More stories

  • in

    Preparing to be prepared

    The Kobe earthquake of 1995 devastated one of Japan’s major cities, leaving over 6,000 people dead while destroying or making unusable hundreds of thousands of structures. It toppled elevated freeway segments, wrecked mass transit systems, and damaged the city’s port capacity.

    “It was a shock to a highly engineered, urban city to have undergone that much destruction,” says Miho Mazereeuw, an associate professor at MIT who specializes in disaster resilience.

    Even in a country like Japan, with advanced engineering, and policies in place to update safety codes, natural forces can overwhelm the built environment.

    “There’s nothing that’s ever guaranteed safe,” says Mazereeuw, an associate professor of architecture and urbanism in MIT’s Department of Architecture and director of the Urban Risk Lab. “We [think that] through technology and engineering we can solve things and fight nature. Whereas it’s really that we’re living with nature. We’re part of this natural ecosystem.”

    That’s why Mazereeuw’s work on disaster resilience focuses on plans, people, and policies, well as technology and design to prepare for the future. In the Urban Risk Lab, which Mazereeuw founded, several projects are based on the design of physical objects, spaces, and software platforms, but many others involve community-level efforts, so that local governments have workable procedures in case of emergency.

    “What we can do for ourselves and each other is have plans in place so that if something does happen, the level of chaos and fear can be reduced and we can all be there to help each other through,” Mazereeuw says. When it comes to disaster preparedness, she adds, “Definitely a lot of it is on the built environment side of things, but a lot of it is also social, making sure that in our communities, we know who would need help, and we have those kinds of relationships beforehand.”

    The Kobe earthquake was a highly influential event for Mazereeuw. She has researched the response to it and has a book coming out about natural disasters, policies, and design in Japan. Beyond that, the Kobe event helped reinforce her sense that when it comes to disaster preparedness, progress can be made many ways. For her research, teaching, and innovative work at the Urban Risk Lab, Mazereeuw was granted tenure at MIT last year.

    Two cultures grappling with nature

    Mazereeuw has one Dutch parent and one Japanese parent, and both cultures helped produce her interest in managing natural forces. On her Dutch side, many family friends were involved with local government and water management — practically an existential issue in a country that sits largely below sea level.

    Mazereeuw’s parents, however, were living in Japan in 1995. And while they happened to be away while the Kobe earthquake hit, her Japanese links helped spur her interest in studying the event and its aftermath.

    “I think that was a wake-up call for me, too, about how we need to plan and design cities to reduce the impact of chaos at the time of disasters,” Mazereeuw says.

    Mazereeuw earned her undergraduate degree from Wesleyan University, majoring in earth and environmental sciences and in studio art. After working in an architectural office in Tokyo, she decided to attend graduate school, receiving her dual masters from Harvard University’s Graduate School of Design, with a thesis about Kobe and disaster readiness. She then worked in architecture offices, including the Office of Metropolitan Architecture in Rotterdam, but returned to academia to work on climate change and disaster resilience.   

    Mazereeuw’s book, “Design Before Disaster,” explores this subject in depth, from urban planning to coastal-safety strategies to community-based design frameworks, and is forthcoming from the University of Virginia Press.

    Since joining the MIT faculty, Mazereeuw has also devoted significant time to the launch and growth of the Urban Risk Lab, an interdisciplinary group working on an array of disaster-preparedness efforts. One such project has seen lab members work with local officials from many places — including Massachusetts, California, Georgia, and Puerto Rico — to add to their own disaster-preparedness planning.

    A plan developed by local officials with community input, Mazereeuw suggests, will likely function better than one produced by, say, consultants from outside a community, as she has seen happen many times: “A report on a dusty shelf isn’t actionable,” she says. “This way it’s a decision-making process by the people involved.”

    In a project based on physical design, the Urban Risk Lab has also been working with the U.S. Federal Emergency Management Agency on an effort to produce temporary postdisaster housing for the OCONUS region (Alaska, Hawaii, and other U.S. overseas territories). The lab’s design, called SEED (Shelter for Emergency Expansion Design), features a house that is compact enough to be shipped anywhere and unfolds on-site, while being sturdy enough to withstand follow-up events such as hurricanes, and durable enough to be incorporated into longer-term housing designs.

    “We felt it had to be really, really good quality, so it would be a resource, rather than something temporary that disintegrates after five years,” Mazereeuw says. “It’s built to be a small safety shelter but also could be part of a permanent house.”

    A grand challenge, and a plethora of projects

    Mazereeuw is also a co-lead of one of the five multiyear projects selected in 2022 to move forward as part of MIT’s Climate Grand Challenges competition. Along with Kerry Emanuel and Paul O’Gorman, of MIT’s Department of Earth, Atmospheric and Planetary Sciences, Mazereeuw will help direct a project advancing climate modeling by quantifying the risk of extreme weather events for specific locations. The idea is to help vulnerable urban centers and other communities prepare for such events.

    The Urban Risk Lab has many other kinds of projects in its portfolio, following Mazereeuw’s own interest in conceptualizing disaster preparedness broadly. In collaboration with officials in Japan, and with support from Google, lab members worked on interactive, real-time flood-mapping software, in which residents can help officials know where local flooding has reached emergency levels. The researchers also created an AI module to prioritize the information.

    “Residents really have the most localized information, which you can’t get from a satellite,” Mazereeuw says. “They’re also the ones who learn about it first, so they have a lot of information that emergency managers can use for their response. The program is really meant to be a conduit between the efforts of emergency managers and residents, so that information flow can go in both directions.”

    Lab members in the past have also mapped the porosity of the MIT campus, another effort that used firsthand knowledge. Additionally, lab members are currently engaging with a university in Chile to design tsunami response strategies; developing a community mapping toolkit for resilience planning in Thailand and Vietnam; and working with Mass Audubon to design interactive furniture for children to learn about ecology.  

    “Everything is tied together with this interest in raising awareness and engaging people,” Mazereeuw says.

    That also describes Mazereeuw’s attitude about participation in the Urban Risk Lab, a highly cross-disciplinary place with members who have gravitated to it from around MIT.

    “Our lab is extremely interdisciplinary,” Mazereeuw says. “We have students coming in from all over, from different parts of campus. We have computer science and engineering students coming into the lab and staying to get their graduate degrees alongside many architecture and planning students.” The lab also has five full-time researchers — Aditya Barve, Larisa Ovalles, Mayank Ojha, Eakapob Huangthananpan, and Saeko Baird — who lead their own projects and research groups.

    What those lab members have in common is a willingness to think proactively about reducing disaster impacts. Being prepared for those events itself requires preparation.

    Even in the design world, Mazereeuw says, “People are reactive. Because something has happened, that’s when they go in to help. But I think we can have a larger impact by anticipating and designing for these issues beforehand.” More

  • in

    Study: Extreme heat is changing habits of daily life

    Extreme temperatures make people less likely to pursue outdoor activities they would otherwise make part of their daily routine, a new study led by MIT researchers has confirmed.

    The data-rich study, set in China, shows that when hourly temperatures reach 30 degrees Celsius (86 degrees Fahrenheit), people are 5 percent less likely to go to public parks, and when hourly temperatures hit 35 C (95 F), people are 13 percent less likely to go to those parks.

    “We did observe adaptation,” says Siqi Zheng, an MIT professor and co-author of a new paper detailing the study’s findings. She adds: “Environmental hazards hurt the daily quality of life. Yes, people protect themselves [by limiting activity], but they lose the benefit of going out to enjoy themselves in nature, or meeting friends in parks.”

    The research adds to our knowledge about the effects of a warming climate by quantifying the effects of hot temperatures on the activity of people within a given day — how they shift their activities from hotter to cooler time periods — and not just across longer periods of time.

    “We found that if we take into account this within-day adaptation, extreme temperatures actually have a much larger effect on human activity than the previous daily or monthly estimations [indicate],” says Yichun Fan, an MIT doctoral candidate and another of the paper’s co-authors.

    The paper, “Intraday Adaptation to Extreme Temperatures in Outdoor Activity,” is published this week in Nature Scientific Reports. The authors are Fan, a doctoral student in MIT’s Department of Urban Studies and Planning (DUSP); Jianghao Wang, a professor at the Chinese Academy of Sciences; Nick Obradovich, chief scientist at Project Regeneration; and Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability at MIT’s Center for Real Estate and DUSP, and faculty director of the MIT Center for Real Estate.

    To conduct the study, the researchers used anonymized data for 900 million cellphone users in China in 2017, studying a total of 60 billion separate cellphone location queries per day available through the technology firm Tencent. With this data, the scholars also examined activity in 10,499 parks across the country, comparing useage totals across a range of conditions. And they obtained temperature data from about 2,000 weather stations in China.

    Ultimately, as the scholars write in the paper, they were able to “document large and significant activity-depressing and activity-delaying effects” on park visits as a result of ultrahot temperatures.

    “People have intraday adaptation patterns that hadn’t been documented in the previous literature,” Fan says. “These have important implications about people’s heat exposure and how future climate change will affect people’s activity and health.”

    As Zheng points out, altered use of public spaces affects daily routines not only in terms of individual activity and exercise, but also in terms of social and community life.

    “Extreme climates will reduce people’s opportunities to socialize in cities, or just watch kids playing basketball or soccer, which is not good,” she says. “We want people to have a wide-ranging urban life. There is a social cost to this adaptation.”

    As the research indicates, people clearly adapt to temperature spikes. The data also show that evening use of parks increases on extremely hot days, but only after conditions have cooled down. While that seems like a beneficial adaptation to very hot weather, the scholars citing existing research suggest people may sleep less as a result of making this kind of change to their daily routines.

    “Adaptation also has its own cost,” Fan says. “People significantly increased their nighttime outdoor activity, which means they delayed their nighttime, which will have a significant health implication, when you consider the potential sleep disruption.”

    All told, the study provides data, and a method, for better characterizing the effects on climate change on human activity in detail.

    “If we have more and more granular data about future climate scenarios, they support better predictions about these scenarios, reflecting people’s dynamic behaviors, and the health implications,” says Fan, whose doctoral research incorporates this work and other related studies on climate and urban activity.

    The researchers also note that the research methods used in this study could be applied to additional future studies of many other aspects of urban life, including street-level retail activities, and other things with implications for economic activity, real estate, and urban planning.

    “This relates to many other issues,” Zheng says.

    Jianghao Wang received funding from the National Key Research and Development Program of China, the National Natural Science Foundation of China, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences. More

  • in

    New MIT internships expand research opportunities in Africa

    With new support from the Office of the Associate Provost for International Activities, MIT International Science and Technology Initiatives (MISTI) and the MIT-Africa program are expanding internship opportunities for MIT students at universities and leading academic research centers in Africa. This past summer, MISTI supported 10 MIT student interns at African universities, significantly more than in any previous year.

    “These internships are an opportunity to better merge the research ecosystem of MIT with academia-based research systems in Africa,” says Evan Lieberman, the Total Professor of Political Science and Contemporary Africa and faculty director for MISTI.

    For decades, MISTI has helped MIT students to learn and explore through international experiential learning opportunities and internships in industries like health care, education, agriculture, and energy. MISTI’s MIT-Africa Seed Fund supports collaborative research between MIT faculty and Africa-based researchers, and the new student research internship opportunities are part of a broader vision for deeper engagement between MIT and research institutions across the African continent.

    While Africa is home to 12.5 percent of the world’s population, it generates less than 1 percent of scientific research output in the form of academic journal publications, according to the African Academy of Sciences. Research internships are one way that MIT can build mutually beneficial partnerships across Africa’s research ecosystem, to advance knowledge and spawn innovation in fields important to MIT and its African counterparts, including health care, biotechnology, urban planning, sustainable energy, and education.

    Ari Jacobovits, managing director of MIT-Africa, notes that the new internships provide additional funding to the lab hosting the MIT intern, enabling them to hire a counterpart student research intern from the local university. This support can make the internships more financially feasible for host institutions and helps to grow the research pipeline.

    With the support of MIT, State University of Zanzibar (SUZA) lecturers Raya Ahmada and Abubakar Bakar were able to hire local students to work alongside MIT graduate students Mel Isidor and Rajan Hoyle. Together the students collaborated over a summer on a mapping project designed to plan and protect Zanzibar’s coastal economy.

    “It’s been really exciting to work with research peers in a setting where we can all learn alongside one another and develop this project together,” says Hoyle.

    Using low-cost drone technology, the students and their local counterparts worked to create detailed maps of Zanzibar to support community planning around resilience projects designed to combat coastal flooding and deforestation and assess climate-related impacts to seaweed farming activities. 

    “I really appreciated learning about how engagement happens in this particular context and how community members understand local environmental challenges and conditions based on research and lived experience,” says Isidor. “This is beneficial for us whether we’re working in an international context or in the United States.”

    For biology major Shaida Nishat, her internship at the University of Cape Town allowed her to work in a vital sphere of public health and provided her with the chance to work with a diverse, international team headed by Associate Professor Salome Maswine, head of the global surgery division and a widely-renowned expert in global surgery, a multidisciplinary field in the sphere of global health focused on improved and equitable surgical outcomes.

    “It broadened my perspective as to how an effort like global surgery ties so many nations together through a common goal that would benefit them all,” says Nishat, who plans to pursue a career in public health.

    For computer science sophomore Antonio L. Ortiz Bigio, the MISTI research internship in Africa was an incomparable experience, culturally and professionally. Bigio interned at the Robotics Autonomous Intelligence and Learning Laboratory at the University of Witwatersrand in Johannesburg, led by Professor Benjamin Rosman, where he developed software to enable a robot to play chess. The experience has inspired Bigio to continue to pursue robotics and machine learning.

    Participating faculty at the host institutions welcomed their MIT interns, and were impressed by their capabilities. Both Rosman and Maswime described their MIT interns as hard-working and valued team members, who had helped to advance their own work.  

    Building strong global partnerships, whether through faculty research, student internships, or other initiatives, takes time and cultivation, explains Jacobovits. Each successful collaboration helps to seed future exchanges and builds interest at MIT and peer institutions in creative partnerships. As MIT continues to deepen its connections to institutions and researchers across Africa, says Jacobovits, “students like Shaida, Rajan, Mel, and Antonio are really effective ambassadors in building those networks.” More

  • in

    Using game engines and “twins” to co-create stories of climate futures

    Imagine entering a 3D virtual story world that’s a digital twin of an existing physical space but also doubles as a vessel to dream up speculative climate stories and collective designs. Then, those imagined worlds are translated back into concrete plans for our physical spaces.

    Five multidisciplinary teams recently convened at MIT — virtually — for the inaugural WORLDING workshop. In a weeklong series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students and graduates as well as other leading figures in the field. The theme of the gathering was “story, space, climate, and game engines.”

    “WORLDING illustrates the emergence of an entirely new field that fuses urban planning, climate science, real-time 3D engines, nonfiction storytelling, and speculative fiction,” says Katerina Cizek, lead designer of the workshop at Co-Creation Studio, MIT Open Documentary Lab. “And co-creation is at the core of this field that allows for collective, democratic, scientific and artistic processes.” The research workshop was organized by the studio in partnership with Unity Software.

    The WORLDING teams met with MIT scholars to discuss diverse domains, from the decolonization of board games, to urban planning as acts of democracy, to behind the scenes of a flagship MIT Climate Challenge project.

    “Climate is really a whole-world initiative,” said Noelle Selin, an MIT atmospheric chemistry professor, in a talk at WORLDING. Selin co-leads an MIT initiative that is digitally twinning the Earth to harness enormous volumes of data for improved climate projections and put these models into the hands of diverse communities and stakeholders.

    “Digital twinning” is a growth market for the game engine industry, in verticals such as manufacturing, architecture, finance, and medicine. “Digital twinning gives teams the power to ideate,” said Elizabeth Baron, a senior manager of enterprise solutions at Unity in her talk at WORLDING. “You can look at many things that maybe aren’t even possible to produce. But you’re the resource. Impact is very low, but the creativity aspect is very high.”

    That’s where the story and media experts come in. “Now, more than ever, we need to forge shared narratives about the world that we live in today and the world that we want to build for the future. Technology can help us visualize and communicate those worlds,” says Marina Psaros MCP ’06, head of sustainability at Unity, lead on WORLDING at Unity, and a graduate of the MIT Department of Urban Studies and Planning.

    In his talk on the short history of WORLDING, media scholar William Uricchio, MIT professor of comparative media studies and founder of the Open Documentary Lab, suggested that story and space come together in these projects that create new ways of knowing. “Story is always a representation,” he says. “It’s got a fixity and coherence to it, and play is — and, I would argue, worlds are —  all about simulation. Simulation in the case of digital twinning is capable of generating countless stories. It’s play as a story-generator, but in the service of envisioning a pluralistic and malleable future.”

    Fixed dominant narratives and game mechanics that underpin board games have been historically violent and unjust, says MIT Game Lab scholar Mikael Jakkobson, who shared findings for his upcoming book on the subject with the cohort. He argues that board games are built on underlying ideas of  “exploration, expansion, exploitation, and extermination. And, as it happens, those are also good ways of thinking about the mechanics of Western colonialism.”

    To counter these hegemonic mechanics and come up with new systems, community is vital, and urban planning is a discipline that plays a huge role in the translation of space, story, and democracy. Ceasar MacDowell, an MIT professor of the practice of civic design, told the WORLDING cohort that urban planning needs to expand its notion of authorship. He is working on systems (from his current position at the Media Lab) that not only engage the community in conversations but also prompt “the people who have been in conversations to actually make sense of them, do the meaning-making themselves, not to have external people interpret them.” These become dynamic layers of both representation and simulation that are not, as Uricchio suggests, fixed. 

    USAID Chief Climate Officer Gillian Calwell visited the group with both sharp warnings and warm enthusiasm: “When it comes to climate, this world isn’t working so well for us; we better start envisioning the new ones, and fast … We don’t have time to convince people that this is happening anymore. Nor do we need to. I think most of the world is having the hands-on, up-close-and-personal experience with the fact that these impacts are coming faster and more furiously than even the scientists had predicted. But one thing we do need help with on a more hopeful note is visualizing how the world could be different.”

    The WORLDING workshop is designed and inspired by the ideas and practices charted in the Co-Creation Studio’s new MIT Press book, “Collective Wisdom: Co-Creation Media for Equity and Justice,” which insists that “No one person, organization, or discipline can determine all the answers alone.”

    The five multidisciplinary teams in this first WORLDING cohort were diverse in approach, technology, and geography. For example, one is an Indigenous-led, land-based, site-specific digital installation that seeks to envision a future in which, once again, the great herds of buffalo walk freely. Another team is creating 3D-modeled biome kits of the water systems in the drought-stricken American West, animated by interviews and data from the communities living there. Yet another team is digitally twinning and then re-imagining a sustainable future in the year 2180 for a multi-player virtual reality game in a Yawanawà Shukuvena Village in the rainforests of Brazil.

    “While our workshop design was focused on developing and researching these incredible, interdisciplinary projects, we also hope that WORLDING can set an example for similar initiatives across global sectors where distances and varied expertise are not limitations but opportunities to learn from one another,” says Srushti Kamat, WORLDING producer and MIT creative media studies/writing grad.

    Most of the talks and presentations from the WORLDING workshop are available as archived videos at cocreationstudio.mit.edu/worlding-videos. More

  • in

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Nonabah Lane, a Navajo educator and environmental sustainability specialist with numerous MIT ties to MIT, passed away in October. She was 46.

    Lane had recently been an MIT Media Lab Director’s Fellow; MIT Solve 2019 Indigenous Communities Fellow; Department of Urban Studies and Planning guest lecturer and community partner; community partner with the PKG Public Service Center, Terrascope, and D-Lab; and a speaker at this year’s MIT Energy Week.

    Lane was a passionate sustainability specialist with experience spearheading successful environmental civic science projects focused in agriculture, water science, and energy. Committed to mitigating water pollutants and environmental hazards in tribal communities, she held extensive knowledge of environmental policy and Indigenous water rights. 

    Lane’s clans were Ta’neezahnii (Tangled People), born for Tł’izíłání (Manygoats People), and her maternal grandfathers are the Kiiyaa’aanii (Towering House People), and paternal grandfathers are Bįįh Bitoo’nii (Deer Spring People).

    Lane was a member of the Navajo Nation, Nenahnezad Chapter. At Navajo Power, she worked as the lead developer for solar and energy storage projects to benefit tribal communities on the Navajo Nation and other tribal nations in New Mexico. Prior to joining Navajo Power, Lane co-founded Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education. Lane also launched a campaign to partner with local Navajo schools and tribal colleges to create their own water-testing capabilities and translate data into information to local farmers.

    “I had the opportunity to collaborate closely with Nonabah on a range of initiatives she was championing on energy, food, justice, water, Indigenous leadership, youth STEM, and more. She was innovative, entrepreneurial, inclusive, heartfelt, and positively impacted MIT on every visit to campus. She articulated important things that needed saying and expanded people’s thinking constantly. We will all miss her insights and teamwork,” says Megan Smith ’86, SM ’88, MIT Corporation life member; third U.S. chief technology officer and assistant to the president in the Office of Science and Technology Policy; and founder and CEO of shift7.

    In March 2019, Lane and her family — parents Gloria and Harry and brother Bruce — welcomed students and staff of the MIT Terrascope first-year learning community to their farm, where they taught unique, hands-on lessons about traditional Diné farming and spirituality. She then continued to collaborate with Terrascope, helping staff and students develop community-based work with partners in Navajo Nation. 

    Terrascope associate director and lecturer Ari Epstein says, “Nonabah was an inspiring person and a remarkable collaborator; she had a talent for connecting and communicating across disciplinary, organizational, and cultural differences, and she was generous with her expertise and knowledge. We will miss her very much.”

    Lane came to MIT in May 2019 for the MIT Solve Indigenous Communities Fellowship and Solve at MIT event, representing Navajo Ethno-Agriculture with her mother, Gloria Lane, and brother, Bruce Lane, and later serving as a Fellow Leadership Group member. 

    “Nonabah was an incredible individual who worked tirelessly to better all of her communities, whether it was back home on the Navajo Nation, here at MIT Solve, or supporting her family and friends,” says Alex Amouyel, executive director of MIT Solve. “More than that, Nonabah was a passionate mentor and caring friend of so many, carefully tending the next generation of Indigenous innovators, entrepreneurs, and change-makers. Her loss will be felt deeply by the MIT community, and her legacy of heartfelt service will not be forgotten.”

    She continued to be heavily involved across the MIT campus — named as a 2019 Media Lab Director’s Fellow, leading a workshop at the 2020 MIT Media Lab Festival of Learning on modernizing Navajo foods using traditional food science and cultural narrative, speaking at the 2022 MIT Energy Conference “Accelerating the Clean Energy Transition,” and taking part in the MIT Center for Bits and Atoms (CBA) innovation weekly co-working groups for Covid-response related innovations. 

    “My CBA colleagues and I enjoyed working with Nonabah on rapid-prototyping for the Covid response, on expanding access to digital fabrication, and on ambitious proposals for connecting emerging technology with Indigenous knowledge,” says Professor Neil Gershenfeld, director, MIT Center for Bits and Atoms.

    Nonabah also guest lectured for the MIT Department of Urban Studies and Planning’s Indigenous Environmental Planning class in Spring 2022. Professors Lawrence Susskind and Gabriella Carolini and teaching assistant Dení López led the class in cooperation with Elizabeth Rule, Chickasaw Nation member and professor at American University. 

    Carolini shares, on behalf of Susskind and the class, “During this time, our teaching team and students from a broad range of fields at MIT had the deep honor of learning from and with the inimitable Nonabah Lane. Nonabah was a dedicated and critical partner to our class, representing in this instance Navajo Power — but of course, also so much more. Her broad experiences and knowledge — working with fellow Navajo members on energy and agriculture sovereignty, as well as in advancing entrepreneurship and innovation — reflected the urgency Nonabah saw in meeting the challenges and opportunities for sustainable and equitable futures in Navajo nation and beyond. She was a pure life force, running on all fires, and brought to our class a dedicated drive to educate, learn, and extend our reference points beyond current knowledge frontiers.” 

    Three MIT students — junior Isabella Gandara, Alexander Gerszten ’22, and Paul Picciano MS ’22 — who worked closely with Lane on a project with Navajo Power, recalled how she shared herself with them in so many ways, through her truly exceptional work ethic, stories about herself and her family, and the care and thought that she put into her ventures. They noted there was always something new to feel inspired by when in her presence. 

    “The PKG Public Service Center mourns the passing of Nonabah Lane. Navajo Ethno-Agriculture is a valued PKG Center partner that offers MIT undergraduate students the opportunity to support community-led projects with the Diné Community on Navajo Nation. Nonabah inspired students to examine broad social and technical issues that impact Indigenous communities in Navajo Nation and beyond, in many cases leaving an indelible mark on their personal and professional paths,” says Jill S. Bassett, associate dean and director of the PKG Public Service Center.

    Lane was a Sequoyah Fellow of the American Indian Science and Engineering Society (AISES) and remained actively engaged in the AISES community by mentoring young people interested in the fields of science, engineering, agriculture, and energy. Over the years, Lane collaborated with leaders across tribal lands and beyond on projects related to agriculture, energy, sustainable chemicals, and finance. Lane had an enormous positive impact on many through her accomplishments and also the countless meaningful connections she helped to form among people in diverse fields.

    Donations may be made to a memorial fund organized by Navajo Power, PBC in honor of Nonabah Lane, in support of Navajo Ethno-Agriculture, the Native American nonprofit she co-founded and cared deeply for. More

  • in

    “Drawing Together” is awarded Norman B. Leventhal City Prize

    “Drawing Together,” a social and ecological resilience project in New York City, has been awarded the 2022 Norman B. Leventhal City Prize. 

    The project is a collaboration between MIT faculty, researchers, and students, and Green City Force (GCF), a nonprofit organization in New York City that trains young people for careers with a sustainability focus while they serve local public housing communities.

    The winning proposal was submitted by a team led by MIT’s Miho Mazereeuw, associate professor and director of the Urban Risk Lab; Nicholas de Monchaux, professor and head of the Department of Architecture; Carlos Sandoval Olascoaga PhD ’21, a postdoc in the Department of Architecture and the MIT Schwarzman College of Computing; and Tonya Gayle, executive director of Green City Force.

    Through their Service Corps (affiliated with the national AmeriCorps service and training program), GCF trains young residents of New York City Housing Authority public housing to participate in large-scale environmental and health initiatives in public housing and other local communities.

    The Drawing Together team will collaborate with GCF on its “Eco-Hubs,” an urban farms initiative. In a co-design effort, Drawing Together will create a new digital platform to support community-led planning and design processes for the siting, design, and operation of these spaces. This platform will also facilitate the scaling-up of community engagement with Eco-Hubs.

    The $100,000 triennial prize was established in 2019 by MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) to catalyze innovative interdisciplinary urban design and planning approaches worldwide to improve the environment as well as the quality of life for residents. The first awardee was “Malden River Works for Waterfront Equity and Resilience,” a project for a civic waterfront space in Malden, Massachusetts.

    The 2022 Leventhal City Prize call for submissions sought proposals that focused on digital urbanism — investigating how life in cities can be improved using digital tools that are equitable and responsive to social and environmental conditions. The jury reviewed proposals for projects that offered new urban design and planning solutions using evolving data sources and computational techniques that transform the quality of life in metropolitan environments.

    “Digital urbanism is the intersection between cities, design, and technology and how we can identify new ways to include technology and design in our cities,” says LCAU Director Sarah Williams. “Drawing Together perfectly exemplifies how digital urbanism can assist in the co-development of design solution and improve the quality of life for the public.”

    The team will expand the workforce training currently offered by GCF to incorporate digital skills, with the goal of developing and integrating a sustainability-focused data science curriculum that supports sustainable urban farming within the Eco-Hubs.

    “What is most inspiring about this project is that young people are the writers, rather than passive subjects of urban transformation,” says juror Garrett Dash Nelson, president and head curator of the Norman B. Leventhal Map and Education Center at the Boston Public Library. “By taking the information and design architectures and making them central to youth-driven decisions about environmental planning, this project has the potential to activate a new participatory paradigm that will resonate far beyond New York City.”

    “In addition to community-based digital methods for urban environmental design, this project has the potential to strengthen computational skills in green job opportunities for youth that the Green City Force Eco-Hubs serve,” says juror James Wescoat, MIT Aga Khan Professor Emeritus of Landscape Architecture and Geography. 

    In addition to Nelson and Wescoat, the jury for this year’s competition included Lilian Coral, director of National Strategy and Technology Innovation at the Knight Foundation; Jose Castillo, principal at a|911 and professor of urbanism at CENTRO University; and Nigel Jacob, senior fellow at the Burnes Center for Global Impact at Northeastern University.

    The prize jury identified two finalists. Co-HATY Accelerator Team is a multidisciplinary project that helps provide housing and social support to Ukraine’s displaced residents. The team of urban planners, information technologists, architects, and sociologists are using digital technology to better connect residents across the country with housing opportunities. Team members include Brent D. Ryan, associate professor of urban design and public policy at MIT, and Anastasiya Ponomaryova, urban designer and co-founder of co-HATY.

    “The Ukraine’s team proposal makes a point of the relevance of architecture and planning in the context of humanitarian crises,” says Castillo. “It forces us to deploy techniques, methods, and knowledge to resolve issues ‘on demand.’ Different from a view of architecture and planning as ’slow practices,’ where design processes, research, pedagogies, and buildings take a long time to be deployed and finalized, this research shows an agile but thorough approach to the immediate and the contingent.”

    The second finalist is “Ozymandias: Using Artificial Intelligence to Map Urban Power Structures and Produce Fairer Results for All,” a project led by the Portland, Maine, Society for Architecture. The team behind this project seeks to encourage broader civic participation and positive change in municipal governments. By using emerging AI computation tools to illuminate patterns in power structures and decision-making, the team hopes to highlight correctable yet previously unrecognizable inequities. Principal investigator for the project is Jeff Levine, a lecturer in MIT’s Department of Urban Studies and Planning and a past director of planning and urban development for Portland.

    “The Ozymandias project recognizes an important truth about urban decision-making — that it is neither a bottom-up nor a top-down structure, but a tangled and often obscure network of formal and informal power systems,” says Nelson. “By bringing analytical methods to bear on a perennial question for civic action — who really governs in a democratic system? — the project offers a provocative methodology for examining why nominally participatory urban processes so often fail at producing inclusive and equitable outcomes.” More

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More

  • in

    Power, laws, and planning

    Think about almost any locale where people live: Why does it have its current built form? Why do people reside where they do? No doubt there are quirks of geography or history involved. But places are also shaped by money, politics, and the law — in short, by power.

    Studying those issues is the work of Justin Steil, an associate professor in MIT’s Department of Urban Studies and Planning. Steil’s research largely focuses on cities, drawing out the ways that politics and the law sustain social divisions on the ground.

    Or, as Steil says, “The biggest theme that runs through my work is: How is power exercised through control of space, and access to particular places? What are the spatial and social and legal processes of inclusion and exclusion that generate or can address inequality, generally?”

    Those mechanisms can be found all around. Wealthy suburbs with large minimum lot sizes restrict growth and access to high-ranking school districts; gated communities take that process of separation even more literally; and many U.S. metro areas have island-like jurisdictions that have seceded from larger surrounding cities. City residential geography often displays the legacies of redlining (discrimination laws) and even century-old mob violence incidents used to curb integration.

    “I really like to try to get down to pinpoint what are the precise laws, ordinances, and policies, and specific social processes, which continue to generate inequality,” says Steil. “And ask: How can we change that to generate greater access to resources and opportunities?”

    While investigating questions that range widely across the theme of power and space, Steil has published many research articles and book chapters while helping edit volumes on the subject. For his research and teaching, Steil was awarded tenure at MIT earlier this year.

    Combining law and urban planning

    Steil grew up in New York City, where his surroundings helped him realize how much urban policy and laws matters. He attended Harvard University as an undergraduate, majored in African American Studies, and spent a summer as a student in South Africa in 1998, just as the country was launching its new democracy.

    “That had a big impact,” Steil says. “Both seeing the power of grassroots organizing and social movements, to overthrow this white supremacist government, but also to understand how the apartheid system had worked, the role of law and of space — how the landscape and built environment had been consciously designed to keep people separate and unequal.”

    Between graduating from college and finishing his PhD, Steil embarked on an odyssey of jobs in the nonprofit sector and graduate work on multiple academic disciplines, touching on pressing social topics. Steil worked at the City School in Boston, a youth leadership program; the Food Project, a Massachusetts agricultural program; two nonprofits in Juarez, Mexico, focused on preventing domestic violence and on environmental justice; and the New Economy Project in New York, studying predatory lending. In the midst of this, Steil took time to earn a master’s in city design and social science from the London School of Economics.

    “I learned so much from studying city design, and really enjoyed it,” Steil says of that program. “But I also realized that my personal strengths are not in design. … I was more interested and more capable in the social science realm.”

    With that in mind, Steil was accepted into a joint PhD and JD program at Columbia University, combining a law degree with doctoral studies in urban planning.

    “So much of urban planning is determined by law, by property law and constitutional law,” Steil says. “I felt that if I wanted to research and teach these things, I needed to understand the law.”

    After finishing his law school and doctoral courses, Steil’s dissertation, written under the guidance of the late Peter Marcuse, examined the policy responses of two sets of paired towns — two in Nebraska, two in Pennsylvania — to immigration. In each of the states, one town was far more receptive to immigrants than the other. Steil concluded that the immigration-receptive towns had more local organizations and civic connections that reached across economic classes; instead of being more atomized, they were more cohesive socially, and willing to create more economic opportunities for those willing to work for them.

    Without such ties, Steil notes, people can end up “seeing things as a zero-sum game, instead of seeing the possibilities for new residents to enliven and enrich and contribute to a community.”

    By contrast, he adds, “sustained collaboration across what people might have seen as differences toward a shared goal created opportunities for a dialogue about immigration, its challenges and benefits, to imagine a future that could include these new neighbors. There was an emphasis in some of those towns on being communities where people were proud of working hard, and respected other people who did that.”

    From PhD to EMT

    Steil joined the MIT faculty after completing his PhD in 2015, and has continued to produce work on an array of issues about policy, law, and inclusion. Some of that work bears directly on contemporary housing policy. With Nicholas Kelly PhD ’21, Lawrence Vale, the Ford Professor of Urban Design and Planning at MIT, and Maia Woluchem MCP ’19, he co-edited the volume “Furthering Fair Housing” (Temple University Press, 2021), which analyzes recent political clashes over federal fair-housing policy.

    Some of Steil’s other work is more historically oriented. He has published multiple papers on race and housing in the early 20th century, when both violence against Blacks and race-based laws kept many cities segregated. As Steil notes, U.S. laws have been rewritten so as to be no longer explicitly race-based. However, he notes, “That legacy, entrenched into the built environment, is very durable.”

    There are also significant effects stemming from the local, property-tax-based system of funding education in the U.S., another policy approach that effectively leaves many Americans living in very different realms of metro areas.

    “By fragmenting [funding] at the local level and then having resources redistributed within these small jurisdictions, it creates powerful incentives for wealthy households and individuals to use land-use law and other law to exclude people,” Steil says. “That’s partly why we have this tremendous crisis of housing affordability today, as well as deep inequalities in educational opportunities.”

    Since arriving at MIT, Steil has also taught on these topics extensively. The undergraduate classes he teaches include an introduction to housing and community development, a course on land use and civil rights law, another course on land use and environmental law, and one on environmental justice.

    “What an amazing privilege it is to be here at MIT, and learn every day, from our students, our undergraduate and graduate students, and from my colleagues,” Steil says. “It makes it fun to be here.”

    As if Steil didn’t have enough on his plate, he takes part in still another MIT-based activity: For the last few years, he has worked as an Emergency Medical Technician (EMT) for MIT’s volunteer corps, having received his training from MIT’s EMT students since arriving on campus.

    As Steil describes it, his volunteer work has been a process of “starting out at the bottom of the totem pole as a beginning EMT and being trained by other students and progressing with my classmates.”

    It is “amazing,” he adds, to work with students and see “their dedication to this service and to MIT and to Cambridge and Boston, how hard they work and how capable they are, and what a strong community gets formed through that.” More