in

A systemic approach to assess the potential and risks of wildlife culling for infectious disease control

  • 1.

    Lloyd-Smith, J. et al. Epidemic dynamic at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Kilpatrick, A. M. et al. Host heterogeneity dominates West Nile virus transmission. Proc. Biol. Sci. 273, 2327–2333 (2006).

    PubMed  Google Scholar 

  • 3.

    Woolhouse, M., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. Science 292, 1109–1112 (2001).

    CAS  PubMed  Google Scholar 

  • 4.

    Cohen., J. Mining coronavirus genomes for clues to the outbreak’s origins. Science https://doi.org/10.1126/science.abb1256 (2020).

  • 5.

    D’arc, M. et al. Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl Acad. Sci. USA 112, E1343–E1352 (2015).

    PubMed  Google Scholar 

  • 6.

    Barrett, A. & Monath, T. Epidemiology and ecology of yellow fever virus. Adv. Virus Res. 61, 291–315 (2003).

    PubMed  Google Scholar 

  • 7.

    Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006).

    CAS  PubMed  Google Scholar 

  • 8.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kuiken, T. Host Species Barriers to Influenza Virus Infections. Science 312, 394–397 (2006).

    CAS  PubMed  Google Scholar 

  • 10.

    Woolhouse, M. et al. Human viruses: discovery and emergence. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2864–2871 (2012).

    Google Scholar 

  • 11.

    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  PubMed  Google Scholar 

  • 12.

    Archer, E.R., Dziba, L.E., Mulongoy, K.J., Maoela, M.A. & Walters, M. (eds). The IPBES regional assessment report on biodiversity and ecosystem services for Africa. 492 (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2018).

  • 13.

    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. 110, 8399–8404 (2013).

    CAS  PubMed  Google Scholar 

  • 14.

    Hassell, J. M. et al. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evolution 32, 55–67 (2017).

    Google Scholar 

  • 15.

    Barroux, G. La santé des animaux et l’émergence d’une médecine vétérinaire au xviiie siècle. Rev. d’histoire des. Sci. 64, 349–376 (2011).

    Google Scholar 

  • 16.

    Morens, D. M. et al. Global rinderpest eradication: lessons learned and why humans should celebrate too. J. Infect. Dis. 204, 502–505 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Anderson, R. M. et al. Population-dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).

    CAS  PubMed  Google Scholar 

  • 18.

    Tildesley, M. J. et al. The role of pre-emptive culling in the control of foot-and-mouth disease. Proc. Biol. Sci. 276, 3239–3248 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Alexander, D. J. An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644 (2007).

    CAS  PubMed  Google Scholar 

  • 20.

    Wang, T., Sun, Y. & Qiu, H.-J. African swine fever: an unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Haydon, D. T., Kao, R. R. & Kitching, R. P. The UK foot-and-mouth disease outbreak—the aftermath. Nat. Rev. Microbiol. 2, 675–U8 (2004).

    CAS  PubMed  Google Scholar 

  • 22.

    Andersson, J. A. & Cumming, D. H. in Transfrontier Conservation Areas: People Living on the Edge, (eds Andersson, J. A. et al.). 25–61. (Earthscan: London, 2013).

  • 23.

    Cumming, D. H. M., Osofsky S. A., Atkinson S. J. & Atkinson M. W. in One Health: The Theory and Practice of Integrated Health Approaches (eds Zingsstag, J., Schelling, E., Waltner-Toews, D., Whittaker, M. & Tanner, M.) 243–258 (CABI International, 2015).

  • 24.

    Aubert, M. F. A. Costs and benefits of rabies control in wildlife in France. Rev. Scientifique et. Tech. de. l’Office Int. des. Epizooties 18, 533–543 (1999).

    CAS  Google Scholar 

  • 25.

    King, A. A. Historical Perspective of Rabies in Europe and the Mediterranean Basin. A testament to rabies. (eds. King, A.A., Fooks, A. R.., Aubert, M. & Wandeler, A.I.) book is published by the World Organisation for Animal Health (OIE) in conjunction with the World Health Organisation (WHO) Collaborating Centre (2004).

  • 26.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (Advance unedited version 2019).

  • 27.

    Bolzoni, L. & G.A. De, Leo Unexpected consequences of culling on the eradication of wildlife diseases: the role of virulence evolution. Am. Naturalist 181, 301–313 (2013).

    Google Scholar 

  • 28.

    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc. Biol. Sci. 279, 3384–3392 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Lachish, S. et al. Evaluation of selective culling of infected individuals to control tasmanian devil facial tumor disease. Conserv. Biol. 24, 841–851 (2010).

    PubMed  Google Scholar 

  • 30.

    Dudas, G. et al. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    de Garine-Wichatitsky, M. et al. A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol. Infect. 141, 1342–1356 (2013).

    PubMed  Google Scholar 

  • 32.

    Johnson, P. T. J. et al. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–230-233 (2013).

    CAS  PubMed  Google Scholar 

  • 33.

    Dearing, M. D. et al. The roles of community diversity and contact rates on pathogen prevalence. J. Mammal. 96, 29–36 (2015).

    Google Scholar 

  • 34.

    Delahay, R. J. et al. Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Vet. J. 173, 287–301 (2007).

    CAS  PubMed  Google Scholar 

  • 35.

    Independent Scientific Group on Cattle TB, Bovine TB: The Scientific Evidence. A Science Base for a Sustainable Policy to Control TB in Cattle An Epidemiological Investigation into Bovine Tuberculosis. (2007).

  • 36.

    Donnelly, C. & Woodroffe, R. Reduce uncertainty in UK badger culling. Nature 485, 582–582 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    Donnelly, C. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843–846 (2006).

    CAS  PubMed  Google Scholar 

  • 38.

    Donnelly, C. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426, 834 (2003).

    CAS  PubMed  Google Scholar 

  • 39.

    Hars, J., C. Richomme, & M. L. Boschiroli, Bovine tuberculosis in wild animal in France (Only in French: la tuberculose bovine dans la faune sauvage en France). Bulletin épiémiologique. 38 (Spécial zoonoses, 2010).

  • 40.

    Viana, M. et al. Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study. Parasitology 143, 821–834 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Haydon, D. T. et al. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8, 1468–1473 (2002).

    PubMed  Google Scholar 

  • 42.

    Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 2001).

  • 43.

    Putman, R. J. Community Ecology (Springer Verlag, New York: Springer Netherlands, 1994).

  • 44.

    Odum, E. Fundamentals of Ecology. (Sauders, Washington D.C., 1971.)

  • 45.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

  • 46.

    Bolzoni, L., Real, L. & De Leo, G. Transmission heterogeneity and control strategies for infectious disease emergence. PLos ONE 2, e747 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

    CAS  PubMed  Google Scholar 

  • 48.

    Russell, A. L. et al. Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity. BMC Evolut. Biol. 11, 88–88 (2011).

    Google Scholar 

  • 49.

    Donnelly, C. & Woodroffe, R. Bovine tuberculosis: Badger-cull targets unlikely to reduce TB. Nature 526, 640–640 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Galvani, A. P. & May, R. M. Epidemiology—dimensions of superspreading. Nature 438, 293–295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Anderson, R. M. & R. M. May. Infectious Diseases of Humans: Dynamics and Control (eds Anderson R.M. & May, R.M) (Oxford University Press, Oxford, 1991).

  • 52.

    Alexander, H. K. & Day, T. Risk factors for the evolutionary emergence of pathogens. J. R. Soc. Interface 8, 1064–1064 (2011).

    PubMed Central  Google Scholar 

  • 53.

    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).

    PubMed  Google Scholar 

  • 54.

    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).

    PubMed  Google Scholar 

  • 55.

    Bienen, L. & Tabor, G. Applying an ecosystem approach to brucellosis control: can an old conflict between wildlife and agriculture be successfully managed? Front. Ecol. Environ. 4, 319–327 (2006).

    Google Scholar 

  • 56.

    Kramer-Schadt, S., Fernandez, N. & Thulke, H. Potential ecological and epidemiological factors affecting the persistence of classical swine fever in wild boar Sus scrofa populations. Mammal. Rev. 37, 1–20 (2007).

    Google Scholar 

  • 57.

    Rands, M. R. W. et al. Biodiversity Conservation: Challenges Beyond 2010. Science 329, 1298–1303 (2010).

    CAS  PubMed  Google Scholar 

  • 58.

    Black, F. L. Measles endemicity in insular populations – critical community size and its evolutionary implication. J. Theor. Biol. 11, 207–211 (1966).

    CAS  PubMed  Google Scholar 

  • 59.

    Bartlett, M. S. Measles periodicity and community size. J. R. Stat. Soc. Ser. a-Gen. 120, 48–70 (1957).

    Google Scholar 

  • 60.

    Delahay, R. J., Smith, G. C., & Hutchings, M. R. Management of Disease in Wild Mammals 284 (Springer, Tokyo, 2009).

  • 61.

    Ramsey, D. et al. The effects of reducing population density on contact rates between brushtail possums: implications for transmission of bovine tuberculosis. J. Appl. Ecol. 39, 806–818 (2002).

    Google Scholar 

  • 62.

    Begon, M. et al. Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc. R. Soc. Lond. Ser. B 266, 1939–1945 (1999).

    CAS  Google Scholar 

  • 63.

    Lloyd-Smith, J., Getz, W. & Westerhoff, H. Frequency-dependent incidence in models of sexually transmitted diseases: portrayal of pair-based transmission and effects of illness on contact behaviour. Proc. R. Soc. B: Biol. Sci. 271, 625–634 (2004).

    Google Scholar 

  • 64.

    Wasserberg, G. et al. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J. Appl. Ecol. 46, 457–466 (2009).

    PubMed  Google Scholar 

  • 65.

    Roche, B. et al. Adaptive evolution and environmental durability jointly structure phylodynamic patterns in avian influenza viruses. PLoS Biol. 12, e1001931 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Morters, M. K. et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 82, 6–14 (2013).

    PubMed  Google Scholar 

  • 67.

    Brunker, K. et al. Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs. Mol. Ecol. 27, 773–788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Almberg, E. S. et al. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS ONE 6, e19896 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Dobson, A. & Meagher, M. The population dynamics of brucellosis in the Yellowstone National Park. Ecology 77, 1026–1036 (1996).

    Google Scholar 

  • 70.

    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5, e9090 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Donnelly, C. et al. Impacts of widespread badger culling on cattle tuberculosis: concluding analyses from a large-scale field trial. Int. J. Infect. Dis. 11, 300–308 (2007).

    PubMed  Google Scholar 

  • 72.

    Carter, S. P., et al. in Management of Disease in Wild Mammals (eds Delahay, R. J., Smith, G. C. & Hutchings, M. R.) 121–146 (Springer, Tokyo, 2009).

  • 73.

    Hallam, T. G. & McCracken, G. F. Management of the panzootic white-nose syndrome through culling of bats. Conserv. Biol. 25, 189–194 (2010).

    PubMed  Google Scholar 

  • 74.

    Carter, S. P. et al. Culling-induced social perturbation in eurasian badgers meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc. Biol. Sci. 274, 2769–2777 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Prentice, J. C. et al. When to kill a cull: factors affecting the success of culling wildlife for disease control. J. R. Soc. Interface 16, 20180901 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Davidson, R. S. et al. Use of host population reduction to control wildlife infection: rabbits and paratuberculosis. Epidemiol. Infect. 137, 131–138 (2009).

    CAS  PubMed  Google Scholar 

  • 77.

    Beeton, N. & McCallum, H. Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J. Appl. Ecol. 48, 1315–1323 (2011).

    Google Scholar 

  • 78.

    Horan, R. D. et al. Joint Management of Wildlife and Livestock Disease. Environ. Resour. Econ. 41, 47–70 (2008).

    Google Scholar 

  • 79.

    Miguel., E., et al. Optimizing public health strategies in low-income countries: Epidemiology, ecology and evolution for the control of malaria. Ecology and Evolution of Infectious Diseases. 320 (Oxford University Press, Oxford, 2018).

  • 80.

    Harrison, A. et al. Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 47, 926–930 (2010).

    Google Scholar 

  • 81.

    Bolzoni, L. & De Leo, G.A.. in Environment and Development Economics vol 12: 653–671 (Cambridge University Press, 2007.

  • 82.

    Defra, Department for Environment Food and Rural Affairs: Government badger control costs 2017. https://www.gov.uk/government/publications/bovine-tb-government-badger-control-costs/government-badger-control-costs-2017 (Policy paper, 2018).

  • 83.

    Defra, National statistics on Bovine TB statistics for Great Britain. (retrieved on from http://www.defra.gov.uk/statistics/foodfarm/landuselivestock/cattletb/) (2017).

  • 84.

    Hampton, J. O. & Hyndman, T. H. Underaddressed animal-welfare issues in conservation. Conserv. Biol. 33, 803–811 (2019).

    PubMed  Google Scholar 

  • 85.

    O’Connor, C. M., Haydon, D. T. & Kao, R. R. An ecological and comparative perspective on the control of bovine tuberculosis in Great Britain and the Republic of Ireland. Preventive Vet. Med. 104, 185–197 (2012).

    Google Scholar 

  • 86.

    Enticott, G. Public attitudes to badger culling to control bovine tuberculosis in rural Wales. Eur. J. Wildl. Res. 61, 387–398 (2015).

    Google Scholar 

  • 87.

    White, P. C. et al. Control of bovine tuberculosis in British livestock: there is no ‘silver bullet’. Trends Microbiol. 16, 420–427 (2008).

    CAS  PubMed  Google Scholar 

  • 88.

    Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Lambert., P. Arreté N° DDT-2019-790 authorization for euthanasia of Capra Ibex in massif du Bargy Alps, in Préfet de la Haute-Savoie, D.d.d. territoires, Editor (2019).

  • 90.

    Smith, G. C. Models of Mycobacterium bovis in wildlife and cattle. Tuberculosis 81, 51–64 (2001).

    CAS  PubMed  Google Scholar 

  • 91.

    Martin, L. E. R. et al. Weather influences trapping success for tuberculosis management in European badgers (Meles meles). Eur. J. Wildl. Res. 63, 30 (2017).

    Google Scholar 

  • 92.

    Conner, M. M. et al. A meta-BACI approach for evaluating management intervention on chronic wasting disease in mule deer. Ecol. Appl. 17, 140–153 (2007).

    PubMed  Google Scholar 

  • 93.

    Haley, N. & Richt, J. Evolution of diagnostic tests for chronic wasting disease, a naturally occurring prion disease of cervids. Pathogens 6, 35 (2017).

    PubMed Central  Google Scholar 

  • 94.

    Bunk, S. Chronic wasting disease—prion disease in the wild. PLos Biol. 2, 427–430 (2004).

    CAS  Google Scholar 

  • 95.

    Miller, M. W. & Conner, M. M. Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and demographic influences on observed prevalence patterns. J. Wildl. Dis. 41, 275–290 (2005).

    PubMed  Google Scholar 

  • 96.

    ANSES, Control measures for brucellosis in Ibex from Bargy (in French: Mesures de maîtrise de la brucellose chez les bouquetins du Bargy). Edition scientifique, E. scientifique, Editor. (2015).

  • 97.

    ANSES, Evaluation de la pertinence de la vaccination des bouquetins du Bargy contre la brucellose. Rapport d’expertise collective (2019).

  • 98.

    Choisy, M. & Rohani, P. Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. Lond. Ser. B 273, 2025–2034 (2006).

    Google Scholar 

  • 99.

    Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: implications for the control of bovine tuberculosis. J. Appl. Ecol. 43, 1–10 (2006).

    Google Scholar 

  • 100.

    Woodroffe, R. et al. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).

    CAS  PubMed  Google Scholar 

  • 101.

    Cross, P. C., et al., in Management of Disease in Wild Mammals. (eds Delahay, R., Smith, G. C., Hutchings, M. R.) Chapter 2, 284–284 (Springer, Tokyo, 2009).

  • 102.

    Riordan, P. et al. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6, e28904 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 103.

    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    CAS  PubMed  Google Scholar 

  • 104.

    Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436 (2009).

    PubMed  Google Scholar 

  • 105.

    Douglass, R. J. et al. Removing deer mice from buildings and the risk for human exposure to Sin Nombre virus. Emerg. Infect. Dis. 9, 390–392 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 106.

    Myers, J. H. et al. Eradication revisited: dealing with exotic species. Trends Ecol. Evolution 15, 316–320 (2000).

    CAS  Google Scholar 

  • 107.

    Woodroffe, R., et al. in Biology and Conservation of Wild Canids. (eds Macdonald, D. W. & Sillero-Zubiri, C.) (Oxford University Press, New York, 2004).

  • 108.

    Donnelly, C. et al. Four principles to make evidence synthesis more useful for policy. Nature 558, 361–364 (2018).

    CAS  PubMed  Google Scholar 

  • 109.

    Sinclair, A.R., Fryxell, J.M. & Caughley, G. Wildlife Ecology, Conservation and Management (Blackwell Publishing, Oxford, 2006).

  • 110.

    Colenutt, C., et al. Environmental sampling as a low-technology method for surveillance of foot-and-mouth disease virus in an area of endemicity. Appl Environ Microbiol. 84, e00686-18 (2018).

  • 111.

    Mouchantat, S. et al. Proof of principle: Non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Vet. Microbiol. 172, 329–333 (2014).

    PubMed  Google Scholar 

  • 112.

    Bataille, A. et al. Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci. Rep. 9, 4742 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 113.

    Bitome-Essono, P.-Y. et al. Tracking zoonotic pathogens using blood-sucking flies as ‘flying syringes’. eLife 6, e22069 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 114.

    Begon, M., Townsend, C.R. & Harper, J. L. Ecology: From Individuals to Ecosystems. 4th edn, 738 (Blackwell Publishing, Oxford, 2006).

  • 115.

    Roche, B. et al. The niche reduction approach: an opportunity for optimal control of infectious diseases in low-income countries? BMC Public Health 14, 753 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 116.

    Wint, G. R. et al. Mapping bovine tuberculosis in Great Britain using environmental data. Trends Microbiol. 10, 441–444 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 117.

    Mace, G. M. Whose conservation? Changes in the perception and goals of nature conservation require a solid scientific basis. Science 345, 1558–1560 (2014).

    CAS  PubMed  Google Scholar 

  • 118.

    Lloyd-Smith, J. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evolution 20, 511–519 (2005).

    Google Scholar 

  • 119.

    Eberhardt, L. L. Quantitative ecology and impact assessment. J. Environ. Manag. 4, 27–70 (1976).

    Google Scholar 

  • 120.

    Tildesley, M. J. et al. Impact of spatial clustering on disease transmission and optimal control. Proc. Natl Acad. Sci. USA 107, 1041–1046 (2010).

    CAS  PubMed  Google Scholar 

  • 121.

    Carrington, D. Gassing of badgers considered in plan to eradicate TB in cattle. Available from: https://www.theguardian.com/environment/2013/jul/04/gassing-badgers-eradicate-tb-cattle (2013).

  • 122.

    Wobeser, G. Disease management strategies for wildlife. Rev. Scientifique Et. Tech. De. L Off. Int. Des. Epizooties 21, 159–178 (2002).

    CAS  Google Scholar 

  • 123.

    Bartlett, M. S. The critical community size for measles in the United States. J. R. Stat. Soc. A Stat. 123, 37–44 (1960).

    Google Scholar 

  • 124.

    Lefevre, T. & Raymond, M. Biologie évolutive. 2010: Edition de boeck université. Groupe De Boeck s.a. (2010).

  • 125.

    Gilbert, L. et al. Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J. Anim. Ecol. 70, 1053–1061 (2001).

    Google Scholar 

  • 126.

    Grenfell, B. & Harwood, J. (Meta)population dynamics of infectious diseases. Trends Ecol. Evolution 12, 395–399 (1997).

    CAS  Google Scholar 

  • 127.

    McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evolution 16, 295–300 (2001).

    CAS  Google Scholar 

  • 128.

    Keeling, M. J. et al. Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003).

    CAS  PubMed  Google Scholar 

  • 129.

    May, R. M. & Anderson, R. M. Transmission dynamics of HIV infection. Nature 326, 137–142 (1987).

    CAS  PubMed  Google Scholar 

  • 130.

    Antonovics, J., Iwasa, Y. & Hassell, M. P. A generalized model of parasitoid, venereal, and vector-based transmission processes. Am. Naturalist 145, 661–675 (1995).

    Google Scholar 

  • 131.

    Clayton, D. A. & Tompkins, D. M. Ectoparasite virulence is linked to mode of transmission. Proc. Biol. Sci. 256, 211–217 (1994).

    CAS  PubMed  Google Scholar 

  • 132.

    Pollock, K. H. et al. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13, 105–119 (2002).

    Google Scholar 

  • 133.

    Buckland, S. T. et al. in Distance Sampling: Methods and Applications (eds Buckland, S. T. et al.) 29–34 (Springer International Publishing: Cham., 2015).

  • 134.

    Miguel, E. et al. Characterising African tick communities at a wild-domestic interface using repeated sampling protocols and models. Acta Tropica 138, 5–14 (2014).

    PubMed  Google Scholar 

  • 135.

    Howe, E. J. et al. Distance sampling with camera traps. Methods Ecol. Evolution 8, 1558–1565 (2017).

    Google Scholar 

  • 136.

    Gopal, R. et al. Introduction of bovine tuberculosis to north-east England by bought-in cattle. Vet. Rec. 159, 265–271 (2006).

    CAS  PubMed  Google Scholar 

  • 137.

    de la Rua-Domenech, R. et al. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 81, 190–210 (2006).

    PubMed  Google Scholar 

  • 138.

    Gilbert, M. et al. Cattle movements and bovine tuberculosis in Great Britain. Nature 435, 491–496 (2005).

    CAS  PubMed  Google Scholar 

  • 139.

    Brooks-Pollock, E., Roberts, G.O. & Keeling, M.J. A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511: 228–231 (2014)

  • 140.

    Defra, Bovine Tuberculosis Evidence Plan. Department for Environment Food and Rural Affairs. (National Audit, 2013).

  • 141.

    Vial, F. et al. Bovine tuberculosis risk factors for british herds before and after the 2001 foot-and-mouth epidemic: what have we learned from the TB99 and CCS2005 Studies? Transbound. Emerg. Dis. 62, 505–515 (2015).

    CAS  PubMed  Google Scholar 

  • 142.

    Menzies, F. D. & Neill, S. D. Cattle-to-cattle transmission of bovine tuberculosis. Vet. J. 160, 92–106 (2000).

    CAS  PubMed  Google Scholar 

  • 143.

    Donnelly, C.A. & Nouvellet, P. The contribution of badgers to confirmed tuberculosis in cattle in high-incidence areas in England. PLoS Curr. https://currents.plos.org/outbreaks/index.html%3Fp=22371.html (2013).

  • 144.

    Corner, L. A. L., Murphy, D. & Gormley, E. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. J. Comp. Pathol. 144, 1–24 (2011).

    CAS  PubMed  Google Scholar 

  • 145.

    Defra. Bovine TB: authorisation for badger control in 2017. https://www.gov.uk/government/publications/bovine-tb-authorisation-for-badger-control-in-2017 (2017).

  • 146.

    Aguilar, X. F. et al. PPR virus threatens wildlife conservation. Science 362, 165 (2018).

    CAS  PubMed  Google Scholar 

  • 147.

    Hamede, R. et al. Reduced effect of tasmanian devil facial tumor disease at the disease front. Conserv. Biol. 26, 124–134 (2012).

    PubMed  Google Scholar 

  • 148.

    Lachish, S., Jones, M. & McCallum, H. The impact of disease on the survival and population growth rate of the Tasmanian devil. J. Anim. Ecol. 76, 926–936 (2007).

    PubMed  Google Scholar 

  • 149.

    Hawkins, C. E. et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 131, 307–324 (2006).

    Google Scholar 

  • 150.

    Rosatte, R. et al. The elimination of raccoon rabies from Wolfe Island, Ontario: Animal density and movements. J. Wildl. Dis. 43, 242–250 (2007).

    PubMed  Google Scholar 

  • 151.

    Haydon, D. T. et al. Low-coverage vaccination strategies for the conservation of endangered species. Nature 443, 692–695 (2006).

    CAS  PubMed  Google Scholar 

  • 152.

    Ramsey, D. S. L. & Efford, M. G. Management of bovine tuberculosis in brushtail possums in New Zealand: predictions from a spatially explicit, individual-based model. J. Appl. Ecol. 47, 911–919 (2010).

    Google Scholar 

  • 153.

    Tompkins, D. M. et al. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc. Biol. Sci. 276, 2987–2995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 154.

    Brochier, B. et al. Large-scale eradication of rabies using recombinant vaccina rabies vaccines. Nature 354, 520–522 (1991).

    CAS  PubMed  Google Scholar 

  • 155.

    Ballesteros, C. et al. Acceptance and palatability for domestic and wildlife hosts of baits designed to deliver a tuberculosis vaccine to wild boar piglets. Preventive Vet. Med. 98, 198–203 (2011).

    Google Scholar 

  • 156.

    Rossi, S. et al. New insights on the management of wildlife diseases using multi-state recapture models: the case of classical swine fever in wild boar. PLoS ONE 6, e24257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 157.

    Kaden, V. et al. Oral immunisation of wild boar against classical swine fever: evaluation of the first field study in Germany. Vet. Microbiol. 73, 239–252 (2000).

    CAS  PubMed  Google Scholar 

  • 158.

    Wilkinson, D. et al. A model of bovine tuberculosis in the badger Meles meles: An evaluation of different vaccination strategies. J. Appl. Ecol. 41, 492–501 (2004).

    Google Scholar 

  • 159.

    Foggin, C. in Fencing Impacts: A review of the environmental, social and economic impacts of game and veterinary fencing in Africa with particular reference to the Great Limpopo and Kavango-Zambezi transfrontier Conservation Areas (eds Ferguson, K. & Hamks, J) (University of Pretoria: Pretoria, 2010)

  • 160.

    Smith, G. C. & Cheeseman, C. L. A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecol. Model. 150, 45–53 (2002).

    Google Scholar 

  • 161.

    Lindsey., P. A. et al. in Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? Chapter 12(eds Somers, M. J. & Hayward, M. W.) (Springer Science+Business Media, LLC, 2012).

  • 162.

    Pepperell, C. S. et al. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade. Proc. Natl Acad. Sci. USA 108, 6526–6531 (2011).

    CAS  PubMed  Google Scholar 

  • 163.

    Livingstone, P. G. et al. Regionalization: a strategy that will assist with bovine tuberculosis control and facilitate trade. Vet. Microbiol. 112, 291–301 (2006).

    CAS  PubMed  Google Scholar 

  • 164.

    Animal and Plant Health Agency. Bovine TB testing intervals (2017).

  • 165.

    Packer, C. et al. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 797–802 (2003).

    Google Scholar 

  • 166.

    Duffy, M. A. et al. Unhealthy herds: indirect effects of predators enhance two drivers of disease spread. Funct. Ecol. 25, 945–953 (2011).

    Google Scholar 

  • 167.

    Proffitt, K. M., White, P. J. & Garrott, R. A. Spatio-temporal overlap between Yellowstone bison and elk— implications of wolf restoration and other factors for brucellosis transmission risk. J. Appl. Ecol. 47, 281–289 (2010).

    Google Scholar 

  • 168.

    Wild, M. A. et al. The role of predation in disease control: a comparison of selective and nonselective removal on prion disease dynamics in deer. J. Wildl. Dis. 47, 78–93 (2011).

    PubMed  Google Scholar 

  • 169.

    Miguel, E. et al. Drivers of Foot and Mouth Disease in cattle at wild/domestic interface: insights from farmers, buffalo and lions. Diversity Distrib. 23, 1018–1030 (2017).

    Google Scholar 

  • 170.

    Hosseini, P. R., et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1722 (2017).

  • 171.

    FAO, The second report on the state of the world’s animal genetic resources for food and agriculture (F.c.o.g.r.f.f.a.a. assessments, 2015).

  • 172.

    Clifton-Hadley, R. S., Wilesmith, J. W. & Stuart, F. A. Mycobacterium bovis in the European badger (Meles meles): epidemiological findings in tuberculous badgers from a naturally infected population. Epidemiol Infect.111, 9–19 (1993).

  • 173.

    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Preventive Vet. Med. 88, 178–184 (2009).

    CAS  Google Scholar 

  • 174.

    Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Preventive Vet. Med. 67, 237–266 (2005).

    CAS  Google Scholar 

  • 175.

    le Roex, N., et al. Disease control in wildlife: evaluating a test and cull programme for bovine tuberculosis in African buffalo. Transbound Emerg. Dis. 63, 647–657 (2015).

  • 176.

    Radunz, B. Surveillance and risk management during the latter stages of eradication: experiences from Australia. Vet. Microbiol. 112, 283–290 (2006).

    PubMed  Google Scholar 

  • 177.

    O’Brien, D. J. et al. Recent advances in the management of bovine tuberculosis in free-ranging wildlife. Vet. Microbiol. 151, 22–33 (2011).

    Google Scholar 

  • 178.

    Livingstone, P. G., et al. Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock. N. Z. Vet. J. 63, 98–107 (2015)..

  • 179.

    Boadella, M. et al. Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky’s disease virus. Preventive Vet. Med. 107, 214–221 (2012).

    CAS  Google Scholar 

  • 180.

    García-Jiménez, W. L. et al. Reducing Eurasian wild boar (Sus scrofa) population density as a measure for bovine tuberculosis control: effects in wild boar and a sympatric fallow deer (Dama dama) population in Central Spain. Preventive Vet. Med. 110, 435–446 (2013).

    Google Scholar 

  • 181.

    Carstensen, M. & DonCarlos, M. W. Preventing the establishment of a wildlife disease reservoir: a case study of bovine tuberculosis in wild deer in minnesota, USA. Vet. Med. Int. 2011, 10 (2011).

    Google Scholar 

  • 182.

    Cosgrove, M. K., et al. Live-trapping and bovine tuberculosis testing of free-ranging white-tailed deer for targeted removal. Wildlife Res. 39, 104–111 (2012).


  • Source: Ecology - nature.com

    Reply to “Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought”

    Monitoring of forage and nutrition before and after reintroduction of banteng (Bos javanicus d’ Alton, 1823) to Salakphra Wildlife Sanctuary, Thailand