More stories

  • in

    MIT accelerates efforts on path to carbon reduction goals

    Under its “Fast Forward” climate action plan, which was announced in May 2021, MIT has set a goal of eliminating direct emissions from its campus by 2050. An important near-term milestone will be achieving net-zero emissions by 2026. Many other colleges and universities have set similar targets. What does it take to achieve such a dramatic reduction?

    Since 2014, when MIT launched a five-year plan for action on climate change, net campus emissions have been cut by 20 percent. To meet the 2026 target, and ultimately achieve zero direct emissions by 2050, the Institute is making its campus buildings dramatically more energy efficient, transitioning to electric vehicles (EVs), and enabling large-scale renewable energy projects, among other strategies.

    “This is an ‘all-in’ moment for MIT, and we’re taking comprehensive steps to address our carbon footprint,” says Glen Shor, executive vice president and treasurer. “Reducing our emissions to zero will be challenging, but it’s the right aspiration.”

    “As an energy-intensive campus in an urban setting, our ability to achieve this goal will, in part, depend on the capacity of the local power grid to support the electrification of buildings and transportation, and how ‘green’ that grid electricity will become over time,” says Joe Higgins, MIT’s vice president for campus services and stewardship. “It will also require breakthrough technology improvements and new public policies to drive their adoption. Many of those tech breakthroughs are being developed by our own faculty, and our teams are planning scenarios in anticipation of their arrival.”

    Working toward an energy-efficient campus

    The on-campus reductions have come primarily from a major upgrade to MIT’s Central Utilities Plant, which provides electricity, heating, and cooling for about 80 percent of all Institute buildings. The upgraded plant, which uses advanced cogeneration technology, became fully operational at the end of 2021 and is meeting campus energy needs at greater efficiency and lower carbon intensity (on average 15 to 25 percent cleaner) compared to the regional electricity grid. Carbon reductions from the increased efficiency provided by the enhanced plant are projected to counter the added greenhouse gas emissions caused by recently completed and planned construction and operation of new buildings on campus, especially energy-intensive laboratory buildings.

    Energy from the plant is delivered to campus buildings through MIT’s district energy system, a network of underground pipes and power lines providing electricity, heating, and air conditioning. With this adaptable system, MIT can introduce new technologies as they become available to increase the system’s energy efficiency. The system enables MIT to export power when the regional grid is under stress and to import electricity from the power grid as it becomes cleaner, likely over the next decade as the availability of offshore wind and renewable resources increases. “At the same time, we are reviewing additional technology options such as industrial-scale heat pumps, thermal batteries, geothermal exchange, microreactors, bio-based fuels, and green hydrogen produced from renewable energy,” Higgins says.

    Along with upgrades to the plant, MIT is gradually converting existing steam-based heating systems into more efficient hot-water systems. This long-term project to lower campus emissions requires replacing the vast network of existing steam pipes and infrastructure, and will be phased in as systems need to be replaced. Currently MIT has four buildings that are on a hot-water system, with five more buildings transitioning to hot water by the fall of 2022.  

    Minimizing emissions by implementing meaningful building efficiency standards has been an ongoing strategy in MIT’s climate mitigation efforts. In 2016, MIT made a commitment that all new campus construction and major renovation projects must earn at least Leadership in Energy and Environmental Design (LEED) Gold certification. To date, 24 spaces and buildings at MIT have earned a LEED designation, a performance-based rating system of a building’s environmental attributes associated with its design, construction, operations, and management.

    Current efficiency efforts focus on reducing energy in the 20 buildings that account for more than 50 percent of MIT’s energy usage. One such project under construction aims to improve energy efficiency in Building 46, which houses the Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory and is the biggest energy user on the campus because of its large size and high concentration of lab spaces. Interventions include optimizing ventilation systems that will significantly reduce energy use while improving occupant comfort, and working with labs to implement programs such as fume hood hibernation and equipment adjustments. For example, raising ultralow freezer set points by 10 degrees can reduce their energy consumption by as much as 40 percent. Together, these measures are projected to yield a 35 percent reduction in emissions for Building 46, which would contribute to reducing campus-level emissions by 2 percent.

    Over the past decade, in addition to whole building intervention programs, the campus has taken targeted measures in over 100 campus buildings to add building insulation, replace old, inefficient windows, transition to energy-efficient lighting and mechanical systems, optimize lab ventilation systems, and install solar panels on solar-ready rooftops on campus — and will increase the capacity of renewable energy installations on campus by a minimum of 400 percent by 2026. These smaller scale contributions to overall emissions reductions are essential steps in a comprehensive campus effort.

    Electrification of buildings and vehicles

    With an eye to designing for “the next energy era,” says Higgins, MIT is looking to large-scale electrification of its buildings and district energy systems to reduce building use-associated emissions. Currently under renovation, the Metropolitan Storage Warehouse — which will house the MIT School of Architecture and Planning (SA+P) and the newly established MIT Morningside Academy for Design — will be the first building on campus to undergo this transformation by using electric heat pumps as its main heating and supplemental cooling source. The project team, consisting of campus engineering and construction teams as well as the designers, is working with SA+P faculty to design this innovative electrification project. The solution will move excess heat from the district energy infrastructure and nearby facilities to supply the heat pump system, creating a solution that uses less energy — resulting in fewer carbon emissions. 

    Next to building energy use, emissions from on-campus vehicles are a key target for reduction; one of the goals in the “Fast Forward” plan is the electrification of on-campus vehicles. This includes the expansion of electric vehicle charging stations, and work has begun on the promised 200 percent expansion of the number of stations on campus, from 120 to 360. Sites are being evaluated to make sure that all members of the MIT community have easy access to these facilities.

    The electrification also includes working toward replacing existing MIT-owned vehicles, from shuttle buses and vans to pickup trucks and passenger cars, as well as grounds maintenance equipment. Shu Yang Zhang, a junior in the Department of Materials Science and Engineering, is part of an Office of Sustainability student research team that carried out an evaluation of the options available for each type of vehicle and compared both their lifecycle costs and emissions.

    Zhang says the team examined “the specifics of the vehicles that we own, looking at key measures such as fuel economy and cargo capacity,” and determined what alternatives exist in each category. The team carried out a study of the costs for replacing existing vehicles with EVs on the market now, versus buying new gas vehicles or leaving the existing ones in place. They produced a set of specific recommendations about fleet vehicle replacement and charging infrastructure installation on campus that supports both commuters and an MIT EV fleet in the future. According to their estimates, Zhang says, “the costs should be not drastically different” in the long run for the new electric vehicles.

    Strength in numbers

    While a panoply of measures has contributed to the successful offsetting of emissions so far, the biggest single contributor was MIT’s creation of an innovative, collaborative power purchase agreement (PPA) that enabled the construction of a large solar farm in North Carolina, which in turn contributed to the early retirement of a large coal-fired power plant in that region. MIT is committed to buying 73 percent of the power generated by the new facility, which is equivalent to approximately 40 percent of the Institute’s electricity use.

    That PPA, which was a collaboration between three institutions, provided a template that has already been emulated by other institutions, in many cases enabling smaller organizations to take part in such a plan and achieve greater offsets of their carbon emissions than might have been possible acting on their own. Now, MIT is actively pursuing new, larger variations on that plan, which may include a wider variety of organizational participants, perhaps including local governments as well as institutions and nonprofits. The hope is that, as was the case with the original PPA, such collaborations could provide a model that other institutions and organizations may adopt as well.

    Strategic portfolio agreements like the PPA will help achieve net zero emissions on campus while accelerating the decarbonization of regional electricity grids — a transformation critical to achieving net zero emissions, alongside all the work that continues to reduce the direct emissions from the campus itself.

    “PPAs play an important role in MIT’s net zero strategy and have an immediate and significant impact in decarbonization of regional power grids by enabling renewable energy projects,” says Paul L. Joskow, the Elizabeth and James Killian Professor of Economics. “Many well-known U.S. companies and organizations that are seeking to enable and purchase CO2-free electricity have turned to long-term PPAs selected through a competitive procurement process to help to meet their voluntary internal decarbonization commitments. While there are still challenges regarding organizational procurements — including proper carbon emissions mitigation accounting, optimal contract design, and efficient integration into wholesale electricity markets — we are optimistic that MIT’s efforts and partnerships will contribute to resolving some of these issues.”

    Addressing indirect sources of emissions

    MIT’s examination of emissions is not limited to the campus itself but also the indirect sources associated with the Institute’s operations, research, and education. Of these indirect emissions, the three major ones are business travel, purchased goods and services, and construction of buildings, which are collectively larger than the total direct emissions from campus.

    The strategic sourcing team in the Office of the Vice President for Finance has been working to develop opportunities and guidelines for making it easier to purchase sustainable products, for everything from office paper to electronics to lab equipment. Jeremy Gregory, executive director of MIT’s Climate and Sustainability Consortium, notes that MIT’s characteristic independent spirit resists placing limits on what products researchers can buy, but, he says, “we have opportunities to centralize some of our efforts and empower our community to choose low-impact alternatives when making procurement decisions.”

    The path forward

    The process of identifying and implementing MIT’s carbon reductions will be supported, in part, by the Carbon Footprint Working Group, which was launched by the Climate Nucleus, a new body MIT created to manage the implementation of the “Fast Forward” climate plan. The nucleus includes a broad representation from MIT’s departments, labs, and centers that are working on climate change issues. “We’ve created this internal structure in an effort to integrate operational expertise with faculty and student research innovations,” says Director of Sustainability Julie Newman.

    Whatever measures end up being adopted to reduce energy and associated emissions, their results will be made available continuously to members of the MIT community in real-time, through a campus data gateway, Newman says — a degree of transparency that is exceptional in higher education. “If you’re interested in supporting all these efforts and following this,” she says, “you can track the progress via Energize MIT,” a set of online visualizations that display various measures of MIT’s energy usage and greenhouse gas emissions over time. More

  • in

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    In a combined in-person and virtual event on Monday, members of the three working groups established last year under MIT’s “Fast Forward” climate action plan reported on the work they’ve been doing to meet the plan’s goals, including reaching zero direct carbon emissions by 2026.

    Introducing the session, Vice President for Research Maria Zuber said that “many universities have climate plans that are inward facing, mostly focused on the direct impacts of their operations on greenhouse gas emissions. And that is really important, but ‘Fast Forward’ is different in that it’s also outward facing — it recognizes climate change as a global crisis.”

    That, she said, “commits us to an all-of-MIT effort to help the world solve the super wicked problem in practice.” That means “helping the world to go as far as it can, as fast as it can, to deploy currently available technologies and policies to reduce greenhouse gas emissions,” while also quickly developing new tools and approaches to deal with the most difficult areas of decarbonization, she said.

    Significant strides have been made in this first year, according to Zuber. The Climate Grand Challenges competition, announced last year as part of the plan, has just announced five flagship projects. “Each of these projects is potentially important in its own right, and is also exemplary of the kinds of bold thinking about climate solutions that the world needs,” she said.

    “We’ve also created new climate-focused institutions within MIT to improve accountability and transparency and to drive action,” Zuber said, including the Climate Nucleus, which comprises heads of labs and departments involved in climate-change work and is led by professors Noelle Selin and Anne White. The “Fast Forward” plan also established three working groups that report to the Climate Nucleus — on climate education, climate policy, and MIT’s carbon footprint — whose members spoke at Monday’s event.

    David McGee, a professor of earth, atmospheric and planetary science, co-director of MIT’s Terrascope program for first-year students, and co-chair of the education working group, said that over the last few years of Terrascope, “we’ve begun focusing much more explicitly on the experiences of, and the knowledge contained within, impacted communities … both for mitigation efforts and how they play out, and also adaptation.” Figuring out how to access the expertise of local communities “in a way that’s not extractive is a challenge that we face,” he added.

    Eduardo Rivera, managing director for MIT International Science and Technology Initiatives (MISTI) programs in several countries and a member of the education team, noted that about 1,000 undergraduates travel each year to work on climate and sustainability challenges. These include, for example, working with a lab in Peru assessing pollution in the Amazon, developing new insulation materials in Germany, developing affordable solar panels in China, working on carbon-capture technology in France or Israel, and many others, Rivera said. These are “unique opportunities to learn about the discipline, where the students can do hands-on work along with the professionals and the scientists in the front lines.” He added that MISTI has just launched a pilot project to help these students “to calculate their carbon footprint, to give them resources, and to understand individual responsibilities and collective responsibilities in this area.”

    Yujie Wang, a graduate student in architecture and an education working group member, said that during her studies she worked on a project focused on protecting biodiversity in Colombia, and also worked with a startup to reduce pesticide use in farming through digital monitoring. In Colombia, she said, she came to appreciate the value of interactions among researchers using satellite data, with local organizations, institutions and officials, to foster collaboration on solving common problems.

    The second panel addressed policy issues, as reflected by the climate policy working group. David Goldston, director of MIT’s Washington office, said “I think policy is totally central, in that for each part of the climate problem, you really can’t make progress without policy.” Part of that, he said, “involves government activities to help communities, and … to make sure the transition [involving the adoption of new technologies] is as equitable as possible.”

    Goldston said “a lot of the progress that’s been made already, whether it’s movement toward solar and wind energy and many other things, has been really prompted by government policy. I think sometimes people see it as a contest, should we be focusing on technology or policy, but I see them as two sides of the same coin. … You can’t get the technology you need into operation without policy tools, and the policy tools won’t have anything to work with unless technology is developed.”

    As for MIT, he said, “I think everybody at MIT who works on any aspect of climate change should be thinking about what’s the policy aspect of it, how could policy help them? How could they help policymakers? I think we need to coordinate better.” The Institute needs to be more strategic, he said, but “that doesn’t mean MIT advocating for specific policies. It means advocating for climate action and injecting a wide range of ideas into the policy arena.”

    Anushree Chaudhari, a student in economics and in urban studies and planning, said she has been learning about the power of negotiations in her work with Professor Larry Susskind. “What we’re currently working on is understanding why there are so many sources of local opposition to scaling renewable energy projects in the U.S.,” she explained. “Even though over 77 percent of the U.S. population actually is in support of renewables, and renewables are actually economically pretty feasible as their costs have come down in the last two decades, there’s still a huge social barrier to having them become the new norm,” she said. She emphasized that a fair and just energy transition will require listening to community stakeholders, including indigenous groups and low-income communities, and understanding why they may oppose utility-scale solar farms and wind farms.

    Joy Jackson, a graduate student in the Technology and Policy Program, said that the implementation of research findings into policy at state, local, and national levels is a “very messy, nonlinear, sort of chaotic process.” One avenue for research to make its way into policy, she said, is through formal processes, such as congressional testimony. But a lot is also informal, as she learned while working as an intern in government offices, where she and her colleagues reached out to professors, researchers, and technical experts of various kinds while in the very early stages of policy development.

    “The good news,” she said, “is there’s a lot of touch points.”

    The third panel featured members of the working group studying ways to reduce MIT’s own carbon footprint. Julie Newman, head of MIT’s Office of Sustainability and co-chair of that group, summed up MIT’s progress toward its stated goal of achieving net zero carbon emissions by 2026. “I can cautiously say we’re on track for that one,” she said. Despite headwinds in the solar industry due to supply chain issues, she said, “we’re well positioned” to meet that near-term target.

    As for working toward the 2050 target of eliminating all direct emissions, she said, it is “quite a challenge.” But under the leadership of Joe Higgins, the vice president for campus services and stewardship, MIT is implementing a number of measures, including deep energy retrofits, investments in high-performance buildings, an extremely efficient central utilities plant, and more.

    She added that MIT is particularly well-positioned in its thinking about scaling its solutions up. “A couple of years ago we approached a handful of local organizations, and over a couple of years have built a consortium to look at large-scale carbon reduction in the world. And it’s a brilliant partnership,” she said, noting that details are still being worked out and will be reported later.

    The work is challenging, because “MIT was built on coal, this campus was not built to get to zero carbon emissions.” Nevertheless, “we think we’re on track” to meet the ambitious goals of the Fast Forward plan, she said. “We’re going to have to have multiple pathways, because we may come to a pathway that may turn out not to be feasible.”

    Jay Dolan, head of facilities development at MIT’s Lincoln Laboratory, said that campus faces extra hurdles compared to the main MIT campus, as it occupies buildings that are owned and maintained by the U.S. Air Force, not MIT. They are still at the data-gathering stage to see what they can do to improve their emissions, he said, and a website they set up to solicit suggestions for reducing their emissions had received 70 suggestions within a few days, which are still being evaluated. “All that enthusiasm, along with the intelligence at the laboratory, is very promising,” he said.

    Peter Jacobson, a graduate student in Leaders for Global Operations, said that in his experience, projects that are most successful start not from a focus on the technology, but from collaborative efforts working with multiple stakeholders. “I think this is exactly why the Climate Nucleus and our working groups are so important here at MIT,” he said. “We need people tasked with thinking at this campus scale, figuring out what the needs and priorities of all the departments are and looking for those synergies, and aligning those needs across both internal and external stakeholders.”

    But, he added, “MIT’s complexity and scale of operations definitely poses unique challenges. Advanced research is energy hungry, and in many cases we don’t have the technology to decarbonize those research processes yet. And we have buildings of varying ages with varying stages of investment.” In addition, MIT has “a lot of people that it needs to feed, and that need to travel and commute, so that poses additional and different challenges.”

    Asked what individuals can do to help MIT in this process, Newman said, “Begin to leverage and figure out how you connect your research to informing our thinking on campus. We have channels for that.”

    Noelle Selin, co-chair of MIT’s climate nucleus and moderator of the third panel, said in conclusion “we’re really looking for your input into all of these working groups and all of these efforts. This is a whole of campus effort. It’s a whole of world effort to address the climate challenge. So, please get in touch and use this as a call to action.” More

  • in

    Absent legislative victory, the president can still meet US climate goals

    The most recent United Nations climate change report indicates that without significant action to mitigate global warming, the extent and magnitude of climate impacts — from floods to droughts to the spread of disease — could outpace the world’s ability to adapt to them. The latest effort to introduce meaningful climate legislation in the United States Congress, the Build Back Better bill, has stalled. The climate package in that bill — $555 billion in funding for climate resilience and clean energy — aims to reduce U.S. greenhouse gas emissions by about 50 percent below 2005 levels by 2030, the nation’s current Paris Agreement pledge. With prospects of passing a standalone climate package in the Senate far from assured, is there another pathway to fulfilling that pledge?

    Recent detailed legal analysis shows that there is at least one viable option for the United States to achieve the 2030 target without legislative action. Under Section 115 on International Air Pollution of the Clean Air Act, the U.S. Environmental Protection Agency (EPA) could assign emissions targets to the states that collectively meet the national goal. The president could simply issue an executive order to empower the EPA to do just that. But would that be prudent?

    A new study led by researchers at the MIT Joint Program on the Science and Policy of Global Change explores how, under a federally coordinated carbon dioxide emissions cap-and-trade program aligned with the U.S. Paris Agreement pledge and implemented through Section 115 of the Clean Air Act, the EPA might allocate emissions cuts among states. Recognizing that the Biden or any future administration considering this strategy would need to carefully weigh its benefits against its potential political risks, the study highlights the policy’s net economic benefits to the nation.

    The researchers calculate those net benefits by combining the estimated total cost of carbon dioxide emissions reduction under the policy with the corresponding estimated expenditures that would be avoided as a result of the policy’s implementation — expenditures on health care due to particulate air pollution, and on society at large due to climate impacts.

    Assessing three carbon dioxide emissions allocation strategies (each with legal precedent) for implementing Section 115 to return cap-and-trade program revenue to the states and distribute it to state residents on an equal per-capita basis, the study finds that at the national level, the economic net benefits are substantial, ranging from $70 to $150 billion in 2030. The results appear in the journal Environmental Research Letters.

    “Our findings not only show significant net gains to the U.S. economy under a national emissions policy implemented through the Clean Air Act’s Section 115,” says Mei Yuan, a research scientist at the MIT Joint Program and lead author of the study. “They also show the policy impact on consumer costs may differ across states depending on the choice of allocation strategy.”

    The national price on carbon needed to achieve the policy’s emissions target, as well as the policy’s ultimate cost to consumers, are substantially lower than those found in studies a decade earlier, although in line with other recent studies. The researchers speculate that this is largely due to ongoing expansion of ambitious state policies in the electricity sector and declining renewable energy costs. The policy is also progressive, consistent with earlier studies, in that equal lump-sum distribution of allowance revenue to state residents generally leads to net benefits to lower-income households. Regional disparities in consumer costs can be moderated by the allocation of allowances among states.

    State-by-state emissions estimates for the study are derived from MIT’s U.S. Regional Energy Policy model, with electricity sector detail of the Renewable Energy Development System model developed by the U.S. National Renewable Energy Laboratory; air quality benefits are estimated using U.S. EPA and other models; and the climate benefits estimate is based on the social cost of carbon, the U.S. federal government’s assessment of the economic damages that would result from emitting one additional ton of carbon dioxide into the atmosphere (currently $51/ton, adjusted for inflation). 

    “In addition to illustrating the economic, health, and climate benefits of a Section 115 implementation, our study underscores the advantages of a policy that imposes a uniform carbon price across all economic sectors,” says John Reilly, former co-director of the MIT Joint Program and a study co-author. “A national carbon price would serve as a major incentive for all sectors to decarbonize.” More

  • in

    What choices does the world need to make to keep global warming below 2 C?

    When the 2015 Paris Agreement set a long-term goal of keeping global warming “well below 2 degrees Celsius, compared to pre-industrial levels” to avoid the worst impacts of climate change, it did not specify how its nearly 200 signatory nations could collectively achieve that goal. Each nation was left to its own devices to reduce greenhouse gas emissions in alignment with the 2 C target. Now a new modeling strategy developed at the MIT Joint Program on the Science and Policy of Global Change that explores hundreds of potential future development pathways provides new insights on the energy and technology choices needed for the world to meet that target.

    Described in a study appearing in the journal Earth’s Future, the new strategy combines two well-known computer modeling techniques to scope out the energy and technology choices needed over the coming decades to reduce emissions sufficiently to achieve the Paris goal.

    The first technique, Monte Carlo analysis, quantifies uncertainty levels for dozens of energy and economic indicators including fossil fuel availability, advanced energy technology costs, and population and economic growth; feeds that information into a multi-region, multi-economic-sector model of the world economy that captures the cross-sectoral impacts of energy transitions; and runs that model hundreds of times to estimate the likelihood of different outcomes. The MIT study focuses on projections through the year 2100 of economic growth and emissions for different sectors of the global economy, as well as energy and technology use.

    The second technique, scenario discovery, uses machine learning tools to screen databases of model simulations in order to identify outcomes of interest and their conditions for occurring. The MIT study applies these tools in a unique way by combining them with the Monte Carlo analysis to explore how different outcomes are related to one another (e.g., do low-emission outcomes necessarily involve large shares of renewable electricity?). This approach can also identify individual scenarios, out of the hundreds explored, that result in specific combinations of outcomes of interest (e.g., scenarios with low emissions, high GDP growth, and limited impact on electricity prices), and also provide insight into the conditions needed for that combination of outcomes.

    Using this unique approach, the MIT Joint Program researchers find several possible patterns of energy and technology development under a specified long-term climate target or economic outcome.

    “This approach shows that there are many pathways to a successful energy transition that can be a win-win for the environment and economy,” says Jennifer Morris, an MIT Joint Program research scientist and the study’s lead author. “Toward that end, it can be used to guide decision-makers in government and industry to make sound energy and technology choices and avoid biases in perceptions of what ’needs’ to happen to achieve certain outcomes.”

    For example, while achieving the 2 C goal, the global level of combined wind and solar electricity generation by 2050 could be less than three times or more than 12 times the current level (which is just over 2,000 terawatt hours). These are very different energy pathways, but both can be consistent with the 2 C goal. Similarly, there are many different energy mixes that can be consistent with maintaining high GDP growth in the United States while also achieving the 2 C goal, with different possible roles for renewables, natural gas, carbon capture and storage, and bioenergy. The study finds renewables to be the most robust electricity investment option, with sizable growth projected under each of the long-term temperature targets explored.

    The researchers also find that long-term climate targets have little impact on economic output for most economic sectors through 2050, but do require each sector to significantly accelerate reduction of its greenhouse gas emissions intensity (emissions per unit of economic output) so as to reach near-zero levels by midcentury.

    “Given the range of development pathways that can be consistent with meeting a 2 degrees C goal, policies that target only specific sectors or technologies can unnecessarily narrow the solution space, leading to higher costs,” says former MIT Joint Program Co-Director John Reilly, a co-author of the study. “Our findings suggest that policies designed to encourage a portfolio of technologies and sectoral actions can be a wise strategy that hedges against risks.”

    The research was supported by the U.S. Department of Energy Office of Science. More

  • in

    New program bolsters innovation in next-generation artificial intelligence hardware

    The MIT AI Hardware Program is a new academia and industry collaboration aimed at defining and developing translational technologies in hardware and software for the AI and quantum age. A collaboration between the MIT School of Engineering and MIT Schwarzman College of Computing, involving the Microsystems Technologies Laboratories and programs and units in the college, the cross-disciplinary effort aims to innovate technologies that will deliver enhanced energy efficiency systems for cloud and edge computing.

    “A sharp focus on AI hardware manufacturing, research, and design is critical to meet the demands of the world’s evolving devices, architectures, and systems,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Knowledge-sharing between industry and academia is imperative to the future of high-performance computing.”

    Based on use-inspired research involving materials, devices, circuits, algorithms, and software, the MIT AI Hardware Program convenes researchers from MIT and industry to facilitate the transition of fundamental knowledge to real-world technological solutions. The program spans materials and devices, as well as architecture and algorithms enabling energy-efficient and sustainable high-performance computing.

    “As AI systems become more sophisticated, new solutions are sorely needed to enable more advanced applications and deliver greater performance,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “Our aim is to devise real-world technological solutions and lead the development of technologies for AI in hardware and software.”

    The inaugural members of the program are companies from a wide range of industries including chip-making, semiconductor manufacturing equipment, AI and computing services, and information systems R&D organizations. The companies represent a diverse ecosystem, both nationally and internationally, and will work with MIT faculty and students to help shape a vibrant future for our planet through cutting-edge AI hardware research.

    The five inaugural members of the MIT AI Hardware Program are:  

    Amazon, a global technology company whose hardware inventions include the Kindle, Amazon Echo, Fire TV, and Astro; 
    Analog Devices, a global leader in the design and manufacturing of analog, mixed signal, and DSP integrated circuits; 
    ASML, an innovation leader in the semiconductor industry, providing chipmakers with hardware, software, and services to mass produce patterns on silicon through lithography; 
    NTT Research, a subsidiary of NTT that conducts fundamental research to upgrade reality in game-changing ways that improve lives and brighten our global future; and 
    TSMC, the world’s leading dedicated semiconductor foundry.

    The MIT AI Hardware Program will create a roadmap of transformative AI hardware technologies. Leveraging MIT.nano, the most advanced university nanofabrication facility anywhere, the program will foster a unique environment for AI hardware research.  

    “We are all in awe at the seemingly superhuman capabilities of today’s AI systems. But this comes at a rapidly increasing and unsustainable energy cost,” says Jesús del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science. “Continued progress in AI will require new and vastly more energy-efficient systems. This, in turn, will demand innovations across the entire abstraction stack, from materials and devices to systems and software. The program is in a unique position to contribute to this quest.”

    The program will prioritize the following topics:

    analog neural networks;
    new roadmap CMOS designs;
    heterogeneous integration for AI systems;
    onolithic-3D AI systems;
    analog nonvolatile memory devices;
    software-hardware co-design;
    intelligence at the edge;
    intelligent sensors;
    energy-efficient AI;
    intelligent internet of things (IIoT);
    neuromorphic computing;
    AI edge security;
    quantum AI;
    wireless technologies;
    hybrid-cloud computing; and
    high-performance computation.

    “We live in an era where paradigm-shifting discoveries in hardware, systems communications, and computing have become mandatory to find sustainable solutions — solutions that we are proud to give to the world and generations to come,” says Aude Oliva, senior research scientist in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and director of strategic industry engagement in the MIT Schwarzman College of Computing.

    The new program is co-led by Jesús del Alamo and Aude Oliva, and Anantha Chandrakasan serves as chair. More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    Can the world meet global climate targets without coordinated global action?

    Like many of its predecessors, the 2021 United Nations Climate Change Conference (COP26) in Glasgow, Scotland concluded with bold promises on international climate action aimed at keeping global warming well below 2 degrees Celsius, but few concrete plans to ensure that those promises will be kept. While it’s not too late for the Paris Agreement’s nearly 200 signatory nations to take concerted action to cap global warming at 2 C — if not 1.5 C — there is simply no guarantee that they will do so. If they fail, how much warming is the Earth likely to see in the 21st century and beyond?

    A new study by researchers at the MIT Joint Program on the Science and Policy of Global Change and the Shell Scenarios Team projects that without a globally coordinated mitigation effort to reduce greenhouse gas emissions, the planet’s average surface temperature will reach 2.8 C, much higher than the “well below 2 C” level to which the Paris Agreement aspires, but a lot lower than what many widely used “business-as-usual” scenarios project.  

    Recognizing the limitations of such scenarios, which generally assume that historical trends in energy technology choices and climate policy inaction will persist for decades to come, the researchers have designed a “Growing Pressures” scenario that accounts for mounting social, technological, business, and political pressures that are driving a transition away from fossil-fuel use and toward a low-carbon future. Such pressures have already begun to expand low-carbon technology and policy options, which, in turn, have escalated demand to utilize those options — a trend that’s expected to self-reinforce. Under this scenario, an array of future actions and policies cause renewable energy and energy storage costs to decline; fossil fuels to be phased out; electrification to proliferate; and emissions from agriculture and industry to be sharply reduced.

    Incorporating these growing pressures in the MIT Joint Program’s integrated model of Earth and human systems, the study’s co-authors project future energy use, greenhouse gas emissions, and global average surface temperatures in a world that fails to implement coordinated, global climate mitigation policies, and instead pursues piecemeal actions at mostly local and national levels.

    “Few, if any, previous studies explore scenarios of how piecemeal climate policies might plausibly unfold into the future and impact global temperature,” says MIT Joint Program research scientist Jennifer Morris, the study’s lead author. “We offer such a scenario, considering a future in which the increasingly visible impacts of climate change drive growing pressure from voters, shareholders, consumers, and investors, which in turn drives piecemeal action by governments and businesses that steer investments away from fossil fuels and toward low-carbon alternatives.”

    In the study’s central case (representing the mid-range climate response to greenhouse gas emissions), fossil fuels persist in the global energy mix through 2060 and then slowly decline toward zero by 2130; global carbon dioxide emissions reach near-zero levels by 2130 (total greenhouse gas emissions decline to near-zero by 2150); and global surface temperatures stabilize at 2.8 C by 2150, 2.5 C lower than a widely used “business-as-usual” projection. The results appear in the journal Environmental Economics and Policy Studies.

    Such a transition could bring the global energy system to near-zero emissions, but more aggressive climate action would be needed to keep global temperatures well below 2 C in alignment with the Paris Agreement.

    “While we fully support the need to decarbonize as fast as possible, it is critical to assess realistic alternative scenarios of world development,” says Joint Program Deputy Director Sergey Paltsev, a co-author of the study. “We investigate plausible actions that could bring society closer to the long-term goals of the Paris Agreement. To actually meet those goals will require an accelerated transition away from fossil energy through a combination of R&D, technology deployment, infrastructure development, policy incentives, and business practices.”

    The study was funded by government, foundation, and industrial sponsors of the MIT Joint Program, including Shell International Ltd. More

  • in

    Advancing public understanding of sea-level rise

    Museum exhibits can be a unique way to communicate science concepts and information. Recently, MIT faculty have served as sounding boards for curators at the Museum of Science, Boston, a close neighbor of the MIT campus.

    In January, Professor Emerita Paola Malanotte-Rizzoli and Cecil and Ida Green Professor Raffaele Ferrari of the Department of Earth, Atmospheric and Planetary Science (EAPS) visited the museum to view the newly opened pilot exhibit, “Resilient Venice: Adapting to Climate Change.”

    When Malanotte-Rizzoli was asked to contribute her expertise on the efforts in Venice, Italy, to mitigate flood damage, she was more than willing to offer her knowledge. “I love Venice. It is fun to tell people all of the challenges which you see the lagoon has … how much must be done to preserve, not only the city, but the environment, the islands and buildings,” she says.

    The installation is the second Museum of Science exhibit to be developed in recent years in consultation with EAPS scientists. In December 2020, “Arctic Adventure: Exploring with Technology” opened with the help of Cecil and Ida Green Career Development Professor Brent Minchew, who lent his expertise in geophysics and glaciology to the project. But for Malanotte-Rizzoli, the new exhibit hits a little closer to home.

    “My house is there,” Malanotte-Rizzoli excitedly pointed out on the exhibit’s aerial view of Venice, which includes a view above St. Mark’s Square and some of the surrounding city.

    “Resilient Venice” focuses on Malanotte-Rizzoli’s hometown, a city known for flooding. Built on a group of islands in the Venetian Lagoon, Venice has always experienced flooding, but climate change has brought unprecedented tide levels, causing billions of dollars in damages and even causing two deaths in the flood of 2019.

    The dark exhibit hall is lined with immersive images created by Iconem, a startup whose mission is digital preservation of endangered World Heritage Sites. The firm took detailed 3D scans and images of Venice to put together the displays and video.

    The video on which Malanotte-Rizzoli pointed to her home shows the potential sea level rise by 2100 if action isn’t taken. It shows the entrance to St. Mark’s Basilica completely submerged in water; she compares it to the disaster movie “The Day After Tomorrow.”

    The MOSE system

    Between critiques of the choice of music (“that’s not very Venice-inspired,” joked Ferrari, who is also Italian) and bits of conversation exchanged in Italian, the two scientists do what scientists do: discuss technicalities.

    Ferrari pointed to a model of a gate system and asked Malanotte-Rizzoli if the hydraulic jump seen in the model is present in the MOSE system; she confirmed it is not.

    This is the part of the exhibit that Malanotte-Rizzoli was consulted on. One of the plans Venice has implemented to address the flooding is the MOSE system — short for Modulo Sperimentale Elettromeccanico, or the Experimental Electromechanical Module. The MOSE is a system of flood barriers designed to protect the city from extremely high tides. Construction began in 2003, and its first successful operation happened on Oct. 3, 2020, when it prevented a tide 53 inches above normal from flooding the city.

    The barriers are made of a series of gates, each 66-98 feet in length and 66 feet wide, which sit in chambers built into the sea floor when not in use to allow boats and wildlife to travel between the ocean and lagoon. The gates are filled with water to keep them submerged; when activated, air is pumped into them, pushing out the water and allowing them to rise. The entire process takes 30 minutes to complete, and half that time to return to the sea floor.

    The top of the gates in the MOSE come out of the water completely and are individually controlled so that sections can remain open to allow ships to pass through. In the model, the gate remains partially submerged, and as the high-velocity water passes over it into an area of low velocity, it creates a small rise of water before it falls over the edge of the barrier, creating a hydraulic jump.

    But Malanotte-Rizzoli joked that only scientists will care about that; otherwise, the model does a good job demonstrating how the MOSE gates rise and fall.

    The MOSE system is only one of many plans taken to mitigate the rising water levels in Venice and to protect the lagoon and the surrounding area, and this is an important point for Malanotte-Rizzoli, who worked on the project from 1995 to 2013.

    “It is not the MOSE or,” she emphasized. “It is the MOSE and.” Other complementary plans have been implemented to reduce harm to both economic sectors, such as shipping and tourism, as well as the wildlife that live in the lagoons.

    Beyond barriers

    There’s more to protecting Venice than navigating flooded streets — it’s not just “putting on rainboots,” as Malanotte-Rizzoli put it.

    “It’s destroying the walls,” she said, pointing out the corrosive effects of water on a model building, which emphasizes the damage to architecture caused by the unusually high flood levels. “People don’t think about this.” The exhibit also emphasizes the economic costs of businesses lost by having visitors take down and rebuild a flood barrier for a gelato shop with the rising and falling water levels.

    Malanotte-Rizzoli gave the exhibit her seal of approval, but the Venice section is only a small portion of what the finished exhibit will look like. The current plan involves expanding it to include a few other World Heritage Sites.

    “How do we make people care about a site that they haven’t been to?” asked Julia Tate, the project manager of touring exhibits and exhibit production at the museum. She said that it’s easy to start with a city like Venice, since it’s a popular tourist destination. But it becomes trickier to get people to care about a site that they maybe haven’t been to, such as the Easter Islands, that are just as much at risk. The plan is to incorporate a few more sites before turning it into a traveling exhibit that will end by asking visitors to think about climate change in their own towns.

    “We want them to think about solutions and how to do better,” said Tate. Hope is the alternative message: It’s not too late to act.

    Malanotte-Rizzoli thinks it’s important for Bostonians to see their own city in Venice, as Boston is also at risk from sea level rise. The history of Boston reminds Malanotte-Rizzoli about her hometown and is one of the reasons why she was willing to emigrate. The history encompassed in Boston makes the need for preservation even more important.

    “Those things that cannot be replaced, they must be respected in the process of preservation,” she said. “Modern things and engineering can be done even in a city which is so fragile, so delicate.” More