT graduate students to follow in her footsteps. With Fernández and Bayomi, she created a new course, 4.S23 (Biodiversity and Cities), in which students traveled to Colombia to develop urban planning strategies for the cities of Quidbó and Leticia, located in carbon-rich and biodiverse areas. The course has been taught twice, with Professor Gabriella Carolini joining the teaching team for spring 2023, and has already led to a student report to city officials in Quidbó recommending ways to enhance biodiversity and adapt to climate change as the city grows, a multi-stakeholder partnership to train local youth and implement a citizen-led biodiversity survey, and a seed grant from the MIT Climate and Sustainability Consortium to begin providing both cities detailed data on their tree cover derived from satellite images. “These regions face serious threats, especially on a warming planet, but many of the solutions for climate change, biodiversity conservation, and environmental equity in the region go hand-in-hand,” Angel says. “When you design a city to use fewer resources, to contribute less to climate change, it also causes less pressure on the environment around it. When you design a city for equity and quality of life, you’re giving attention to its green spaces and what they can provide for people and as habitat for other species. When you protect and restore forests, you’re protecting local bioeconomies.”

    Bringing the data home

    Meanwhile, in Mocoa, Angel’s original vision is taking flight. With the team’s test flights behind them, they can now begin creating digital models of the surrounding area. Regular drone flights and soil samples will fill in changing information about trees, water, and local geology, allowing the project’s machine learning specialists to identify warning signs for future landslides and extreme weather events. More importantly, there is now an established network of local community researchers and leaders ready to make use of this information. With feedback from their Mocoan partners, Angel’s team has built a prototype of the online platform they will use to share their UAV data; they’re now letting Mocoa residents take it for a test drive and suggest how it can be made more user-friendly. Her visit this January also paved the way for new projects that will tie the Environmental Solutions Initiative more tightly to Mocoa. With her project partners, Angel is exploring developing a course to teach local students how to use UAVs like the ones her team is flying. She is also considering expanded efforts to collect the kind of informal knowledge of Mocoa, on the local ecology and culture, that people everywhere use in making their city planning and emergency response decisions, but that is rarely codified and included in scientific risk analyses. It’s a great deal of work to offer this one community the tools to adapt successfully to climate change. But even with all the robotics and machine learning models in the world, this close, slow-unfolding engagement, grounded in trust and community inclusion, is what it takes to truly prepare people to confront profound changes in their city and environment. “Protecting natural carbon sinks is a global socio-environmental challenge, and one where it is not enough for MIT to just contribute to the knowledge base or develop a new technology,” says Angel. “But we can help mobilize decision-makers and nontraditional actors, and design more inclusive and technology-enhanced processes, to make this easier for the people who have lifelong stakes in these ecosystems. That is the vision.” More

  • in

    Embracing life’s surprises

    Experiments often yield unexpected results. In research and in life, MIT Associate Professor Cem Tasan has learned to embrace that uncertainty.

    “Very often we start with an idea or a hypothesis, and to test that idea we design experiments, and when we run the experiments, we see something totally different,” says Tasan, the newly tenured Thomas B. King Associate Professor of Metallurgy.

    Tasan has used those surprises to explore the boundaries of metallurgy and solid mechanics, gleaning new insights into how metals break and deform, and designing new kinds of damage-resistant alloys.

    “As they say, science is like taking a walk in the hills,” Tasan says. “You see the mountain far away, and that’s where you want to go, but as you head toward it, you see a beautiful flower on a different pathway, so you check that out. That happens so often to [my group]. It’s exciting.”

    Tasan has extended that approach to his career, leading him to take a faculty position at MIT despite not seeing the campus until his first job interview.

    “Being at MIT, or even in the USA, was never on my radar,” Tasan says. “It just wasn’t part of a plan.”

    That mindset has also helped him mentor students, whom he’s learned never to judge based on initial impressions.

    “I had a really bright student reach out and say ‘Everything is great, we have funding, we are productive, but I’m not sure I like what I’m doing,’” Tasan recalls. “We talked and identified another direction closer to the student’s interests, but that would mean we might not have secure funding or the necessary know-how, so there were all these disadvantages.

    “But we went down that road and it was amazing, because now this student was doing the research they really liked, and that successful student became an amazing student. Mentoring is complicated because on the outside things can seem fine, but the key idea is to pay attention to small details and keep communicating with these young people, who are on their own journeys. There’s no easy way other than communicating and observing.”

    A winding path

    Tasan grew up in Turkey and studied metallurgical and materials engineering at the country’s top college in the field, the Middle East Technical University.

    “What intrigued me about metallurgy is that it’s an engineering field, but it’s also strongly related with basic sciences,” Tasan says. “That connection exists in other engineering fields as well, but not as strongly. In materials science, it’s fair to say one leg is almost always in the fundamental side of things.”

    Tasan also travelled a lot as a young adult, backpacking with friends across Europe on a shoestring budget.

    “Early on, my personal goal in life was to move to Spain and eat tapas all the time and have fun,” Tasan jokes.

    During one such trip, Tasan packed a suit in the bottom of his backpack just in case he landed an interview with a graduate program. The preparation paid off in the Netherlands, where he met with members of the mechanical engineering department at the Eindhoven University of Technology. Tasan would go on to earn his PhD at the school, studying how damage and cracking takes place in metals.

    After earning his PhD in 2010, Tasan joined the Max Planck Institute for Iron Research in Germany, where he eventually led a research group that continued studying metal behavior and worked on creating new metal alloys that were more damage-resistant and had other unique properties.

    By 2015, Tasan was settled into a comfortable life in Germany. Then a position at MIT opened up.

    “At MIT, I could suddenly do much more on these topics that excited me, so my research could create a bigger impact,” Tasan says.

    After traveling to MIT for interviews, the talent and atmosphere also convinced Tasan to make the move.

    “I think it’s important to be surrounded by people who are very ambitious and who want to have a big impact,” Tasan says. “You walk in the Infinite Corridor, or any other MIT corridor, and every board you pass has stuff about people changing the world in a different way. Being in that environment inspires you.”

    Once in Cambridge, Tasan immediately loved what he describes as its “small-town feel,” comparing it to some European towns. He’s also embraced the Boston culture, becoming a fan of baseball and the Red Sox.

    Since arriving at MIT, Tasan’s group has studied metal samples’ response to stress and other stimuli in real time using a technique called in situ electron microscopy.

    “We do in situ tests, which means you take an electron microscope and basically build machines inside that allows you to take any metal and put it under different conditions, as you watch its structure evolve,” Tasan explains. “Because these experiments are so unique and complex, when a student designs an experiment and eventually brings the results back to me, it’s often the first-ever observation of some phenomena.”

    In 2020 Tasan’s group developed new in-situ methods for studying the effects of hydrogen in metals, leading to insights that could help with the transition to clean hydrogen energy. The approach has been adopted by other labs for further study.

    Tasan’s group also created a more damage resistant, high temperature alloy that’s part of a class of metals known as high entropy alloys. That work was published in the journal Nature Materials.

    “Doing physical metallurgy research allows us to connect basic understanding of metals and industrial applications,” Tasan says. “I’m dealing with atoms and how they interact — and at the same time I’m talking weekly with companies that produce thousands of tons of metals, and we’re using the same language. I can talk to a company producing steels for auto bodies or titanium for airplane engines, and the stuff I study in my lab is still valuable to them.”

    In one much-publicized Science paper, Tasan’s group uncovered the reasons why even the sharpest knives and razors dull after everyday processes like shaving.

    “We like to demonstrate the importance of materials science and metallurgy to a broader audience,” Tasan says. “The paper on why hair deforms steel was great because it was picked up in all kinds of news channels around the world, and it showed that even in very conventional areas, like making knives or blades, there’s a lot of new insights and paths to find.”

    Solving the ultimate puzzles

    Tasan brings the same careful diligence he uses to study metals to support students. He says he’s found that like metals, people also typically have more complex stories that you can only see if you look closely enough.

    “It’s interesting because everybody is so different,” Tasan says. “Once you start working with people and trying to help them, you see so many different dimensions that were not visible before. You have the opportunity to sit down with them and look them in the eye and try to understand what they really want. And it’s interesting because often they also don’t know what they want, and sometimes they even don’t know that they don’t know that!”

    Fortunately, Tasan enjoys those challenges most of all.

    “In a way, the researchers are puzzles waiting to be solved, like the research itself,” Tasan says. “And if you put in enough effort and you really care, you get this enormously gratifying feeling of helping someone succeed in life. It’s really a unique part of the job, and it’s what I love more than anything.” More

  • in

    Exploring the links between diet and cancer

    Every three to five days, all of the cells lining the human intestine are replaced. That constant replenishment of cells helps the intestinal lining withstand the damage caused by food passing through the digestive tract.

    This rapid turnover of cells relies on intestinal stem cells, which give rise to all of the other types of cells found in the intestine. Recent research has shown that those stem cells are heavily influenced by diet, which can help keep them healthy or stimulate them to become cancerous.

    “Low-calorie diets such as fasting and caloric restriction can have antiaging effects and antitumor effects, and we want to understand why that is. On the other hand, diets that lead to obesity can promote diseases of aging, such as cancer,” says Omer Yilmaz, the Eisen and Chang Career Development Associate Professor of Biology at MIT.

    For the past decade, Yilmaz has been studying how different diets and environmental conditions affect intestinal stem cells, and how those factors can increase the risk of cancer and other diseases. This work could help researchers develop new ways to improve gastrointestinal health, either through dietary interventions or drugs that mimic the beneficial effects of certain diets, he says. 

    “Our findings have raised the possibility that fasting interventions, or small molecules that mimic the effects of fasting, might have a role in improving intestinal regeneration,” says Yilmaz, who is also a member of MIT’s Koch Institute for Integrative Cancer Research.

    A clinical approach

    Yilmaz’s interest in disease and medicine arose at an early age. His father practiced internal medicine, and Yilmaz spent a great deal of time at his father’s office after school, or tagging along at the hospital where his father saw patients.

    “I was very interested in medicines and how medicines were used to treat diseases,” Yilmaz recalls. “He’d ask me questions, and many times I wouldn’t know the answer, but he would encourage me to figure out the answers to his questions. That really stimulated my interest in biology and in wanting to become a doctor.”

    Knowing that he wanted to go into medicine, Yilmaz applied and was accepted to an eight-year, combined bachelor’s and MD program at the University of Michigan. As an undergraduate, this gave him the freedom to explore areas of interest without worrying about applying to medical school. While majoring in biochemistry and physics, he did undergraduate research in the field of protein folding.

    During his first year of medical school, Yilmaz realized that he missed doing research, so he decided to apply to the MD/PhD program at the University of Michigan. For his PhD research, he studied blood-forming stem cells and identified new markers that allowed such cells to be more easily isolated from the bone marrow.

    “This was important because there’s a lot of interest in understanding what makes a stem cell a stem cell, and how much of it is an internal program versus signals from the microenvironment,” Yilmaz says.

    After finishing his PhD and MD, he thought about going straight into research and skipping a medical residency, but ended up doing a residency in pathology at Massachusetts General Hospital. During that time, he decided to switch his research focus from blood-forming stem cells to stem cells found in the gastrointestinal tract.

    “The GI tract seemed very interesting because in contrast to the bone marrow, we knew very little about the identity of GI stem cells,” Yilmaz says. “I knew that once GI stem cells were identified, there’d be a lot of interesting questions about how they respond to diet and how they respond to other environmental stimuli.”

    Dietary questions

    To delve into those questions, Yilmaz did postdoctoral research at the Whitehead Institute, where he began investigating the connections between stem cells, metabolism, diet, and cancer.

    Because intestinal stem cells are so long-lived, they are more likely to accumulate genetic mutations that make them susceptible to becoming cancerous. At the Whitehead Institute, Yilmaz began studying how different diets might influence this vulnerability to cancer, a topic that he carried into his lab at MIT when he joined the faculty in 2014.

    One question his lab has been exploring is why low-calorie diets often have protective effects, including a boost in longevity — a phenomenon that has been seen in many studies in animals and humans.

    In a 2018 study, his lab found that a 24-hour fast dramatically improves stem cells’ ability to regenerate. This effect was seen in both young and aged mice, suggesting that even in old age, fasting or drugs that mimic the effects of fasting could have a beneficial effect.

    On the flip side, Yilmaz is also interested in why a high-fat diet appears to promote the development of cancer, especially colorectal cancer. In a 2016 study, he found that when mice consume a high-fat diet, it triggers a significant increase in the number of intestinal stem cells. Also, some non-stem-cell populations begin to resemble stem cells in their behavior. “The upshot of these changes is that both stem cells and non-stem-cells can give rise to tumors in a high-fat diet state,” Yilmaz says.

    To help with these studies, Yilmaz’s lab has developed a way to use mouse or human intestinal stem cells to generate miniature intestines or colons in cell culture. These “organoids” can then be exposed to different nutrients in a very controlled setting, allowing researchers to analyze how different diets affect the system.

    Recently, his lab adapted the system to allow them to expand their studies to include the role of immune cells, fibroblasts, and other supportive cells found in the microenvironment of stem cells. “It would be remiss of us to focus on just one cell type,” Yilmaz says. “We’re looking at how these different dietary interventions impact the entire stem cell neighborhood.”

    While Yilmaz spends most of his time running his lab at MIT, he also devotes six to eight weeks per year to his work at MGH, where he is an associate pathologist focusing on gastrointestinal pathology.

    “I enjoy my clinical work, and it always reminds me about the importance of the research we do,” he says. “Seeing colon cancer and other GI cancers under the microscope, and seeing their complexity, reminds me of the importance of our mission to figure out how we can prevent these cancers from forming.” More

  • in

    Understanding boiling to help the nuclear industry and space missions

    To launch extended missions in space, the National Aeronautics and Space Administration (NASA) is borrowing a page from the nuclear engineering industry: It is trying to understand how boiling works.

    Planning for long-term missions has NASA researching ways of packing the least amount of cryogenic fuel possible for efficient liftoff. One potential solution is to refuel the rocket in space using fuel depots placed in low Earth orbits. This way, the spacecraft can carry the lightest fuel load — enough to reach the low Earth orbit to refuel as necessary and complete the mission. But refueling in space requires a thorough knowledge of cryogenic fuels.

    “We [need to understand] how boiling of cryogens behaves in microgravity conditions [encountered in space],” says Florian Chavagnat, a sixth-year doctoral candidate in the Department of Nuclear Science and Engineering (NSE). After all, understanding how cryogens boil in space is critical to NASA’s fuel management strategy. The vast majority of studies on boiling evaluate fluids that boil at high temperatures, which doesn’t necessarily apply to cryogens. Under the advisement of Matteo Bucci and Emilio Baglietto, Chavagnat is working on NASA-sponsored research about cryogens and the way the lack of buoyancy in space affects boiling.

    A childhood spent tinkering

    A deep understanding of engineering and physical phenomena is exactly what Chavagnat developed growing up in Boussy-Saint-Antoine, a suburb of Paris, with parents who worked for SNCF, the national state-owned rail company. Chavagnat remembers discussing the working of trains and motors with his engineer dad and building a variety of balsa-wood models. One of his memorable projects was a sailboat propelled by a motor from an electric toothbrush.

    By the time he was a teenager, Chavagnat received a metal lathe as a gift. His tinkering became an obsession; a compressed air engine was a favorite project. Soon his parents’ small shed, meant for gardening, became a factory, Chavagnat recalls, laughing.

    A lifelong love of math and physics propelled a path to the National Institute of Applied Science in Rouen, Normandy, where Chavagnat studied energetics and propulsion as part of a five-year engineering program. In his final year, Chavagnat studied atomic engineering from INSTN Paris-Saclay, part of the esteemed French Alternative Energies and Atomic Energy Commission (CEA).

    The final year of studies at CEA required a six-month-long internship, which traditionally sets the course for a job. Chavagnat decided to take a chance and apply for an internship at MIT NSE instead, knowing his future course might be uncertain. “I didn’t take a lot of risk in my life, but this one was a big risk,” Chavagnat says. The gamble paid off: Chavagnat won the internship with Charles Forsberg, which paved the way for his admission as a doctoral student. “I selected MIT because it has always been my dream school,” Chavagnat says. He also enjoyed the idea of challenging himself to improve his English-speaking skills.

    A love of physics and heat transfer

    Chavagnat loves physics — “if I can study any problem in physics, I’d be happy” he says — which led him to working on heat transfer, more specifically on boiling heat transfer. His early doctoral research focused on transient boiling in nuclear reactors, part of which has been published in the International Journal of Heat and Mass Transfer.

    Chavagnat’s research targets a specific kind of nuclear reactor called a material test reactor (MTR). Nuclear scientists use MTRs to understand how materials used in plant operations might behave under long-term use. Densely packed nuclear fuel, running at high power, simulates long-term effects using a very intense neutron flux.

    To prevent failure, operators limit reactor temperature by flowing very cold water at high velocity. When reactor heat power increases uncontrollably, the piped water begins to boil. Boiling works to prevent meltdown by altering neutron moderation and extracting heat from the fuel. “[Unfortunately], that only works until you reach a certain heat flux at the fuel cladding, after which the efficiency completely drops,” Chavagnat says. Once the critical heat flux is reached, water vapor starts to blanket and insulate the fuel elements, leading to rapidly rising cladding temperatures and potential burnout.

    The key is to figure out the behavior of maximum boiling heat flux under routine MTR conditions — cold water, high flow velocity, and narrow spacing between the fuel elements.

    Study of cryogenic boiling

    Boiling continues to occupy center stage as Chavagnat pursues the question for NASA. Cryogens boil at very low temperatures, so the question of how to prevent fuel loss from routine space-based operations is an important one to answer.

    Chavagnat is studying how boiling would behave under reduced or absent buoyancy, which are the conditions cryogenic rocket fuel will encounter in space.

    To reproduce space-like conditions on Earth, buoyancy can be modified without going to space. Chavagnat is manipulating the inclination of the boiling surface — placing it upside down is an example — such that buoyancy does not do what it usually does: help bubbles break away from the surface. He is also performing boiling experiments in parabolic flights to simulate microgravity, similar to what is experienced aboard the International Space Station.

    Chavagnat designed and built equipment which can perform both methods with minimum changes. “We observed nitrogen boiling on our surface by imaging it using two high-speed video cameras,” he says. The experiment was approved to go on board the parabolic flights operated by Zero-G, a company that operates weightless flights. The team successfully completed four parabolic flights in 2022.

    “Flying an experiment aboard an aircraft and operating it in microgravity is an incredible experience, but is challenging,” Chavagnat says, “Knowing the details the experiment is a must, but other skills are quite useful — in particular, working as a team, being able to manage high stress levels, and being able to work while being motion-sick.” Another challenge is that the majority of issues cannot be fixed once aboard, as aircraft pilots perform the parabola (each lasting 17 seconds) almost back-to-back.

    Throughout his research at MIT, Chavagnat has been captivated by how complex a simple phenomenon like boiling can truly be. “In your childhood, you have a certain idea of how boiling looks, relatively slow bubbles that you can see with the naked eye,” he says, “but you don’t realize the complexity until you see it with your own eyes.”

    In his infrequent spare time, Chavagnat plays soccer with the NSE’s team, the Atom Smashers. The group meets only five times a semester so it’s a low-key commitment, says Chavagnat who spends most of his time at the lab. “I am doing mostly experiments at MIT; it turns out the skills I learned in my shed when I was 15 are actually quite useful here,” he laughs. More