in

A seawater-sulfate origin for early Earth’s volcanic sulfur

  • 1.

    Farquhar, J., Zerkle, A. L. & Bekker, A. in The Atmosphere – History 2nd edn, Vol. 6 (ed. Farquhar, J.) 91–138 (Elsevier, 2014).

  • 2.

    Lyons, T. W., Reinhard, C. T. & Planesky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Google Scholar 

  • 3.

    Holland, H. D. Volcanic gases, black smokers and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Google Scholar 

  • 4.

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Google Scholar 

  • 5.

    Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 2017048 (2018).

    Google Scholar 

  • 6.

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Google Scholar 

  • 7.

    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B. 363, 903–915 (2006).

    Google Scholar 

  • 8.

    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 228–232 (2011).

    Google Scholar 

  • 9.

    Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Google Scholar 

  • 10.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Google Scholar 

  • 11.

    Symonds, R. B., Rose, W. I., Bluth, G. J. S. & Gerlach, T. M. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 1–66 (Mineralogical Society of America, 1994).

  • 12.

    Oppenheimer, C., Fischer, T. P. & Scaillet, B. in The Crust 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 111–179 (Elsevier, 2014).

  • 13.

    National Academies of Sciences, Engineering and Medicine. Volcanic Eruptions and their Repose, Unrest, Precursors, and Timing (The National Academy Press, 2017).

  • 14.

    Drummond, S. E. Jr Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, Pennsylvania State Univ. (1981).

  • 15.

    German, C. R. & Von Damm, K. L. in The Oceans and Marine Geochemistry Vol. 6 (ed. Elderfield, H.) 181–222 (Elsevier, 2006).

  • 16.

    Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161 (1987).

    Google Scholar 

  • 17.

    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).

    Google Scholar 

  • 18.

    Ohmoto, H. in The Precambrian Earth: Tempos and Events Vol. 12 (eds Erickson, P. G. et. al.) 361–387 (Elsevier, 2004).

  • 19.

    Ohmoto, H. et al. Oxygen, iron and sulfur geochemical cycles on early Earth: paradigms and contradictions. Geol. Soc. Am. Spec. Pap. 504, 55–95 (2014).

    Google Scholar 

  • 20.

    Burnham, C. W. & Ohmoto, H. in Granitic Magmatism and Related Mineralization Vol. 8 (eds. Ishihara, S. & Takenouchi, S.) 1–11 (1980).

  • 21.

    Berry, A. J. et al. A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–123 (2018).

    Google Scholar 

  • 22.

    Carroll, M. R. & Webster, J. D. in Volatiles in Magmas Vol. 30 (eds Caroll, M. R. & Halloway, J. R.) 231–280 (Mineralogical Society of America, 1994).

  • 23.

    Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source region? Contrib. Mineral. Petrol. 106, 129–141 (1991).

    Google Scholar 

  • 24.

    Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Google Scholar 

  • 25.

    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

    Google Scholar 

  • 26.

    Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallurgy. Lithos 233, 27–45 (2015).

    Google Scholar 

  • 27.

    Chappell, B. W. & White, A. J. R. Two contrasting granite types. Pac. Geol. 8, 173–174 (1974).

    Google Scholar 

  • 28.

    Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 27, 291–305 (1977).

    Google Scholar 

  • 29.

    Savarino, J. et al. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30, 2131 (2003).

    Google Scholar 

  • 30.

    Hattori, S. et al. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. Proc. Natl Acad. Sci. USA 110, 17661–17656 (2019).

    Google Scholar 

  • 31.

    Whitehill, A. R., Jiang, B., Guo, H. & Ono, S. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols. Atmos. Chem. Phys. 15, 1843–1864 (2015).

    Google Scholar 

  • 32.

    Sasaki, A. & Ishihara, S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. Contrib. Mineral. Petrol. 68, 107–115 (1979).

    Google Scholar 

  • 33.

    Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).

    Google Scholar 

  • 34.

    Ohmoto, H. et al. Chemical processes of Kuroko formation. Econ. Geol. Mon. 5, 570–604 (1983).

  • 35.

    Ohmoto, H. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol. Rev. 10, 135–177 (1996).

    Google Scholar 

  • 36.

    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, 1997).

  • 37.

    Kishima, N. A thermodynamic study on the pyrite–pyrrhotite–magnetite–water system at 300–500 °C with relevance to the fugacity/concentration quotient of aqueous H2S. Geochim. Cosmochim. Acta 53, 2143–2155 (1989).

    Google Scholar 

  • 38.

    Schoonen, M. A. A. & Barnes, H. L. Mechanisms of pyrite and marcasite formation from solutions. III. Hydrothermal processes. Geochim. Cosmochim. Acta 55, 3491–3504 (1991).

    Google Scholar 

  • 39.

    Graham, U. M. & Ohmoto, H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta 58, 2187–2202 (1994).

    Google Scholar 

  • 40.

    Kerrich, R. & Said, N. Extreme positive Ce anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: oxygenated marine bottom waters. Chem. Geol. 280, 232–241 (2011).

    Google Scholar 

  • 41.

    Kerrich, R., Said, N., Manikyamba, C. & Wyman, D. Sampling oxygenated Archean hydrosphere: implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences. Gondwana Res. 23, 506–525 (2013).

    Google Scholar 

  • 42.

    van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3, 1056 (2002).

    Google Scholar 

  • 43.

    Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).

    Google Scholar 

  • 44.

    Tomkins, A. G. & Evans, K. A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth Planet. Sci. Lett. 428, 73–83 (2015).

    Google Scholar 

  • 45.

    Scaillet, B., Clemente, B., Evans, B. & Pichavant, M. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. 103, 23937–23949 (1998).

    Google Scholar 

  • 46.

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J. Volcanol. 140, 217–240 (2005).

    Google Scholar 

  • 47.

    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

    Google Scholar 

  • 48.

    Ishihara, S. et al. in Evolution of Early Earth’s Atmosphere, Hydrosphere and Biosphere—Constraints from Ore Deposits Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 67–80 (Geological Society of America, 2006).

  • 49.

    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 1602365 (2017).

    Google Scholar 

  • 50.

    Delano, J. W. Redox history of the Earth’s interior since ~3,900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biosphere 31, 311–341 (2001).

    Google Scholar 

  • 51.

    Nicklas, R. W., Puchtel, I. S. & Ash, R. D. Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim. Cosmochim. Acta 222, 447–446 (2018).

    Google Scholar 

  • 52.

    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).

    Google Scholar 

  • 53.

    Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–83 (2011).

    Google Scholar 

  • 54.

    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2008).

    Google Scholar 

  • 55.

    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl Acad. Sci. USA 108, 17635–17638 (2011).

    Google Scholar 

  • 56.

    Ohmoto et al. (Bio)geochemical cycles of S, C, Fe, and O on the hotter Archean Earth. Goldschmidt Abstr. 2018, abstr. 1913 (2018).

  • 57.

    Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 429, 395–399 (2004).

    Google Scholar 

  • 58.

    Finlayson-Pitts, B. J. & Pitts, J. N. Chemistry of the Upper and Lower Atmosphere (Academic Press, 1999).

  • 59.

    Seccombe, P. K. Sulphur isotope and trace metal composition of stratiform sulphides as an ore guide in the Canadian Shield. J. Geochem. Explor. 8, 117–137 (1977).

    Google Scholar 

  • 60.

    Jamieson, J. W., Wing, B. A., Farquhar, J. & Hamington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61–64 (2013).

    Google Scholar 

  • 61.

    Vaughan, D. J. & Craig, J. R. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 367–434 (Wiley, 1979).

  • 62.

    Mysen, B. & Boettcher, A. L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975).

    Google Scholar 

  • 63.

    Gaetani, G. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).

    Google Scholar 

  • 64.

    Henderson, P. & Henderson, G. M. The Cambridge Handbook of Earth Science Data (Cambridge Univ. Press, 2009).

  • 65.

    Deines, P. & Harris, J. W. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim. Cosmochim. Acta 59, 3173–3188 (1995).

    Google Scholar 

  • 66.

    Rudnick, R. L., Eldridge, C. S. & Bulanova, G. P. Diamond growth history from in situ measurement of Pb and S isotopic compositions of sulfide inclusions. Geology 21, 13–16 (1993).

    Google Scholar 

  • 67.

    Farquhar, J. et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298, 2369–2371 (2002).

    Google Scholar 

  • 68.

    Hickman, A. H. Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Isl. Arc 21, 1–31 (2012).

    Google Scholar 

  • 69.

    van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. in Earth’s Oldest Rocks (eds van Kranendonk, M. J. et al.) 307–337 (Elsevier, 2007).


  • Source: Ecology - nature.com

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs