More stories

  • in

    Helping the cause of environmental resilience

    Haruko Wainwright, the Norman C. Rasmussen Career Development Professor in Nuclear Science and Engineering (NSE) and assistant professor in civil and environmental engineering at MIT, grew up in rural Japan, where many nuclear facilities are located. She remembers worrying about the facilities as a child. Wainwright was only 6 at the time of the Chernobyl accident in 1986, but still recollects it vividly.

    Those early memories have contributed to Wainwright’s determination to research how technologies can mold environmental resilience — the capability of mitigating the consequences of accidents and recovering from contamination.

    Wainwright believes that environmental monitoring can help improve resilience. She co-leads the U.S. Department of Energy (DOE)’s Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project, which integrates technologies such as in situ sensors, geophysics, remote sensing, simulations, and artificial intelligence to establish new paradigms for monitoring. The project focuses on soil and groundwater contamination at more than 100 U.S. sites that were used for nuclear weapons production.

    As part of this research, which was featured last year in Environmental Science & Technology Journal, Wainwright is working on a machine learning framework for improving environmental monitoring strategies. She hopes the ALTEMIS project will enable the rapid detection of anomalies while ensuring the stability of residual contamination and waste disposal facilities.

    Childhood in rural Japan

    Even as a child, Wainwright was interested in physics, history, and a variety of other subjects.

    But growing up in a rural area was not ideal for someone interested in STEM. There were no engineers or scientists in the community and no science museums, either. “It was not so cool to be interested in science, and I never talked about my interest with anyone,” Wainwright recalls.

    Television and books were the only door to the world of science. “I did not study English until middle school and I had never been on a plane until college. I sometimes find it miraculous that I am now working in the U.S. and teaching at MIT,” she says.

    As she grew a little older, Wainwright heard a lot of discussions about nuclear facilities in the region and many stories about Hiroshima and Nagasaki.

    At the same time, giants like Marie Curie inspired her to pursue science. Nuclear physics was particularly fascinating. “At some point during high school, I started wondering ‘what are radiations, what is radioactivity, what is light,’” she recalls. Reading Richard Feynman’s books and trying to understand quantum mechanics made her want to study physics in college.

    Pursuing research in the United States

    Wainwright pursued an undergraduate degree in engineering physics at Kyoto University. After two research internships in the United States, Wainwright was impressed by the dynamic and fast-paced research environment in the country.

    And compared to Japan, there were “more women in science and engineering,” Wainwright says. She enrolled at the University of California at Berkeley in 2005, where she completed her doctorate in nuclear engineering with minors in statistics and civil and environmental engineering.

    Before moving to MIT NSE in 2022, Wainwright was a staff scientist in the Earth and Environmental Area at Lawrence Berkeley National Laboratory (LBNL). She worked on a variety of topics, including radioactive contamination, climate science, CO2 sequestration, precision agriculture, and watershed science. Her time at LBNL helped Wainwright build a solid foundation about a variety of environmental sensors and monitoring and simulation methods across different earth science disciplines.   

    Empowering communities through monitoring

    One of the most compelling takeaways from Wainwright’s early research: People trust actual measurements and data as facts, even though they are skeptical about models and predictions. “I talked with many people living in Fukushima prefecture. Many of them have dosimeters and measure radiation levels on their own. They might not trust the government, but they trust their own data and are then convinced that it is safe to live there and to eat local food,” Wainwright says.

    She has been impressed that area citizens have gained significant knowledge about radiation and radioactivity through these efforts. “But they are often frustrated that people living far away, in cities like Tokyo, still avoid agricultural products from Fukushima,” Wainwright says.

    Wainwright thinks that data derived from environmental monitoring — through proper visualization and communication — can address misconceptions and fake news that often hurt people near contaminated sites.

    Wainwright is now interested in how these technologies — tested with real data at contaminated sites — can be proactively used for existing and future nuclear facilities “before contamination happens,” as she explored for Nuclear News. “I don’t think it is a good idea to simply dismiss someone’s concern as irrational. Showing credible data has been much more effective to provide assurance. Or a proper monitoring network would enable us to minimize contamination or support emergency responses when accidents happen,” she says.

    Educating communities and students

    Part of empowering communities involves improving their ability to process science-based information. “Potentially hazardous facilities always end up in rural regions; minorities’ concerns are often ignored. The problem is that these regions don’t produce so many scientists or policymakers; they don’t have a voice,” Wainwright says, “I am determined to dedicate my time to improve STEM education in rural regions and to increase the voice in these regions.”

    In a project funded by DOE, she collaborates with the team of researchers at the University of Alaska — the Alaska Center for Energy and Power and Teaching Through Technology program — aiming to improve STEM education for rural and indigenous communities. “Alaska is an important place for energy transition and environmental justice,” Wainwright says. Micro-nuclear reactors can potentially improve the life of rural communities who bear the brunt of the high cost of fuel and transportation. However, there is a distrust of nuclear technologies, stemming from past nuclear weapon testing. At the same time, Alaska has vast metal mining resources for renewable energy and batteries. And there are concerns about environmental contamination from mining and various sources. The teams’ vision is much broader, she points out. “The focus is on broader environmental monitoring technologies and relevant STEM education, addressing general water and air qualities,” Wainwright says.

    The issues also weave into the courses Wainwright teaches at MIT. “I think it is important for engineering students to be aware of environmental justice related to energy waste and mining as well as past contamination events and their recovery,” she says. “It is not OK just to send waste to, or develop mines in, rural regions, which could be a special place for some people. We need to make sure that these developments will not harm the environment and health of local communities.” Wainwright also hopes that this knowledge will ultimately encourage students to think creatively about engineering designs that minimize waste or recycle material.

    The last question of the final quiz of one of her recent courses was: Assume that you store high-level radioactive waste in your “backyard.” What technical strategies would make you and your family feel safe? “All students thought about this question seriously and many suggested excellent points, including those addressing environmental monitoring,” Wainwright says, “that made me hopeful about the future.” More

  • in

    Detailed images from space offer clearer picture of drought effects on plants

    “MIT is a place where dreams come true,” says César Terrer, an assistant professor in the Department of Civil and Environmental Engineering. Here at MIT, Terrer says he’s given the resources needed to explore ideas he finds most exciting, and at the top of his list is climate science. In particular, he is interested in plant-soil interactions, and how the two can mitigate impacts of climate change. In 2022, Terrer received seed grant funding from the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) to produce drought monitoring systems for farmers. The project is leveraging a new generation of remote sensing devices to provide high-resolution plant water stress at regional to global scales.

    Growing up in Granada, Spain, Terrer always had an aptitude and passion for science. He studied environmental science at the University of Murcia, where he interned in the Department of Ecology. Using computational analysis tools, he worked on modeling species distribution in response to human development. Early on in his undergraduate experience, Terrer says he regarded his professors as “superheroes” with a kind of scholarly prowess. He knew he wanted to follow in their footsteps by one day working as a faculty member in academia. Of course, there would be many steps along the way before achieving that dream. 

    Upon completing his undergraduate studies, Terrer set his sights on exciting and adventurous research roles. He thought perhaps he would conduct field work in the Amazon, engaging with native communities. But when the opportunity arose to work in Australia on a state-of-the-art climate change experiment that simulates future levels of carbon dioxide, he headed south to study how plants react to CO2 in a biome of native Australian eucalyptus trees. It was during this experience that Terrer started to take a keen interest in the carbon cycle and the capacity of ecosystems to buffer rising levels of CO2 caused by human activity.

    Around 2014, he began to delve deeper into the carbon cycle as he began his doctoral studies at Imperial College London. The primary question Terrer sought to answer during his PhD was “will plants be able to absorb predicted future levels of CO2 in the atmosphere?” To answer the question, Terrer became an early adopter of artificial intelligence, machine learning, and remote sensing to analyze data from real-life, global climate change experiments. His findings from these “ground truth” values and observations resulted in a paper in the journal Science. In it, he claimed that climate models most likely overestimated how much carbon plants will be able to absorb by the end of the century, by a factor of three. 

    After postdoctoral positions at Stanford University and the Universitat Autonoma de Barcelona, followed by a prestigious Lawrence Fellowship, Terrer says he had “too many ideas and not enough time to accomplish all those ideas.” He knew it was time to lead his own group. Not long after applying for faculty positions, he landed at MIT. 

    New ways to monitor drought

    Terrer is employing similar methods to those he used during his PhD to analyze data from all over the world for his J-WAFS project. He and postdoc Wenzhe Jiao collect data from remote sensing satellites and field experiments and use machine learning to come up with new ways to monitor drought. Terrer says Jiao is a “remote sensing wizard,” who fuses data from different satellite products to understand the water cycle. With Jiao’s hydrology expertise and Terrer’s knowledge of plants, soil, and the carbon cycle, the duo is a formidable team to tackle this project.

    According to the U.N. World Meteorological Organization, the number and duration of droughts has increased by 29 percent since 2000, as compared to the two previous decades. From the Horn of Africa to the Western United States, drought is devastating vegetation and severely stressing water supplies, compromising food production and spiking food insecurity. Drought monitoring can offer fundamental information on drought location, frequency, and severity, but assessing the impact of drought on vegetation is extremely challenging. This is because plants’ sensitivity to water deficits varies across species and ecosystems. 

    Terrer and Jiao are able to obtain a clearer picture of how drought is affecting plants by employing the latest generation of remote sensing observations, which offer images of the planet with incredible spatial and temporal resolution. Satellite products such as Sentinel, Landsat, and Planet can provide daily images from space with such high resolution that individual trees can be discerned. Along with the images and datasets from satellites, the team is using ground-based observations from meteorological data. They are also using the MIT SuperCloud at MIT Lincoln Laboratory to process and analyze all of the data sets. The J-WAFS project is among one of the first to leverage high-resolution data to quantitatively measure plant drought impacts in the United States with the hopes of expanding to a global assessment in the future.

    Assisting farmers and resource managers 

    Every week, the U.S. Drought Monitor provides a map of drought conditions in the United States. The map has zero resolution and is more of a drought recap or summary, unable to predict future drought scenarios. The lack of a comprehensive spatiotemporal evaluation of historic and future drought impacts on global vegetation productivity is detrimental to farmers both in the United States and worldwide.  

    Terrer and Jiao plan to generate metrics for plant water stress at an unprecedented resolution of 10-30 meters. This means that they will be able to provide drought monitoring maps at the scale of a typical U.S. farm, giving farmers more precise, useful data every one to two days. The team will use the information from the satellites to monitor plant growth and soil moisture, as well as the time lag of plant growth response to soil moisture. In this way, Terrer and Jiao say they will eventually be able to create a kind of “plant water stress forecast” that may be able to predict adverse impacts of drought four weeks in advance. “According to the current soil moisture and lagged response time, we hope to predict plant water stress in the future,” says Jiao. 

    The expected outcomes of this project will give farmers, land and water resource managers, and decision-makers more accurate data at the farm-specific level, allowing for better drought preparation, mitigation, and adaptation. “We expect to make our data open-access online, after we finish the project, so that farmers and other stakeholders can use the maps as tools,” says Jiao. 

    Terrer adds that the project “has the potential to help us better understand the future states of climate systems, and also identify the regional hot spots more likely to experience water crises at the national, state, local, and tribal government scales.” He also expects the project will enhance our understanding of global carbon-water-energy cycle responses to drought, with applications in determining climate change impacts on natural ecosystems as a whole. More

  • in

    Low-cost device can measure air pollution anywhere

    Air pollution is a major public health problem: The World Health Organization has estimated that it leads to over 4 million premature deaths worldwide annually. Still, it is not always extensively measured. But now an MIT research team is rolling out an open-source version of a low-cost, mobile pollution detector that could enable people to track air quality more widely.

    The detector, called Flatburn, can be made by 3D printing or by ordering inexpensive parts. The researchers have now tested and calibrated it in relation to existing state-of-the-art machines, and are publicly releasing all the information about it — how to build it, use it, and interpret the data.

    “The goal is for community groups or individual citizens anywhere to be able to measure local air pollution, identify its sources, and, ideally, create feedback loops with officials and stakeholders to create cleaner conditions,” says Carlo Ratti, director of MIT’s Senseable City Lab. 

    “We’ve been doing several pilots around the world, and we have refined a set of prototypes, with hardware, software, and protocols, to make sure the data we collect are robust from an environmental science point of view,” says Simone Mora, a research scientist at Senseable City Lab and co-author of a newly published paper detailing the scanner’s testing process. The Flatburn device is part of a larger project, known as City Scanner, using mobile devices to better understand urban life.

    “Hopefully with the release of the open-source Flatburn we can get grassroots groups, as well as communities in less developed countries, to follow our approach and build and share knowledge,” says An Wang, a researcher at Senseable City Lab and another of the paper’s co-authors.

    The paper, “Leveraging Machine Learning Algorithms to Advance Low-Cost Air Sensor Calibration in Stationary and Mobile Settings,” appears in the journal Atmospheric Environment.

    In addition to Wang, Mora, and Ratti the study’s authors are: Yuki Machida, a former research fellow at Senseable City Lab; Priyanka deSouza, an assistant professor of urban and regional planning at the University of Colorado at Denver; Tiffany Duhl, a researcher with the Massachusetts Department of Environmental Protection and a Tufts University research associate at the time of the project; Neelakshi Hudda, a research assistant professor at Tufts University; John L. Durant, a professor of civil and environmental engineering at Tufts University; and Fabio Duarte, principal research scientist at Senseable City Lab.

    The Flatburn concept at Senseable City Lab dates back to about 2017, when MIT researchers began prototyping a mobile pollution detector, originally to be deployed on garbage trucks in Cambridge, Massachusetts. The detectors are battery-powered and rechargable, either from power sources or a solar panel, with data stored on a card in the device that can be accessed remotely.

    The current extension of that project involved testing the devices in New York City and the Boston area, by seeing how they performed in comparison to already-working pollution detection systems. In New York, the researchers used 5 detectors to collect 1.6 million data points over four weeks in 2021, working with state officials to compare the results. In Boston, the team used mobile sensors, evaluating the Flatburn devices against a state-of-the-art system deployed by Tufts University along with a state agency.

    In both cases, the detectors were set up to measure concentrations of fine particulate matter as well as nitrogen dioxide, over an area of about 10 meters. Fine particular matter refers to tiny particles often associated with burning matter, from power plants, internal combustion engines in autos and fires, and more.

    The research team found that the mobile detectors estimated somewhat lower concentrations of fine particulate matter than the devices already in use, but with a strong enough correlation so that, with adjustments for weather conditions and other factors, the Flatburn devices can produce reliable results.

    “After following their deployment for a few months we can confidently say our low-cost monitors should behave the same way [as standard detectors],” Wang says. “We have a big vision, but we still have to make sure the data we collect is valid and can be used for regulatory and policy purposes,”

    Duarte adds: “If you follow these procedures with low-cost sensors you can still acquire good enough data to go back to [environmental] agencies with it, and say, ‘Let’s talk.’”

    The researchers did find that using the units in a mobile setting — on top of automobiles — means they will currently have an operating life of six months. They also identified a series of potential issues that people will have to deal with when using the Flatburn detectors generally. These include what the research team calls “drift,” the gradual changing of the detector’s readings over time, as well as “aging,” the more fundamental deterioration in a unit’s physical condition.

    Still, the researchers believe the units will function well, and they are providing complete instructions in their release of Flatburn as an open-source tool. That even includes guidance for working with officials, communities, and stakeholders to process the results and attempt to shape action.

    “It’s very important to engage with communities, to allow them to reflect on sources of pollution,” says Mora. 

    “The original idea of the project was to democratize environmental data, and that’s still the goal,” Duarte adds. “We want people to have the skills to analyze the data and engage with communities and officials.” More

  • in

    Nanotube sensors are capable of detecting and distinguishing gibberellin plant hormones

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their collaborators from Temasek Life Sciences Laboratory have developed the first-ever nanosensor that can detect and distinguish gibberellins (GAs), a class of hormones in plants that are important for growth. The novel nanosensors are nondestructive, unlike conventional collection methods, and have been successfully tested in living plants. Applied in the field for early-stage plant stress monitoring, the sensors could prove transformative for agriculture and plant biotechnology, giving farmers interested in high-tech precision agriculture and crop management a valuable tool to optimize yield.

    The researchers designed near-infrared fluorescent carbon nanotube sensors that are capable of detecting and distinguishing two plant hormones, GA3 and GA4. Belonging to a class of plant hormones known as gibberellins, GA3 and GA4 are diterpenoid phytohormones produced by plants that play an important role in modulating diverse processes involved in plant growth and development. GAs are thought to have played a role in the driving forces behind the “green revolution” of the 1960s, which was in turn credited with averting famine and saving the lives of many worldwide. The continued study of gibberellins could lead to further breakthroughs in agricultural science and have implications for food security.

    Climate change, global warming, and rising sea levels cause farming soil to get contaminated by saltwater, raising soil salinity. In turn, high soil salinity is known to negatively regulate GA biosynthesis and promote GA metabolism, resulting in the reduction of GA content in plants. The new nanosensors developed by the SMART researchers allow for the study of GA dynamics in living plants under salinity stress at a very early stage, potentially enabling farmers to make early interventions when eventually applied in the field. This forms the basis of early-stage stress detection.

    Currently, methods to detect GA3 and GA4 typically require mass spectroscopy-based analysis, a time-consuming and destructive process. In contrast, the new sensors developed by the researchers are highly selective for the respective GAs and offer real-time, in vivo monitoring of changes in GA levels across a broad range of plant species.

    Described in a paper titled “Near-Infrared Fluorescent Carbon Nanotube Sensors for the Plant Hormone Family Gibberellins” published in the journal Nano Letters, the research represents a breakthrough for early-stage plant stress detection and holds tremendous potential to advance plant biotechnology and agriculture. This paper builds on previous research by the team at SMART DiSTAP on single-walled carbon nanotube-based nanosensors using the corona phase molecular recognition (CoPhMoRe) platform.

    Based on the CoPhMoRe concept introduced by the lab of MIT Professor Professor Michael Strano, the novel sensors are able to detect GA kinetics in the roots of a variety of model and non-model plant species, including Arabidopsis, lettuce, and basil, as well as GA accumulation during lateral root emergence, highlighting the importance of GA in root system architecture. This was made possible by the researchers’ related development of a new coupled Raman/near infrared fluorimeter that enables self-referencing of nanosensor near infrared fluorescence with its Raman G-band, a new hardware innovation that removes the need for a separate reference nanosensor and greatly simplifies the instrumentation requirements by using a single optical channel to measure hormone concentration.

    Using the reversible GA nanosensors, the researchers detected increased endogenous GA levels in mutant plants producing greater amounts of GA20ox1, a key enzyme in GA biosynthesis, as well as decreased GA levels in plants under salinity stress. When exposed to salinity stress, researchers also found that lettuce growth was severely stunted — an indication that only became apparent after 10 days. In contrast, the GA nanosensors reported decreased GA levels after just six hours, demonstrating their efficacy as a much earlier indicator of salinity stress.

    “Our CoPhMoRe technique allows us to create nanoparticles that act like natural antibodies in that they can recognize and lock onto specific molecules. But they tend to be far more stable than alternatives. We have used this method to successfully create nanosensors for plant signals such as hydrogen peroxide and heavy-metal pollutants like arsenic in plants and soil,” says Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT who is co-corresponding author and DiSTAP co-lead principal investigator. “The method works to create sensors for organic molecules like synthetic auxin — an important plant hormone — as we have shown. This latest breakthrough now extends this success to a plant hormone family called gibberellins — an exceedingly difficult one to recognize.”

    Strano adds: “The resulting technology offers a rapid, real-time, and in vivo method to monitor changes in GA levels in virtually any plant, and can replace current sensing methods which are laborious, destructive, species-specific, and much less efficient.”

    Mervin Chun-Yi Ang, associate scientific director at DiSTAP and co-first author of the paper, says, “More than simply a breakthrough in plant stress detection, we have also demonstrated a hardware innovation in the form of a new coupled Raman/NIR fluorimeter that enabled self-referencing of SWNT sensor fluorescence with its Raman G-band, representing a major advance in the translation of our nanosensing tool sets to the field. In the near future, our sensors can be combined with low-cost electronics, portable optodes, or microneedle interfaces for industrial use, transforming how the industry screens for and mitigates plant stress in food crops and potentially improving growth and yield.”

    The new sensors could yet have a variety of industrial applications and use cases. Daisuke Urano, a Temasek Life Sciences Laboratory principal investigator, National University of Singapore (NUS) adjunct assistant professor, and co-corresponding author of the paper, explains, “GAs are known to regulate a wide range of plant development processes, from shoot, root, and flower development, to seed germination and plant stress responses. With the commercialization of GAs, these plant hormones are also sold to growers and farmers as plant growth regulators to promote plant growth and seed germination. Our novel GA nanosensors could be applied in the field for early-stage plant stress monitoring, and also be used by growers and farmers to track the uptake or metabolism of GA in their crops.”

    The design and development of the nanosensors, creation and validation of the coupled Raman/near infrared fluorimeter and related image/data processing algorithms, as well as statistical analysis of readouts from plant sensors for this study were performed by SMART and MIT. The Temasek Life Sciences Laboratory was responsible for the design, execution, and analysis of plant-related studies, including validation of nanosensors in living plants.

    This research was carried out by SMART and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The DiSTAP program, led by Strano and Singapore co-lead principal investigator Professor Chua Nam Hai, addresses deep problems in food production in Singapore and the world by developing a suite of impactful and novel analytical, genetic, and biomaterial technologies. The goal is to fundamentally change how plant biosynthetic pathways are discovered, monitored, engineered, and ultimately translated to meet the global demand for food and nutrients. Scientists from MIT, Temasek Life Sciences Laboratory, Nanyang Technological University (NTU) and NUS are collaboratively developing new tools for the continuous measurement of important plant metabolites and hormones for novel discovery, deeper understanding and control of plant biosynthetic pathways in ways not yet possible, especially in the context of green leafy vegetables; leveraging these new techniques to engineer plants with highly desirable properties for global food security, including high yield density production, and drought and pathogen resistance, and applying these technologies to improve urban farming.

    SMART was established by MIT and the National Research Foundation of Singapore in 2007. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five interdisciplinary research groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, DiSTAP, Future Urban Mobility, and Low Energy Electronic Systems. More

  • in

    Sensing with purpose

    Fadel Adib never expected that science would get him into the White House, but in August 2015 the MIT graduate student found himself demonstrating his research to the president of the United States.

    Adib, fellow grad student Zachary Kabelac, and their advisor, Dina Katabi, showcased a wireless device that uses Wi-Fi signals to track an individual’s movements.

    As President Barack Obama looked on, Adib walked back and forth across the floor of the Oval Office, collapsed onto the carpet to demonstrate the device’s ability to monitor falls, and then sat still so Katabi could explain to the president how the device was measuring his breathing and heart rate.

    “Zach started laughing because he could see that my heart rate was 110 as I was demoing the device to the president. I was stressed about it, but it was so exciting. I had poured a lot of blood, sweat, and tears into that project,” Adib recalls.

    For Adib, the White House demo was an unexpected — and unforgettable — culmination of a research project he had launched four years earlier when he began his graduate training at MIT. Now, as a newly tenured associate professor in the Department of Electrical Engineering and Computer Science and the Media Lab, he keeps building off that work. Adib, the Doherty Chair of Ocean Utilization, seeks to develop wireless technology that can sense the physical world in ways that were not possible before.

    In his Signal Kinetics group, Adib and his students apply knowledge and creativity to global problems like climate change and access to health care. They are using wireless devices for contactless physiological sensing, such as measuring someone’s stress level using Wi-Fi signals. The team is also developing battery-free underwater cameras that could explore uncharted regions of the oceans, tracking pollution and the effects of climate change. And they are combining computer vision and radio frequency identification (RFID) technology to build robots that find hidden items, to streamline factory and warehouse operations and, ultimately, alleviate supply chain bottlenecks.

    While these areas may seem quite different, each time they launch a new project, the researchers uncover common threads that tie the disciplines together, Adib says.

    “When we operate in a new field, we get to learn. Every time you are at a new boundary, in a sense you are also like a kid, trying to understand these different languages, bring them together, and invent something,” he says.

    A science-minded child

    A love of learning has driven Adib since he was a young child growing up in Tripoli on the coast of Lebanon. He had been interested in math and science for as long as he could remember, and had boundless energy and insatiable curiosity as a child.

    “When my mother wanted me to slow down, she would give me a puzzle to solve,” he recalls.

    By the time Adib started college at the American University of Beirut, he knew he wanted to study computer engineering and had his sights set on MIT for graduate school.

    Seeking to kick-start his future studies, Adib reached out to several MIT faculty members to ask about summer internships. He received a response from the first person he contacted. Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic, interviewed him and accepted him for a position. He immersed himself in the lab work and, as the end of summer approached, Katabi encouraged him to apply for grad school at MIT and join her lab.

    “To me, that was a shock because I felt this imposter syndrome. I thought I was moving like a turtle with my research, but I did not realize that with research itself, because you are at the boundary of human knowledge, you are expected to progress iteratively and slowly,” he says.

    As an MIT grad student, he began contributing to a number of projects. But his passion for invention pushed him to embark into unexplored territory. Adib had an idea: Could he use Wi-Fi to see through walls?

    “It was a crazy idea at the time, but my advisor let me work on it, even though it was not something the group had been working on at all before. We both thought it was an exciting idea,” he says.

    As Wi-Fi signals travel in space, a small part of the signal passes through walls — the same way light passes through windows — and is then reflected by whatever is on the other side. Adib wanted to use these signals to “see” what people on the other side of a wall were doing.

    Discovering new applications

    There were a lot of ups and downs (“I’d say many more downs than ups at the beginning”), but Adib made progress. First, he and his teammates were able to detect people on the other side of a wall, then they could determine their exact location. Almost by accident, he discovered that the device could be used to monitor someone’s breathing.

    “I remember we were nearing a deadline and my friend Zach and I were working on the device, using it to track people on the other side of the wall. I asked him to hold still, and then I started to see him appearing and disappearing over and over again. I thought, could this be his breathing?” Adib says.

    Eventually, they enabled their Wi-Fi device to monitor heart rate and other vital signs. The technology was spun out into a startup, which presented Adib with a conundrum once he finished his PhD — whether to join the startup or pursue a career in academia.

    He decided to become a professor because he wanted to dig deeper into the realm of invention. But after living through the winter of 2014-2015, when nearly 109 inches of snow fell on Boston (a record), Adib was ready for a change of scenery and a warmer climate. He applied to universities all over the United States, and while he had some tempting offers, Adib ultimately realized he didn’t want to leave MIT. He joined the MIT faculty as an assistant professor in 2016 and was named associate professor in 2020.

    “When I first came here as an intern, even though I was thousands of miles from Lebanon, I felt at home. And the reason for that was the people. This geekiness — this embrace of intellect — that is something I find to be beautiful about MIT,” he says.

    He’s thrilled to work with brilliant people who are also passionate about problem-solving. The members of his research group are diverse, and they each bring unique perspectives to the table, which Adib says is vital to encourage the intellectual back-and-forth that drives their work.

    Diving into a new project

    For Adib, research is exploration. Take his work on oceans, for instance. He wanted to make an impact on climate change, and after exploring the problem, he and his students decided to build a battery-free underwater camera.

    Adib learned that the ocean, which covers 70 percent of the planet, plays the single largest role in the Earth’s climate system. Yet more than 95 percent of it remains unexplored. That seemed like a problem the Signal Kinetics group could help solve, he says.

    But diving into this research area was no easy task. Adib studies Wi-Fi systems, but Wi-Fi does not work underwater. And it is difficult to recharge a battery once it is deployed in the ocean, making it hard to build an autonomous underwater robot that can do large-scale sensing.

    So, the team borrowed from other disciplines, building an underwater camera that uses acoustics to power its equipment and capture and transmit images.

    “We had to use piezoelectric materials, which come from materials science, to develop transducers, which come from oceanography, and then on top of that we had to marry these things with technology from RF known as backscatter,” he says. “The biggest challenge becomes getting these things to gel together. How do you decode these languages across fields?”

    It’s a challenge that continues to motivate Adib as he and his students tackle problems that are too big for one discipline.

    He’s excited by the possibility of using his undersea wireless imaging technology to explore distant planets. These same tools could also enhance aquaculture, which could help eradicate food insecurity, or support other emerging industries.

    To Adib, the possibilities seem endless.

    “With each project, we discover something new, and that opens up a whole new world to explore. The biggest driver of our work in the future will be what we think is impossible, but that we could make possible,” he says. More

  • in

    Computers that power self-driving cars could be a huge driver of global carbon emissions

    In the future, the energy needed to run the powerful computers on board a global fleet of autonomous vehicles could generate as many greenhouse gas emissions as all the data centers in the world today.

    That is one key finding of a new study from MIT researchers that explored the potential energy consumption and related carbon emissions if autonomous vehicles are widely adopted.

    The data centers that house the physical computing infrastructure used for running applications are widely known for their large carbon footprint: They currently account for about 0.3 percent of global greenhouse gas emissions, or about as much carbon as the country of Argentina produces annually, according to the International Energy Agency. Realizing that less attention has been paid to the potential footprint of autonomous vehicles, the MIT researchers built a statistical model to study the problem. They determined that 1 billion autonomous vehicles, each driving for one hour per day with a computer consuming 840 watts, would consume enough energy to generate about the same amount of emissions as data centers currently do.

    The researchers also found that in over 90 percent of modeled scenarios, to keep autonomous vehicle emissions from zooming past current data center emissions, each vehicle must use less than 1.2 kilowatts of power for computing, which would require more efficient hardware. In one scenario — where 95 percent of the global fleet of vehicles is autonomous in 2050, computational workloads double every three years, and the world continues to decarbonize at the current rate — they found that hardware efficiency would need to double faster than every 1.1 years to keep emissions under those levels.

    “If we just keep the business-as-usual trends in decarbonization and the current rate of hardware efficiency improvements, it doesn’t seem like it is going to be enough to constrain the emissions from computing onboard autonomous vehicles. This has the potential to become an enormous problem. But if we get ahead of it, we could design more efficient autonomous vehicles that have a smaller carbon footprint from the start,” says first author Soumya Sudhakar, a graduate student in aeronautics and astronautics.

    Sudhakar wrote the paper with her co-advisors Vivienne Sze, associate professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Research Laboratory of Electronics (RLE); and Sertac Karaman, associate professor of aeronautics and astronautics and director of the Laboratory for Information and Decision Systems (LIDS). The research appears today in the January-February issue of IEEE Micro.

    Modeling emissions

    The researchers built a framework to explore the operational emissions from computers on board a global fleet of electric vehicles that are fully autonomous, meaning they don’t require a back-up human driver.

    The model is a function of the number of vehicles in the global fleet, the power of each computer on each vehicle, the hours driven by each vehicle, and the carbon intensity of the electricity powering each computer.

    “On its own, that looks like a deceptively simple equation. But each of those variables contains a lot of uncertainty because we are considering an emerging application that is not here yet,” Sudhakar says.

    For instance, some research suggests that the amount of time driven in autonomous vehicles might increase because people can multitask while driving and the young and the elderly could drive more. But other research suggests that time spent driving might decrease because algorithms could find optimal routes that get people to their destinations faster.

    In addition to considering these uncertainties, the researchers also needed to model advanced computing hardware and software that doesn’t exist yet.

    To accomplish that, they modeled the workload of a popular algorithm for autonomous vehicles, known as a multitask deep neural network because it can perform many tasks at once. They explored how much energy this deep neural network would consume if it were processing many high-resolution inputs from many cameras with high frame rates, simultaneously.

    When they used the probabilistic model to explore different scenarios, Sudhakar was surprised by how quickly the algorithms’ workload added up.

    For example, if an autonomous vehicle has 10 deep neural networks processing images from 10 cameras, and that vehicle drives for one hour a day, it will make 21.6 million inferences each day. One billion vehicles would make 21.6 quadrillion inferences. To put that into perspective, all of Facebook’s data centers worldwide make a few trillion inferences each day (1 quadrillion is 1,000 trillion).

    “After seeing the results, this makes a lot of sense, but it is not something that is on a lot of people’s radar. These vehicles could actually be using a ton of computer power. They have a 360-degree view of the world, so while we have two eyes, they may have 20 eyes, looking all over the place and trying to understand all the things that are happening at the same time,” Karaman says.

    Autonomous vehicles would be used for moving goods, as well as people, so there could be a massive amount of computing power distributed along global supply chains, he says. And their model only considers computing — it doesn’t take into account the energy consumed by vehicle sensors or the emissions generated during manufacturing.

    Keeping emissions in check

    To keep emissions from spiraling out of control, the researchers found that each autonomous vehicle needs to consume less than 1.2 kilowatts of energy for computing. For that to be possible, computing hardware must become more efficient at a significantly faster pace, doubling in efficiency about every 1.1 years.

    One way to boost that efficiency could be to use more specialized hardware, which is designed to run specific driving algorithms. Because researchers know the navigation and perception tasks required for autonomous driving, it could be easier to design specialized hardware for those tasks, Sudhakar says. But vehicles tend to have 10- or 20-year lifespans, so one challenge in developing specialized hardware would be to “future-proof” it so it can run new algorithms.

    In the future, researchers could also make the algorithms more efficient, so they would need less computing power. However, this is also challenging because trading off some accuracy for more efficiency could hamper vehicle safety.

    Now that they have demonstrated this framework, the researchers want to continue exploring hardware efficiency and algorithm improvements. In addition, they say their model can be enhanced by characterizing embodied carbon from autonomous vehicles — the carbon emissions generated when a car is manufactured — and emissions from a vehicle’s sensors.

    While there are still many scenarios to explore, the researchers hope that this work sheds light on a potential problem people may not have considered.

    “We are hoping that people will think of emissions and carbon efficiency as important metrics to consider in their designs. The energy consumption of an autonomous vehicle is really critical, not just for extending the battery life, but also for sustainability,” says Sze.

    This research was funded, in part, by the National Science Foundation and the MIT-Accenture Fellowship. More

  • in

    Methane research takes on new urgency at MIT

    One of the most notable climate change provisions in the 2022 Inflation Reduction Act is the first U.S. federal tax on a greenhouse gas (GHG). That the fee targets methane (CH4), rather than carbon dioxide (CO2), emissions is indicative of the urgency the scientific community has placed on reducing this short-lived but powerful gas. Methane persists in the air about 12 years — compared to more than 1,000 years for CO2 — yet it immediately causes about 120 times more warming upon release. The gas is responsible for at least a quarter of today’s gross warming. 

    “Methane has a disproportionate effect on near-term warming,” says Desiree Plata, the director of MIT Methane Network. “CH4 does more damage than CO2 no matter how long you run the clock. By removing methane, we could potentially avoid critical climate tipping points.” 

    Because GHGs have a runaway effect on climate, reductions made now will have a far greater impact than the same reductions made in the future. Cutting methane emissions will slow the thawing of permafrost, which could otherwise lead to massive methane releases, as well as reduce increasing emissions from wetlands.  

    “The goal of MIT Methane Network is to reduce methane emissions by 45 percent by 2030, which would save up to 0.5 degree C of warming by 2100,” says Plata, an associate professor of civil and environmental engineering at MIT and director of the Plata Lab. “When you consider that governments are trying for a 1.5-degree reduction of all GHGs by 2100, this is a big deal.” 

    Under normal concentrations, methane, like CO2, poses no health risks. Yet methane assists in the creation of high levels of ozone. In the lower atmosphere, ozone is a key component of air pollution, which leads to “higher rates of asthma and increased emergency room visits,” says Plata. 

    Methane-related projects at the Plata Lab include a filter made of zeolite — the same clay-like material used in cat litter — designed to convert methane into CO2 at dairy farms and coal mines. At first glance, the technology would appear to be a bit of a hard sell, since it converts one GHG into another. Yet the zeolite filter’s low carbon and dollar costs, combined with the disproportionate warming impact of methane, make it a potential game-changer.

    The sense of urgency about methane has been amplified by recent studies that show humans are generating far more methane emissions than previously estimated, and that the rates are rising rapidly. Exactly how much methane is in the air is uncertain. Current methods for measuring atmospheric methane, such as ground, drone, and satellite sensors, “are not readily abundant and do not always agree with each other,” says Plata.  

    The Plata Lab is collaborating with Tim Swager in the MIT Department of Chemistry to develop low-cost methane sensors. “We are developing chemiresisitive sensors that cost about a dollar that you could place near energy infrastructure to back-calculate where leaks are coming from,” says Plata.  

    The researchers are working on improving the accuracy of the sensors using machine learning techniques and are planning to integrate internet-of-things technology to transmit alerts. Plata and Swager are not alone in focusing on data collection: the Inflation Reduction Act adds significant funding for methane sensor research. 

    Other research at the Plata Lab includes the development of nanomaterials and heterogeneous catalysis techniques for environmental applications. The lab also explores mitigation solutions for industrial waste, particularly those related to the energy transition. Plata is the co-founder of an lithium-ion battery recycling startup called Nth Cycle. 

    On a more fundamental level, the Plata Lab is exploring how to develop products with environmental and social sustainability in mind. “Our overarching mission is to change the way that we invent materials and processes so that environmental objectives are incorporated along with traditional performance and cost metrics,” says Plata. “It is important to do that rigorous assessment early in the design process.”

    Play video

    MIT amps up methane research 

    The MIT Methane Network brings together 26 researchers from MIT along with representatives of other institutions “that are dedicated to the idea that we can reduce methane levels in our lifetime,” says Plata. The organization supports research such as Plata’s zeolite and sensor projects, as well as designing pipeline-fixing robots, developing methane-based fuels for clean hydrogen, and researching the capture and conversion of methane into liquid chemical precursors for pharmaceuticals and plastics. Other members are researching policies to encourage more sustainable agriculture and land use, as well as methane-related social justice initiatives. 

    “Methane is an especially difficult problem because it comes from all over the place,” says Plata. A recent Global Carbon Project study estimated that half of methane emissions are caused by humans. This is led by waste and agriculture (28 percent), including cow and sheep belching, rice paddies, and landfills.  

    Fossil fuels represent 18 percent of the total budget. Of this, about 63 percent is derived from oil and gas production and pipelines, 33 percent from coal mining activities, and 5 percent from industry and transportation. Human-caused biomass burning, primarily from slash-and-burn agriculture, emits about 4 percent of the global total.  

    The other half of the methane budget includes natural methane emissions from wetlands (20 percent) and other natural sources (30 percent). The latter includes permafrost melting and natural biomass burning, such as forest fires started by lightning.  

    With increases in global warming and population, the line between anthropogenic and natural causes is getting fuzzier. “Human activities are accelerating natural emissions,” says Plata. “Climate change increases the release of methane from wetlands and permafrost and leads to larger forest and peat fires.”  

    The calculations can get complicated. For example, wetlands provide benefits from CO2 capture, biological diversity, and sea level rise resiliency that more than compensate for methane releases. Meanwhile, draining swamps for development increases emissions. 

    Over 100 nations have signed onto the U.N.’s Global Methane Pledge to reduce at least 30 percent of anthropogenic emissions within the next 10 years. The U.N. report estimates that this goal can be achieved using proven technologies and that about 60 percent of these reductions can be accomplished at low cost. 

    Much of the savings would come from greater efficiencies in fossil fuel extraction, processing, and delivery. The methane fees in the Inflation Reduction Act are primarily focused on encouraging fossil fuel companies to accelerate ongoing efforts to cap old wells, flare off excess emissions, and tighten pipeline connections.  

    Fossil fuel companies have already made far greater pledges to reduce methane than they have with CO2, which is central to their business. This is due, in part, to the potential savings, as well as in preparation for methane regulations expected from the Environmental Protection Agency in late 2022. The regulations build upon existing EPA oversight of drilling operations, and will likely be exempt from the U.S. Supreme Court’s ruling that limits the federal government’s ability to regulate GHGs. 

    Zeolite filter targets methane in dairy and coal 

    The “low-hanging fruit” of gas stream mitigation addresses most of the 20 percent of total methane emissions in which the gas is released in sufficiently high concentrations for flaring. Plata’s zeolite filter aims to address the thornier challenge of reducing the 80 percent of non-flammable dilute emissions. 

    Plata found inspiration in decades-old catalysis research for turning methane into methanol. One strategy has been to use an abundant, low-cost aluminosilicate clay called zeolite.  

    “The methanol creation process is challenging because you need to separate a liquid, and it has very low efficiency,” says Plata. “Yet zeolite can be very efficient at converting methane into CO2, and it is much easier because it does not require liquid separation. Converting methane to CO2 sounds like a bad thing, but there is a major anti-warming benefit. And because methane is much more dilute than CO2, the relative CO2 contribution is minuscule.”  

    Using zeolite to create methanol requires highly concentrated methane, high temperatures and pressures, and industrial processing conditions. Yet Plata’s process, which dopes the zeolite with copper, operates in the presence of oxygen at much lower temperatures under typical pressures. “We let the methane proceed the way it wants from a thermodynamic perspective from methane to methanol down to CO2,” says Plata. 

    Researchers around the world are working on other dilute methane removal technologies. Projects include spraying iron salt aerosols into sea air where they react with natural chlorine or bromine radicals, thereby capturing methane. Most of these geoengineering solutions, however, are difficult to measure and would require massive scale to make a difference.  

    Plata is focusing her zeolite filters on environments where concentrations are high, but not so high as to be flammable. “We are trying to scale zeolite into filters that you could snap onto the side of a cross-ventilation fan in a dairy barn or in a ventilation air shaft in a coal mine,” says Plata. “For every packet of air we bring in, we take a lot of methane out, so we get more bang for our buck.”  

    The major challenge is creating a filter that can handle high flow rates without getting clogged or falling apart. Dairy barn air handlers can push air at up to 5,000 cubic feet per minute and coal mine handlers can approach 500,000 CFM. 

    Plata is exploring engineering options including fluidized bed reactors with floating catalyst particles. Another filter solution, based in part on catalytic converters, features “higher-order geometric structures where you have a porous material with a long path length where the gas can interact with the catalyst,” says Plata. “This avoids the challenge with fluidized beds of containing catalyst particles in the reactor. Instead, they are fixed within a structured material.”  

    Competing technologies for removing methane from mine shafts “operate at temperatures of 1,000 to 1,200 degrees C, requiring a lot of energy and risking explosion,” says Plata. “Our technology avoids safety concerns by operating at 300 to 400 degrees C. It reduces energy use and provides more tractable deployment costs.” 

    Potentially, energy and dollar costs could be further reduced in coal mines by capturing the heat generated by the conversion process. “In coal mines, you have enrichments above a half-percent methane, but below the 4 percent flammability threshold,” says Plata. “The excess heat from the process could be used to generate electricity using off-the-shelf converters.” 

    Plata’s dairy barn research is funded by the Gerstner Family Foundation and the coal mining project by the U.S. Department of Energy. “The DOE would like us to spin out the technology for scale-up within three years,” says Plata. “We cannot guarantee we will hit that goal, but we are trying to develop this as quickly as possible. Our society needs to start reducing methane emissions now.”  More

  • in

    Ocean scientists measure sediment plume stirred up by deep-sea-mining vehicle

    What will be the impact to the ocean if humans are to mine the deep sea? It’s a question that’s gaining urgency as interest in marine minerals has grown.

    The ocean’s deep-sea bed is scattered with ancient, potato-sized rocks called “polymetallic nodules” that contain nickel and cobalt — minerals that are in high demand for the manufacturing of batteries, such as for powering electric vehicles and storing renewable energy, and in response to factors such as increasing urbanization. The deep ocean contains vast quantities of mineral-laden nodules, but the impact of mining the ocean floor is both unknown and highly contested.

    Now MIT ocean scientists have shed some light on the topic, with a new study on the cloud of sediment that a collector vehicle would stir up as it picks up nodules from the seafloor.

    The study, appearing today in Science Advances, reports the results of a 2021 research cruise to a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. There, researchers equipped a pre-prototype collector vehicle with instruments to monitor sediment plume disturbances as the vehicle maneuvered across the seafloor, 4,500 meters below the ocean’s surface. Through a sequence of carefully conceived maneuvers. the MIT scientists used the vehicle to monitor its own sediment cloud and measure its properties.

    Their measurements showed that the vehicle created a dense plume of sediment in its wake, which spread under its own weight, in a phenomenon known in fluid dynamics as a “turbidity current.” As it gradually dispersed, the plume remained relatively low, staying within 2 meters of the seafloor, as opposed to immediately lofting higher into the water column as had been postulated.

    “It’s quite a different picture of what these plumes look like, compared to some of the conjecture,” says study co-author Thomas Peacock, professor of mechanical engineering at MIT. “Modeling efforts of deep-sea mining plumes will have to account for these processes that we identified, in order to assess their extent.”

    The study’s co-authors include lead author Carlos Muñoz-Royo, Raphael Ouillon, and Souha El Mousadik of MIT; and Matthew Alford of the Scripps Institution of Oceanography.

    Deep-sea maneuvers

    To collect polymetallic nodules, some mining companies are proposing to deploy tractor-sized vehicles to the bottom of the ocean. The vehicles would vacuum up the nodules along with some sediment along their path. The nodules and sediment would then be separated inside of the vehicle, with the nodules sent up through a riser pipe to a surface vessel, while most of the sediment would be discharged immediately behind the vehicle.

    Peacock and his group have previously studied the dynamics of the sediment plume that associated surface operation vessels may pump back into the ocean. In their current study, they focused on the opposite end of the operation, to measure the sediment cloud created by the collectors themselves.

    In April 2021, the team joined an expedition led by Global Sea Mineral Resources NV (GSR), a Belgian marine engineering contractor that is exploring the CCZ for ways to extract metal-rich nodules. A European-based science team, Mining Impacts 2, also conducted separate studies in parallel. The cruise was the first in over 40 years to test a “pre-prototype” collector vehicle in the CCZ. The machine, called Patania II, stands about 3 meters high, spans 4 meters wide, and is about one-third the size of what a commercial-scale vehicle is expected to be.

    While the contractor tested the vehicle’s nodule-collecting performance, the MIT scientists monitored the sediment cloud created in the vehicle’s wake. They did so using two maneuvers that the vehicle was programmed to take: a “selfie,” and a “drive-by.”

    Both maneuvers began in the same way, with the vehicle setting out in a straight line, all its suction systems turned on. The researchers let the vehicle drive along for 100 meters, collecting any nodules in its path. Then, in the “selfie” maneuver, they directed the vehicle to turn off its suction systems and double back around to drive through the cloud of sediment it had just created. The vehicle’s installed sensors measured the concentration of sediment during this “selfie” maneuver, allowing the scientists to monitor the cloud within minutes of the vehicle stirring it up.

    Play video

    A movie of the Patania II pre-prototype collector vehicle entering, driving through, and leaving the low-lying turbidity current plume as part of a selfie operation. For scale, the instrumentation post attached to the front of the vehicle reaches about 3m above the seabed. The movie is sped up by a factor of 20. Credit: Global Sea Mineral Resources

    For the “drive-by” maneuver, the researchers placed a sensor-laden mooring 50 to 100 meters from the vehicle’s planned tracks. As the vehicle drove along collecting nodules, it created a plume that eventually spread past the mooring after an hour or two. This “drive-by” maneuver enabled the team to monitor the sediment cloud over a longer timescale of several hours, capturing the plume evolution.

    Out of steam

    Over multiple vehicle runs, Peacock and his team were able to measure and track the evolution of the sediment plume created by the deep-sea-mining vehicle.

    “We saw that the vehicle would be driving in clear water, seeing the nodules on the seabed,” Peacock says. “And then suddenly there’s this very sharp sediment cloud coming through when the vehicle enters the plume.”

    From the selfie views, the team observed a behavior that was predicted by some of their previous modeling studies: The vehicle stirred up a heavy amount of sediment that was dense enough that, even after some mixing with the surrounding water, it generated a plume that behaved almost as a separate fluid, spreading under its own weight in what’s known as a turbidity current.

    “The turbidity current spreads under its own weight for some time, tens of minutes, but as it does so, it’s depositing sediment on the seabed and eventually running out of steam,” Peacock says. “After that, the ocean currents get stronger than the natural spreading, and the sediment transitions to being carried by the ocean currents.”

    By the time the sediment drifted past the mooring, the researchers estimate that 92 to 98 percent of the sediment either settled back down or remained within 2 meters of the seafloor as a low-lying cloud. There is, however, no guarantee that the sediment always stays there rather than drifting further up in the water column. Recent and future studies by the research team are looking into this question, with the goal of consolidating understanding for deep-sea mining sediment plumes.

    “Our study clarifies the reality of what the initial sediment disturbance looks like when you have a certain type of nodule mining operation,” Peacock says. “The big takeaway is that there are complex processes like turbidity currents that take place when you do this kind of collection. So, any effort to model a deep-sea-mining operation’s impact will have to capture these processes.”

    “Sediment plumes produced by deep-seabed mining are a major concern with regards to environmental impact, as they will spread over potentially large areas beyond the actual site of mining and affect deep-sea life,” says Henko de Stigter, a marine geologist at the Royal Netherlands Institute for Sea Research, who was not involved in the research. “The current paper provides essential insight in the initial development of these plumes.”

    This research was supported, in part, by the National Science Foundation, ARPA-E, the 11th Hour Project, the Benioff Ocean Initiative, and Global Sea Mineral Resources. The funders had no role in any aspects of the research analysis, the research team states. More