More stories

  • in

    MIT in the media: 2021 in review

    From Institute-wide efforts to address the climate crisis to responding to Covid-19, members of the MIT community made headlines this year for their innovative work in a variety of areas. Faculty, students, and staff were on the front lines of addressing many pressing issues this year, raising their voices and sharing their findings. Below are highlights of news stories that spotlight the many efforts underway at MIT to help make a better world.

    Fireside chat: Tackling global challenges with a culture of innovationPresident L. Rafael Reif and Linda Henry, CEO of Boston Globe Media Partners, took part in a wide-ranging fireside chat during the inaugural Globe Summit, touching upon everything from the urgent need to address the climate crisis to MIT’s response to Covid-19, the Institute’s approach to artificial intelligence education and the greater Boston innovation ecosystem.Full discussion via Globe Summit

    A real-world revolution in economicsProfessor Joshua Angrist, one of the winners of the 2021 Nobel Prize in economic sciences, spoke with The Economist’s Money Talks podcast about the evolution of his research and how his work has helped bring the field of economics closer to real life. “I like to tell graduate students that a good scholar is like a good hitter in baseball,” says Angrist of his advice for economics students. “You get on base about a third of the time you’re doing pretty well, which means you strike out most of the time.”Full story via The Economist

    Paula Hammond guest edits C&EN’s 2021 Trailblazers issueC&EN’s 2021 Trailblazers issue, curated by guest editor Paula Hammond, celebrated Black chemists and chemical engineers. “As we learn from several of the personal stories highlighted in this issue,” writes Hammond, “that first connection to science and research is critical to engage and inspire the next generation.” Helping propel the issue’s message about the importance of mentorship was a one-on-one with Professor Kristala Prather about her career path and a wide-ranging interview with Hammond herself on building a home at MIT.Full issue via C&EN

    Can fusion put the brakes on climate change? MIT’s new Climate Action Plan for the Decade calls for going as far as we can, as fast as we can, with the tools and methods we have now — but also asserts that ultimate success depends on breakthroughs. Commercial fusion energy is potentially one such game-changer, and a unique collaboration between MIT and Commonwealth Fusion Systems (CFS) is pursuing it. As Joy Dunn ’08, head of manufacturing at CFS, explains to the New Yorker’s Rivka Galchen: “When people ask me, ‘Why fusion? Why not other renewables,’ my thinking is: This is a solution at the scale of the problem.”Full story via New Yorker

    The genius next door: Taylor Perron discusses landscape evolutionProfessor and geomorphologist Taylor Perron, a recipient this year’s MacArthur Fellowships, joined Callie Crossley of GBH’s Under the Radar to discuss his work studying the mechanisms that shape landscapes on Earth and other planets. “We try to figure out how we can look at landscapes and read them, and try to figure out what happened in the past and also anticipate what might happen in the future,” says Perron.Full story via GBH

    How the pandemic “re-imagined how we can exhibit” Hashim Sarkis, dean of the School of Architecture and Planning and curator of this year’s Venice Architecture Biennale, spoke with Cajsa Carlson of Dezeen about how the field of architecture is transforming due to climate change, the Covid-19 pandemic, and efforts to increase diversity and representation. “Talent and imagination are not restricted to advanced development economically,” says Sarkis. “I hope this message comes across in this biennale.”Full story via Dezeen

    10 years at the top of the QS World University RankingsProvost Martin Schmidt spoke with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “The Institute is full of a diverse community of people from all corners of the globe dedicated to solving the world’s most difficult problems,” says Schmidt. “Their efforts have a demonstrable impact through ambitious high-impact activities.”  Full story via TopUniversities.com

    Tackling Covid-19 and the Impact of a Global PandemicIn 2021, MIT researchers turned their attention to addressing the widespread effects of a global pandemic, exploring everything from supply chain issues to K-12 education.Massachusetts Miracle: “There are a lot of potential Modernas”Boston Globe columnist Shirley Leung spotlighted how the development of the Moderna Covid-19 vaccine demonstrates the success of the Massachusetts life sciences sector. “For more than half a century, the Massachusetts Institute of Technology has been the epicenter of that curiosity, with a focus on molecular biology — initially to find a cure for cancer,” writes Leung.Full story via The Boston Globe

    Weak links in the supply chainProfessor Yossi Sheffi spoke with David Pogue of CBS Sunday Morning about what’s causing supply chain breakdowns. “The underlying cause of all of this is actually a huge increase in demand,” says Sheffi. “People did not spend during the pandemic. And then, all the government help came; trillions of dollars went to households. So, they order stuff. They order more and more stuff. And the global markets were not ready for this.”Full story via CBS News

    Recruiting students and teachers to rethink schoolsA report co-authored by Associate Professor Justin Reich proposed a new path forward for rethinking K-12 schools after Covid-19, reported Paul Darvasi for KQED. “The report recommends that educators build on the positive aspects of their pandemic learning experience in the years ahead,” notes Darvasi, “and supports increased student independence to cultivate a safe and healthy environment that is more conducive to learning.”Full story via KQED

    This staff member has been quietly curating a flower box at the Collier MemorialResearch Specialist Kathy Cormier’s dedication to tending a flower planter at the Collier Memorial throughout the pandemic captured the hearts of many in the MIT community. “Here’s something that’s empty that I can fill, and make myself feel better and make other people — hopefully — feel better,” she says.Full story via The Boston Globe

    Amazing Alumni MIT alumni made headlines for their efforts to change the world, both here on Earth and in outer space. NASA selects three new astronaut candidates with MIT rootsMarcos Berríos ’06, Christina Birch PhD ’15 and Christopher Williams PhD ’12 were selected among NASA’s 10-member 2021 astronaut candidate class, reported WBUR’s Bill Chappell. “Alone, each candidate has ‘the right stuff,’ but together they represent the creed of our country: E pluribus unum — out of many, one,” said NASA Administrator Bill Nelson.Full story via WBUR

    Ngozi Okonjo-Iweala named WTO director-generalNgozi Okonjo-Iweala MCP ’78, PhD ’81, a former Nigerian finance minister, was named director-general of the World Trade Organization, reported William Wallace for the Financial Times. “Okonjo-Iweala sees an opportunity for the organization to rediscover some of its original purpose of raising living standards across the board and to bring its outdated rule book up to date at a time of accelerating change,” notes Wallace.Full story via Financial Times

    She doesn’t think skateboarding’s a sport, but she competed for a medalAlexis Sablone MArch ’16 spoke with Washington Post reporter Les Carpenter about street skateboarding, competing at this year’s Olympic Games, and why she is uncomfortable with being defined. “To me, I’m just always like trying to be myself and do things that I love to do and not try to fit into these categories in ways that I don’t feel comfortable with,” says Sablone.Full story via The Washington Post

    Applauding the culture of aerospace engineeringTiera Fletcher ’17, a structural design engineer working on building NASA’s Space Launch System, and her husband Myron Fletcher spoke with the hosts of The Real about what inspired them to pursue careers in aerospace engineering and their organization Rocket with the Fletchers, which is aimed at introducing youth to the field of aerodynamics.Full story via The Real

    Addressing the Climate CrisisThe urgent need to take action on climate change became more apparent in 2021. MIT researchers across campus answered the call and are unleashing innovative ideas to help address the biggest threat of our time.

    Why closing California’s last nuclear power plant would be a mistake The Washington Post Editorial Board highlighted a report co-authored by MIT researchers that found keeping the Diablo Canyon nuclear power plant in California open would help the state reach its climate goals.Full story via The Washington Post

    What will the U.S. do to reach emission reduction targets?Sergey Paltsev, deputy director of the MIT Joint Program on the Science and Policy of Global Change, spoke with Brian Cheung of Yahoo Finance about climate change, the path to net-zero emissions, and COP26. Paltsev was a lead author of the Fifth Assessment Report Intergovernmental Panel on Climate Change or IPCC. Full story via Yahoo News

    Lithium battery costs have fallen by 98% in three decadesA study by Professor Jessika Trancik and postdoc Micah Ziegler examining the plunge in lithium-ion battery costs finds “every time output doubles, as it did five times between 2006 and 2016, battery prices fall by about a quarter,” reports The Economist, which highlighted the work in its popular “Daily chart” feature. (Trancik’s research detailing carbon impacts of different cars was also cited by The Washington Post as a climate-change innovation helping respond to calls for action.)Full story via The Economist

    MIT students display a “climate clock” outside the Green BuildingBoston Globe reporter Matt Berg spotlights how a team from the MIT D-Lab created a climate clock, which was projected on the exterior of the Green Building at MIT in an effort to showcase key data about climate change. “The display highlights goals of the fight against climate change, such as limiting the annual temperature increases to no more than 2.7 degrees Fahrenheit,” writes Berg.Full story via The Boston Globe

    Social Impact

    MIT community members increasingly sought to address social issues around the world, from the spread of misinformation to ensuring marginalized communities could share their experiences. At MIT, arts, humanities and STEM fields forge an essential partnershipWriting for Times Higher Ed, Agustín Rayo, interim dean of MIT’s School of Humanities, Arts and Social Sciences, and Hashim Sarkis, dean of the School of Architecture and Planning, underscore the importance of the arts, humanities, and design fields as “an essential part of an MIT education, critical to the Institute’s capacity for innovation and vital to its mission to make a better world.” They add that “the MIT mission is to serve humankind, and the arts and humanities are essential resources for knowledge and understanding of the human condition.”Full story via Times Higher Ed

    Helping Bostonians feel heard with MIT’s “Real Talk” portalAn MIT initiative called “Real Talk for Change” launched a new online portal of more than 200 audio stories collected from Boston residents as part of an effort to “help prompt future community dialogues about the lived experiences of everyday Bostonians, particularly those in marginalized communities,” reported Meghan E. Irons for The Boston Globe.Full story via Boston Globe

    Why nations fail, America editionProfessor Daron Acemoglu spoke with Greg Rosalsky of NPR’s Planet Money about his book, “Why Nations Fail,” and whether the attack on the U.S. Capitol signals difficulties for U.S. institutions, and how politicians can create more shared prosperity through a “good jobs” agenda. “We are still at a point where we can reverse things,” Acemoglu says. “But I think if we paper over these issues, we will most likely see a huge deterioration in institutions. And it can happen very rapidly.”Full story via Planet Money

    Why confronting disinformation spreaders online only makes it worseA study by MIT researchers found that correcting people who were spreading misinformation on Twitter led to people retweeting and sharing even more misinformation, reported Matthew Gault for Motherboard. Professor David Rand explains that the research is aimed at identifying “what kinds of interventions increase versus decrease the quality of news people share. There is no question that social media has changed the way people interact. But understanding how exactly it’s changed things is really difficult.” Full story via Motherboard

    Out of This WorldFrom designing a new instrument that can extract oxygen out of Martian air to investigating gravitational waves, MIT community members continued their longstanding tradition of deepening our understanding of the cosmos. MOXIE pulled breathable oxygen out of thin Martian airMichael Hecht of MIT’s Haystack Observatory spoke with GBH’s Edgar Herwick about how the MIT-designed MOXIE instrument successfully extracted oxygen out of Martian air. “I’ve been using the expression ‘a small breath for man, a giant leap for humankind,’” says Hecht, who is the principal investigator for MOXIE.Full story via GBH

    The down-to-Earth applications of spaceAssistant Professor Danielle Wood joined Bloomberg TV to discuss her work focused on using space technologies as a way to advance the U.N. Sustainable Development Goals. She emphasizes how space “is a platform for serving the broad public. We use satellites to observe the environment and the climate, we use satellites to connect people across different parts of the Earth, and they give us information about our positions and our weather. All of these are broad public goods that really can serve people across the world all at once.”Full story via Bloomberg TV

    How Perseverance is hunting for life on MarsIn a conversation with New Scientist reporter Jonathan O’Callaghan, Professor Tanja Bosak discussed her work with the NASA Perseverance rover’s rock reconnaissance mission. “In the middle of a pandemic, I think we needed something good to happen, and that’s why so many people wanted all the science and engineering that goes into landing a rover on Mars to succeed,” says Bosak.Full story via New Scientist

    What scientists have learned from hidden ripples in spacetimeNergis Mavalvala, dean of the School of Science, spoke with Becky Ferreira of Motherboard’s “Space Show” about LIGO’s 2015 discovery of gravitational waves and what researchers in the field have learned since then. “Every one of these observations tells us a little bit more about how nature has assembled our universe,” says Mavalvala. “Really, in the end, the question we’re asking is: ‘How did this universe that we observe come about?’” Full story via MotherboardJoining the Conversation

    MIT authors contributed nearly 100 op-eds and essays to top news outlets this year, along with research-focused deep dives in The Conversation.

    Building on Vannevar Bush’s “wild garden” to cultivate solutions to human needsPresident L. Rafael Reif examined Vannevar Bush’s groundbreaking 1945 “Science, the Endless Frontier” report and considered how our needs today have changed. “To meet this moment, we need to ensure that our federally sponsored research addresses questions that will enhance our competitiveness now and in the future,” writes Reif. “Our current system has many strengths … but we must not allow these historical advantages to blind us to gaps that could become fatal weaknesses.”Full story via Issues in Science and Technology

    Good news: There’s a labor shortageWriting for The New York Times, Professor David Autor explored how the current labor shortage provides an opportunity to improve the quality of jobs in the U.S. “The period of labor scarcity, then, is an opportunity to catalyze better working conditions for those who need them most,” writes Autor.Full story via New York Times

    Opening the path to biotechIn an editorial for Science, Professor Sangeeta Bhatia, Professor Emerita Nancy Hopkins, and President Emerita Susan Hockfield underscored the importance of addressing the underrepresentation of women and individuals of color in tech transfer. “The discoveries women and minority researchers are making today have great potential as a force for good in the world,” they write, “but reaching that potential is only possible if paths to real-world applications are open to everybody.”Full story via Science

    To protect from lab leaks, we need “banal” safety rules, not anti-terrorism measuresMIT Professor Susan Silbey and Professor Ruthanne Huising of Emlyon Business School made the case that to prevent lab leaks, there should be a greater emphasis placed on biosafety. “The global research community does not need more rules, more layers of oversight, and more intermediary actors,” they write. “What it needs is more attention and respect to already known biosafety measures and techniques.”Full story via Stat

    Boston: The Silicon Valley of longevity?Writing for The Boston Globe, AgeLab Director Joseph Coughlin and Research Associate Luke Yoquinto explored how Greater Boston could serve as an innovation hub for aging populations. “By making groundbreaking creativity and inventiveness for older adults both seen and felt, Greater Boston and New England will be able to offer the world a new vision of old age,” they write.Full story via The Boston Globe

    More of the latest MIT In the Media summaries, with links to the original reporting, are available at news.mit.edu/in-the-media. More

  • in

    MIT community in 2021: A year in review

    During 2021, the Covid-19 pandemic continued to color much of the year, as MIT saw both the promise of vaccines as well as the rise of troubling new variants. The Institute also made new commitments to climate action, saw the opening of new and renovated spaces, continued in its efforts to support its diverse voices, and celebrated new Nobel laureates and astronaut candidates. Here are some of the top stories in the MIT community this year.

    Continuing to work through CovidVaccines became widely available to the MIT community early in the year — thanks, in significant part, to the ingenuity of MIT scientists and engineers. In response, the Institute developed a policy requiring vaccination for most members of the community and planned a return to fully in-person teaching and working at MIT for the fall 2021 semester.

    With copious protections in place, the fall semester in many ways embodied MIT’s resilience: In-person teaching expanded, staff returned with new flexible arrangements, and community spirit lifted as face-to-face meetings became possible in many cases once again. Some annual traditions, such as Commencement, stayed remote, while others, like the outdoor Great Glass Pumpkin Patch, and 2.009 grand finale, returned, adding smiles and a sense of gratitude among community members.Melissa Nobles appointed chancellor

    In August, Melissa Nobles, the former Kenin Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, became the Institute’s new chancellor. A political scientist, Nobles succeeded Cynthia Barnhart, who returned to research and teaching after seven years as chancellor.

    In other news related to MIT’s top administration, Martin Schmidt announced in November that after 40 years at MIT, he plans to step down as provost to become the next president of Rensselaer Polytechnic Institute, his alma mater.

    New climate action plan

    MIT unveiled a new action plan to tackle the climate crisis, committing to net-zero emissions by 2026 and charting a course marshaling all of MIT’s capabilities toward decarbonization. The plan includes a broad array of new initiatives and significant expansions of existing programs to address the needs for new technologies, new policies, and new kinds of outreach to bring the Institute’s expertise to bear on this critical global issue.

    In November, a delegation from MIT also traveled to Scotland for COP26, the 2021 United Nations climate change conference, where international negotiators sought to keep global climate goals on track. Approximately 20 MIT faculty, staff, and students were on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    MIT and Harvard transfer edX

    MIT and Harvard University announced in June that assets of edX, the nonprofit they launched in 2012 to provide an open online platform for university courses, would be acquired by the publicly-traded education technology company 2U, and reorganized as a public benefit company under the 2U umbrella. In exchange, 2U was set to transfer net proceeds from the $800 million transaction to a nonprofit organization, also led by MIT and Harvard, to explore the next generation of online education.

    Supporting our diverse communityAs an important step forward in MIT’s ongoing efforts to create a more welcoming and inclusive community, the Institute hired six new assistant deans, one in each school and in the MIT Schwarzman College of Computing, to serve as diversity, equity, and inclusion professionals. In addition, this week Institute Community and Equity Officer John Dozier provided an update on the Strategic Action Plan for Diversity, Equity, and Inclusion, the first draft of which was released in March.

    A community discussion also examined the complexities of Asian American and Pacific Islander identity and acceptance at MIT, while underscoring the need for collaborative work among groups to combat prejudice and create equity. The forum was held amid a string of violent assaults on Asian Americans in the U.S., which raised public awareness about anti-Asian discrimination. Meanwhile, Professor Emma Teng provided historic context for the crisis.

    Three with MIT ties win Nobel PrizesProfessor Joshua Angrist, whose influential work has enhanced rigorous empirical research in economics, shared half of the 2021 Nobel Prize in economic sciences with Guido Imbens of the Stanford Graduate School of Business; the other half went to David Card of the University of California at Berkeley.

    In addition, David Julius ’77, a professor at the University of California at San Francisco, shared the 2021 Nobel Prize in Physiology or Medicine with Ardem Patapoutian, a professor at the Scripps Research Institute, for their discoveries in how the body senses touch and temperature. And Maria Ressa, a journalist in the Philippines and digital fellow at the MIT Initiative on the Digital Economy, shared the 2021 Nobel Peace Prize with journalist Dmitry Muratov of Russia.

    National STEM leadersBefore taking office in January, President Joe Biden selected two MIT faculty leaders for top science and technology posts in his administration. Eric Lander, director of the Broad Institute and professor of biology, was named presidential science advisor and director of the Office of Science and Technology Policy. Maria Zuber, vice president for research and professor of earth, atmospheric, and planetary sciences, was named co-chair of the President’s Council of Advisors on Science and Technology (PCAST), along with Caltech chemical engineer Frances Arnold — the first women ever to co-chair PCAST.

    Paula Hammond, head of the Department of Chemical Engineering, was also chosen to serve as a member of PCAST. Earlier in the year, Hammond, along with chemical engineer Arup Chakraborty, was named an Institute Professor, the highest honor bestowed upon MIT faculty.

    Task Force 2021 final report

    MIT’s Task Force 2021 and Beyond, charged with reimagining the future of MIT, released its final report, 18 months after it began work in the shadow of the Covid-19 pandemic. The report offers 17 recommendations to strengthen and streamline MIT, and make the Institute more successful across its teaching, research, and innovation endeavors. In addition to a providing a substantive list of recommendations, the report suggests routes to implementation, and assigns one or more senior leaders or faculty governance committees with oversight, for every idea presented.

    Newly opened or reopened

    A number of facilities, new or newly redesigned, opened in 2021. These included a new MIT Welcome Center in Kendall Square; the new InnovationHQ, a hub for MIT entrepreneurship; the newly renovated and reimagined Hayden Library and courtyard; and the new MIT Press Bookstore. Two new student residences also opened, and the community welcomed programming from the Institute’s new outdoor open space.

    Students win an impressive number of distinguished fellowshipsAs always, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lostAmong community members who died this year were William Dalzell, Sergio Dominguez, Gene Dresselhaus, Sow Hsin-Chen, Ronald Kurtz, Paul Lagacé, Shirley McBay, ChoKyun Rha, George Shultz, Isadore Singer, James Swan, and Jing Wang. A longer list of 2021 obituaries is available on MIT News.

    In Case You Missed It… 

    Additional top community stories of 2021 included NASA’s selection of three new alumni astronaut candidates; the announcement of the 2021 MIT Solve Global Challenges; the successful conclusion of the MIT Campaign for a Better World; a win for MIT in the American Solar Challenge; a look at chess at the Institute; a roundup of new books from MIT authors; and the introduction of STEM-focused young-adult graphic fiction from the MIT Press. More

  • in

    Climate modeling confirms historical records showing rise in hurricane activity

    When forecasting how storms may change in the future, it helps to know something about their past. Judging from historical records dating back to the 1850s, hurricanes in the North Atlantic have become more frequent over the last 150 years.

    However, scientists have questioned whether this upward trend is a reflection of reality, or simply an artifact of lopsided record-keeping. If 19th-century storm trackers had access to 21st-century technology, would they have recorded more storms? This inherent uncertainty has kept scientists from relying on storm records, and the patterns within them, for clues to how climate influences storms.

    A new MIT study published today in Nature Communications has used climate modeling, rather than storm records, to reconstruct the history of hurricanes and tropical cyclones around the world. The study finds that North Atlantic hurricanes have indeed increased in frequency over the last 150 years, similar to what historical records have shown.

    In particular, major hurricanes, and hurricanes in general, are more frequent today than in the past. And those that make landfall appear to have grown more powerful, carrying more destructive potential.

    Curiously, while the North Atlantic has seen an overall increase in storm activity, the same trend was not observed in the rest of the world. The study found that the frequency of tropical cyclones globally has not changed significantly in the last 150 years.

    “The evidence does point, as the original historical record did, to long-term increases in North Atlantic hurricane activity, but no significant changes in global hurricane activity,” says study author Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in MIT’s Department of Earth, Atmospheric, and Planetary Sciences. “It certainly will change the interpretation of climate’s effects on hurricanes — that it’s really the regionality of the climate, and that something happened to the North Atlantic that’s different from the rest of the globe. It may have been caused by global warming, which is not necessarily globally uniform.”

    Chance encounters

    The most comprehensive record of tropical cyclones is compiled in a database known as the International Best Track Archive for Climate Stewardship (IBTrACS). This historical record includes modern measurements from satellites and aircraft that date back to the 1940s. The database’s older records are based on reports from ships and islands that happened to be in a storm’s path. These earlier records date back to 1851, and overall the database shows an increase in North Atlantic storm activity over the last 150 years.

    “Nobody disagrees that that’s what the historical record shows,” Emanuel says. “On the other hand, most sensible people don’t really trust the historical record that far back in time.”

    Recently, scientists have used a statistical approach to identify storms that the historical record may have missed. To do so, they consulted all the digitally reconstructed shipping routes in the Atlantic over the last 150 years and mapped these routes over modern-day hurricane tracks. They then estimated the chance that a ship would encounter or entirely miss a hurricane’s presence. This analysis found a significant number of early storms were likely missed in the historical record. Accounting for these missed storms, they concluded that there was a chance that storm activity had not changed over the last 150 years.

    But Emanuel points out that hurricane paths in the 19th century may have looked different from today’s tracks. What’s more, the scientists may have missed key shipping routes in their analysis, as older routes have not yet been digitized.

    “All we know is, if there had been a change (in storm activity), it would not have been detectable, using digitized ship records,” Emanuel says “So I thought, there’s an opportunity to do better, by not using historical data at all.”

    Seeding storms

    Instead, he estimated past hurricane activity using dynamical downscaling — a technique that his group developed and has applied over the last 15 years to study climate’s effect on hurricanes. The technique starts with a coarse global climate simulation and embeds within this model a finer-resolution model that simulates features as small as hurricanes. The combined models are then fed with real-world measurements of atmospheric and ocean conditions. Emanuel then scatters the realistic simulation with hurricane “seeds” and runs the simulation forward in time to see which seeds bloom into full-blown storms.

    For the new study, Emanuel embedded a hurricane model into a climate “reanalysis” — a type of climate model that combines observations from the past with climate simulations to generate accurate reconstructions of past weather patterns and climate conditions. He used a particular subset of climate reanalyses that only accounts for observations collected from the surface — for instance from ships, which have recorded weather conditions and sea surface temperatures consistently since the 1850s, as opposed to from satellites, which only began systematic monitoring in the 1970s.

    “We chose to use this approach to avoid any artificial trends brought about by the introduction of progressively different observations,” Emanuel explains.

    He ran an embedded hurricane model on three different climate reanalyses, simulating tropical cyclones around the world over the past 150 years. Across all three models, he observed “unequivocal increases” in North Atlantic hurricane activity.

    “There’s been this quite large increase in activity in the Atlantic since the mid-19th century, which I didn’t expect to see,” Emanuel says.

    Within this overall rise in storm activity, he also observed a “hurricane drought” — a period during the 1970s and 80s when the number of yearly hurricanes momentarily dropped. This pause in storm activity can also be seen in historical records, and Emanuel’s group proposes a cause: sulfate aerosols, which were byproducts of fossil fuel combustion, likely set off a cascade of climate effects that cooled the North Atlantic and temporarily suppressed hurricane formation.

    “The general trend over the last 150 years was increasing storm activity, interrupted by this hurricane drought,” Emanuel notes. “And at this point, we’re more confident of why there was a hurricane drought than why there is an ongoing, long-term increase in activity that began in the 19th century. That is still a mystery, and it bears on the question of how global warming might affect future Atlantic hurricanes.”

    This research was supported, in part, by the National Science Foundation. More

  • in

    Nanograins make for a seismic shift

    In Earth’s crust, tectonic blocks slide and grind past each other like enormous ships loosed from anchor. Earthquakes are generated along these fault zones when enough stress builds for a block to stick, then suddenly slip.

    These slips can be aided by several factors that reduce friction within a fault zone, such as hotter temperatures or pressurized gases that can separate blocks like pucks on an air-hockey table. The decreasing friction enables one tectonic block to accelerate against the other until it runs out of energy. Seismologists have long believed this kind of frictional instability can explain how all crustal earthquakes start. But that might not be the whole story.

    In a study published today in Nature Communications, scientists Hongyu Sun and Matej Pec, from MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), find that ultra-fine-grained crystals within fault zones can behave like low-viscosity fluids. The finding offers an alternative explanation for the instability that leads to crustal earthquakes. It also suggests a link between quakes in the crust and other types of temblors that occur deep in the Earth.

    Nanograins are commonly found in rocks from seismic environments along the smooth surface of “fault mirrors.” These polished, reflective rock faces betray the slipping, sliding forces of past earthquakes. However, it was unclear whether the crystals caused quakes or were merely formed by them.

    To better characterize how these crystals behaved within a fault, the researchers used a planetary ball milling machine to pulverize granite rocks into particles resembling those found in nature. Like a super-powered washing machine filled with ceramic balls, the machine pounded the rock until all its crystals were about 100 nanometers in width, each grain 1/2,000 the size of an average grain of sand.

    After packing the nanopowder into postage-stamp sized cylinders jacketed in gold, the researchers then subjected the material to stresses and heat, creating laboratory miniatures of real fault zones. This process enabled them to isolate the effect of the crystals from the complexity of other factors involved in an actual earthquake.

    The researchers report that the crystals were extremely weak when shearing was initiated — an order of magnitude weaker than more common microcrystals. But the nanocrystals became significantly stronger when the deformation rate was accelerated. Pec, professor of geophysics and the Victor P. Starr Career Development Chair, compares this characteristic, called “rate-strengthening,” to stirring honey in a jar. Stirring the honey slowly is easy, but becomes more difficult the faster you stir.

    The experiment suggests something similar happens in fault zones. As tectonic blocks accelerate past each other, the crystals gum things up between them like honey stirred in a seismic pot.

    Sun, the study’s lead author and EAPS graduate student, explains that their finding runs counter to the dominant frictional weakening theory of how earthquakes start. That theory would predict surfaces of a fault zone have material that gets weaker as the fault block accelerates, and friction should be decreasing. The nanocrystals did just the opposite. However, the crystals’ intrinsic weakness could mean that when enough of them accumulate within a fault, they can give way, causing an earthquake.

    “We don’t totally disagree with the old theorem, but our study really opens new doors to explain the mechanisms of how earthquakes happen in the crust,” Sun says.

    The finding also suggests a previously unrecognized link between earthquakes in the crust and the earthquakes that rumble hundreds of kilometers beneath the surface, where the same tectonic dynamics aren’t at play. That deep, there are no tectonic blocks to grind against each other, and even if there were, the immense pressure would prevent the type of quakes observed in the crust that necessitate some dilatancy and void creation.

    “We know that earthquakes happen all the way down to really big depths where this motion along a frictional fault is basically impossible,” says Pec. “And so clearly, there must be different processes that allow for these earthquakes to happen.”

    Possible mechanisms for these deep-Earth tremors include “phase transitions” which occur due to atomic re-arrangement in minerals and are accompanied by a volume change, and other kinds of metamorphic reactions, such as dehydration of water-bearing minerals, in which the released fluid is pumped through pores and destabilizes a fault. These mechanisms are all characterized by a weak, rate-strengthening layer.

    If weak, rate-strengthening nanocrystals are abundant in the deep Earth, they could present another possible mechanism, says Pec. “Maybe crustal earthquakes are not a completely different beast than the deeper earthquakes. Maybe they have something in common.” More

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More

  • in

    Radio-frequency wave scattering improves fusion simulations

    In the quest for fusion energy, understanding how radio-frequency (RF) waves travel (or “propagate”) in the turbulent interior of a fusion furnace is crucial to maintaining an efficient, continuously operating power plant. Transmitted by an antenna in the doughnut-shaped vacuum chamber common to magnetic confinement fusion devices called tokamaks, RF waves heat the plasma fuel and drive its current around the toroidal interior. The efficiency of this process can be affected by how the wave’s trajectory is altered (or “scattered”) by conditions within the chamber.

    Researchers have tried to study these RF processes using computer simulations to match the experimental conditions. A good match would validate the computer model, and raise confidence in using it to explore new physics and design future RF antennas that perform efficiently. While the simulations can accurately calculate how much total current is driven by RF waves, they do a poor job at predicting where exactly in the plasma this current is produced.

    Now, in a paper published in the Journal of Plasma Physics, MIT researchers suggest that the models for RF wave propagation used for these simulations have not properly taken into account the way these waves are scattered as they encounter dense, turbulent filaments present in the edge of the plasma known as the “scrape-off layer” (SOL).

    Bodhi Biswas, a graduate student at the Plasma Science and Fusion Center (PSFC) under the direction of Senior Research Scientist Paul Bonoli, School of Engineering Distinguished Professor of Engineering Anne White, and Principal Research Scientist Abhay Ram, who is the paper’s lead author. Ram compares the scattering that occurs in this situation to a wave of water hitting a lily pad: “The wave crashing with the lily pad will excite a secondary, scattered wave that makes circular ripples traveling outward from the plant. The incoming wave has transferred energy to the scattered wave. Some of this energy is reflected backwards (in relation to the incoming wave), some travels forwards, and some is deflected to the side. The specifics all depend on the particular attributes of the wave, the water, and the lily pad. In our case, the lily pad is the plasma filament.”

    Until now, researchers have not properly taken these filaments and the scattering they provoke into consideration when modeling the turbulence inside a tokamak, leading to an underestimation of wave scattering. Using data from PSFC tokamak Alcator C-Mod, Biswas shows that using the new method of modeling RF-wave scattering from SOL turbulence provides results considerably different from older models, and a much better match to experiments. Notably, the “lower-hybrid” wave spectrum, crucial to driving plasma current in a steady-state tokamak, appears to scatter asymmetrically, an important effect not accounted for in previous models.

    Biswas’s advisor Paul Bonoli is well acquainted with traditional “ray-tracing” models, which evaluate a wave trajectory by dividing it into a series of rays. He has used this model, with its limitations, for decades in his own research to understand plasma behavior. Bonoli says he is pleased that “the research results in Bodhi’s doctoral thesis have refocused attention on the profound effect that edge turbulence can have on the propagation and absorption of radio-frequency power.”

    Although ray-tracing treatments of scattering do not fully capture all the wave physics, a “full-wave” model that does would be prohibitively expensive. To solve the problem economically, Biswas splits his analysis into two parts: (1) using ray tracing to model the trajectory of the wave in the tokamak assuming no turbulence, while (2) modifying this ray-trajectory with the new scattering model that accounts for the turbulent plasma filaments.

    “This scattering model is a full-wave model, but computed over a small region and in a simplified geometry so that it is very quick to do,” says Biswas. “The result is a ray-tracing model that, for the first time, accounts for full-wave scattering physics.”

    Biswas notes that this model bridges the gap between simple scattering models that fail to match experiment and full-wave models that are prohibitively expensive, providing reasonable accuracy at low cost.

    “Our results suggest scattering is an important effect, and that it must be taken into account when designing future RF antennas. The low cost of our scattering model makes this very doable.”

    “This is exciting progress,” says Syun’ichi Shiraiwa, staff research physicist at the Princeton Plasma Physics Laboratory. “I believe that Bodhi’s work provides a clear path to the end of a long tunnel we have been in. His work not only demonstrates that the wave scattering, once accurately accounted for, can explain the experimental results, but also answers a puzzling question: why previous scattering models were incomplete, and their results unsatisfying.”

    Work is now underway to apply this model to more plasmas from Alcator C-Mod and other tokamaks. Biswas believes that this new model will be particularly applicable to high-density tokamak plasmas, for which the standard ray-tracing model has been noticeably inaccurate. He is also excited that the model could be validated by DIII-D National Fusion Facility, a fusion experiment on which the PSFC collaborates.

    “The DIII-D tokamak will soon be capable of launching lower hybrid waves and measuring its electric field in the scrape-off layer. These measurements could provide direct evidence of the asymmetric scattering effect predicted by our model.” More

  • in

    Scientists project increased risk to water supplies in South Africa this century

    In 2018, Cape Town, South Africa’s second most populous city, came very close to running out of water as the multi-year “Day Zero” drought depleted its reservoirs. Since then, researchers from Stanford University determined that climate change had made this extreme drought five to six times more likely, and warned that a lot more Day Zero events could occur in regions with similar climates in the future. A better understanding of likely surface air temperature and precipitation trends in South Africa and other dry, populated areas around the world in the coming decades could empower decision-makers to pursue science-based climate mitigation and adaptation measures designed to reduce the risk of future Day Zero events.    

    Toward that end, researchers at the MIT Joint Program on the Science and Policy of Global Change, International Food Policy Research Institute, and CGIAR have produced modeled projections of 21st-century changes in seasonal surface air temperature and precipitation for South Africa that systematically and comprehensively account for uncertainties in how Earth and socioeconomic systems behave and co-evolve. Presented in a study in the journal Climatic Change, these projections show how temperature and precipitation over three sub-national regions — western, central, and eastern South Africa — are likely to change under a wide range of global climate mitigation policy scenarios.

    In a business-as-usual global climate policy scenario in which no emissions or climate targets are set or met, the projections show that for all three regions, there’s a greater-than 50 percent likelihood that mid-century temperatures will increase threefold over the current climate’s range of variability. But the risk of these mid-century temperature increases is effectively eliminated through more aggressive climate targets.

    The business-as-usual projections indicate that the risk of decreased precipitation levels in western and central South Africa is three to four times higher than the risk of increased precipitation levels. Under a global climate mitigation policy designed to cap global warming at 1.5 degrees Celsius by 2100, the risk of precipitation changes within South Africa toward the end of the century (2065-74) is similar to the risk during the 2030s in the business-as-usual scenario.

    Rising risks of substantially reduced precipitation levels throughout this century under a business-as-usual scenario suggest increased reliance and stress on the widespread water-efficiency measures established in the aftermath of the Day Zero drought. But a 1.5 C global climate mitigation policy would delay these risks by 30 years, giving South Africa ample lead time to prepare for and adapt to them.

    “Our analysis provides risk-based evidence on the benefits of climate mitigation policies as well as unavoidable climate impacts that will need to be addressed through adaptive measures,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “Global action to limit human-induced warming could give South Africa enough time to secure sufficient water supplies to sustain its population. Otherwise, anticipated climate shifts by the middle of the next decade may well make Day-Zero situations more common.”

    This study is part of an ongoing effort to assess the risks that climate change poses for South Africa’s agricultural, economic, energy and infrastructure sectors. More

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More