in

A systemic approach to assess the potential and risks of wildlife culling for infectious disease control

  • 1.

    Lloyd-Smith, J. et al. Epidemic dynamic at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Kilpatrick, A. M. et al. Host heterogeneity dominates West Nile virus transmission. Proc. Biol. Sci. 273, 2327–2333 (2006).

    PubMed  Google Scholar 

  • 3.

    Woolhouse, M., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. Science 292, 1109–1112 (2001).

    CAS  PubMed  Google Scholar 

  • 4.

    Cohen., J. Mining coronavirus genomes for clues to the outbreak’s origins. Science https://doi.org/10.1126/science.abb1256 (2020).

  • 5.

    D’arc, M. et al. Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl Acad. Sci. USA 112, E1343–E1352 (2015).

    PubMed  Google Scholar 

  • 6.

    Barrett, A. & Monath, T. Epidemiology and ecology of yellow fever virus. Adv. Virus Res. 61, 291–315 (2003).

    PubMed  Google Scholar 

  • 7.

    Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006).

    CAS  PubMed  Google Scholar 

  • 8.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kuiken, T. Host Species Barriers to Influenza Virus Infections. Science 312, 394–397 (2006).

    CAS  PubMed  Google Scholar 

  • 10.

    Woolhouse, M. et al. Human viruses: discovery and emergence. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2864–2871 (2012).

    Google Scholar 

  • 11.

    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  PubMed  Google Scholar 

  • 12.

    Archer, E.R., Dziba, L.E., Mulongoy, K.J., Maoela, M.A. & Walters, M. (eds). The IPBES regional assessment report on biodiversity and ecosystem services for Africa. 492 (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2018).

  • 13.

    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. 110, 8399–8404 (2013).

    CAS  PubMed  Google Scholar 

  • 14.

    Hassell, J. M. et al. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evolution 32, 55–67 (2017).

    Google Scholar 

  • 15.

    Barroux, G. La santé des animaux et l’émergence d’une médecine vétérinaire au xviiie siècle. Rev. d’histoire des. Sci. 64, 349–376 (2011).

    Google Scholar 

  • 16.

    Morens, D. M. et al. Global rinderpest eradication: lessons learned and why humans should celebrate too. J. Infect. Dis. 204, 502–505 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Anderson, R. M. et al. Population-dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).

    CAS  PubMed  Google Scholar 

  • 18.

    Tildesley, M. J. et al. The role of pre-emptive culling in the control of foot-and-mouth disease. Proc. Biol. Sci. 276, 3239–3248 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Alexander, D. J. An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644 (2007).

    CAS  PubMed  Google Scholar 

  • 20.

    Wang, T., Sun, Y. & Qiu, H.-J. African swine fever: an unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Haydon, D. T., Kao, R. R. & Kitching, R. P. The UK foot-and-mouth disease outbreak—the aftermath. Nat. Rev. Microbiol. 2, 675–U8 (2004).

    CAS  PubMed  Google Scholar 

  • 22.

    Andersson, J. A. & Cumming, D. H. in Transfrontier Conservation Areas: People Living on the Edge, (eds Andersson, J. A. et al.). 25–61. (Earthscan: London, 2013).

  • 23.

    Cumming, D. H. M., Osofsky S. A., Atkinson S. J. & Atkinson M. W. in One Health: The Theory and Practice of Integrated Health Approaches (eds Zingsstag, J., Schelling, E., Waltner-Toews, D., Whittaker, M. & Tanner, M.) 243–258 (CABI International, 2015).

  • 24.

    Aubert, M. F. A. Costs and benefits of rabies control in wildlife in France. Rev. Scientifique et. Tech. de. l’Office Int. des. Epizooties 18, 533–543 (1999).

    CAS  Google Scholar 

  • 25.

    King, A. A. Historical Perspective of Rabies in Europe and the Mediterranean Basin. A testament to rabies. (eds. King, A.A., Fooks, A. R.., Aubert, M. & Wandeler, A.I.) book is published by the World Organisation for Animal Health (OIE) in conjunction with the World Health Organisation (WHO) Collaborating Centre (2004).

  • 26.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (Advance unedited version 2019).

  • 27.

    Bolzoni, L. & G.A. De, Leo Unexpected consequences of culling on the eradication of wildlife diseases: the role of virulence evolution. Am. Naturalist 181, 301–313 (2013).

    Google Scholar 

  • 28.

    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc. Biol. Sci. 279, 3384–3392 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Lachish, S. et al. Evaluation of selective culling of infected individuals to control tasmanian devil facial tumor disease. Conserv. Biol. 24, 841–851 (2010).

    PubMed  Google Scholar 

  • 30.

    Dudas, G. et al. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    de Garine-Wichatitsky, M. et al. A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol. Infect. 141, 1342–1356 (2013).

    PubMed  Google Scholar 

  • 32.

    Johnson, P. T. J. et al. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–230-233 (2013).

    CAS  PubMed  Google Scholar 

  • 33.

    Dearing, M. D. et al. The roles of community diversity and contact rates on pathogen prevalence. J. Mammal. 96, 29–36 (2015).

    Google Scholar 

  • 34.

    Delahay, R. J. et al. Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Vet. J. 173, 287–301 (2007).

    CAS  PubMed  Google Scholar 

  • 35.

    Independent Scientific Group on Cattle TB, Bovine TB: The Scientific Evidence. A Science Base for a Sustainable Policy to Control TB in Cattle An Epidemiological Investigation into Bovine Tuberculosis. (2007).

  • 36.

    Donnelly, C. & Woodroffe, R. Reduce uncertainty in UK badger culling. Nature 485, 582–582 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    Donnelly, C. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843–846 (2006).

    CAS  PubMed  Google Scholar 

  • 38.

    Donnelly, C. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426, 834 (2003).

    CAS  PubMed  Google Scholar 

  • 39.

    Hars, J., C. Richomme, & M. L. Boschiroli, Bovine tuberculosis in wild animal in France (Only in French: la tuberculose bovine dans la faune sauvage en France). Bulletin épiémiologique. 38 (Spécial zoonoses, 2010).

  • 40.

    Viana, M. et al. Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study. Parasitology 143, 821–834 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Haydon, D. T. et al. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8, 1468–1473 (2002).

    PubMed  Google Scholar 

  • 42.

    Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 2001).

  • 43.

    Putman, R. J. Community Ecology (Springer Verlag, New York: Springer Netherlands, 1994).

  • 44.

    Odum, E. Fundamentals of Ecology. (Sauders, Washington D.C., 1971.)

  • 45.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

  • 46.

    Bolzoni, L., Real, L. & De Leo, G. Transmission heterogeneity and control strategies for infectious disease emergence. PLos ONE 2, e747 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

    CAS  PubMed  Google Scholar 

  • 48.

    Russell, A. L. et al. Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity. BMC Evolut. Biol. 11, 88–88 (2011).

    Google Scholar 

  • 49.

    Donnelly, C. & Woodroffe, R. Bovine tuberculosis: Badger-cull targets unlikely to reduce TB. Nature 526, 640–640 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Galvani, A. P. & May, R. M. Epidemiology—dimensions of superspreading. Nature 438, 293–295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Anderson, R. M. & R. M. May. Infectious Diseases of Humans: Dynamics and Control (eds Anderson R.M. & May, R.M) (Oxford University Press, Oxford, 1991).

  • 52.

    Alexander, H. K. & Day, T. Risk factors for the evolutionary emergence of pathogens. J. R. Soc. Interface 8, 1064–1064 (2011).

    PubMed Central  Google Scholar 

  • 53.

    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).

    PubMed  Google Scholar 

  • 54.

    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).

    PubMed  Google Scholar 

  • 55.

    Bienen, L. & Tabor, G. Applying an ecosystem approach to brucellosis control: can an old conflict between wildlife and agriculture be successfully managed? Front. Ecol. Environ. 4, 319–327 (2006).

    Google Scholar 

  • 56.

    Kramer-Schadt, S., Fernandez, N. & Thulke, H. Potential ecological and epidemiological factors affecting the persistence of classical swine fever in wild boar Sus scrofa populations. Mammal. Rev. 37, 1–20 (2007).

    Google Scholar 

  • 57.

    Rands, M. R. W. et al. Biodiversity Conservation: Challenges Beyond 2010. Science 329, 1298–1303 (2010).

    CAS  PubMed  Google Scholar 

  • 58.

    Black, F. L. Measles endemicity in insular populations – critical community size and its evolutionary implication. J. Theor. Biol. 11, 207–211 (1966).

    CAS  PubMed  Google Scholar 

  • 59.

    Bartlett, M. S. Measles periodicity and community size. J. R. Stat. Soc. Ser. a-Gen. 120, 48–70 (1957).

    Google Scholar 

  • 60.

    Delahay, R. J., Smith, G. C., & Hutchings, M. R. Management of Disease in Wild Mammals 284 (Springer, Tokyo, 2009).

  • 61.

    Ramsey, D. et al. The effects of reducing population density on contact rates between brushtail possums: implications for transmission of bovine tuberculosis. J. Appl. Ecol. 39, 806–818 (2002).

    Google Scholar 

  • 62.

    Begon, M. et al. Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc. R. Soc. Lond. Ser. B 266, 1939–1945 (1999).

    CAS  Google Scholar 

  • 63.

    Lloyd-Smith, J., Getz, W. & Westerhoff, H. Frequency-dependent incidence in models of sexually transmitted diseases: portrayal of pair-based transmission and effects of illness on contact behaviour. Proc. R. Soc. B: Biol. Sci. 271, 625–634 (2004).

    Google Scholar 

  • 64.

    Wasserberg, G. et al. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J. Appl. Ecol. 46, 457–466 (2009).

    PubMed  Google Scholar 

  • 65.

    Roche, B. et al. Adaptive evolution and environmental durability jointly structure phylodynamic patterns in avian influenza viruses. PLoS Biol. 12, e1001931 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Morters, M. K. et al. Evidence-based control of canine rabies: a critical review of population density reduction. J. Anim. Ecol. 82, 6–14 (2013).

    PubMed  Google Scholar 

  • 67.

    Brunker, K. et al. Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs. Mol. Ecol. 27, 773–788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Almberg, E. S. et al. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS ONE 6, e19896 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Dobson, A. & Meagher, M. The population dynamics of brucellosis in the Yellowstone National Park. Ecology 77, 1026–1036 (1996).

    Google Scholar 

  • 70.

    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5, e9090 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Donnelly, C. et al. Impacts of widespread badger culling on cattle tuberculosis: concluding analyses from a large-scale field trial. Int. J. Infect. Dis. 11, 300–308 (2007).

    PubMed  Google Scholar 

  • 72.

    Carter, S. P., et al. in Management of Disease in Wild Mammals (eds Delahay, R. J., Smith, G. C. & Hutchings, M. R.) 121–146 (Springer, Tokyo, 2009).

  • 73.

    Hallam, T. G. & McCracken, G. F. Management of the panzootic white-nose syndrome through culling of bats. Conserv. Biol. 25, 189–194 (2010).

    PubMed  Google Scholar 

  • 74.

    Carter, S. P. et al. Culling-induced social perturbation in eurasian badgers meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc. Biol. Sci. 274, 2769–2777 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Prentice, J. C. et al. When to kill a cull: factors affecting the success of culling wildlife for disease control. J. R. Soc. Interface 16, 20180901 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Davidson, R. S. et al. Use of host population reduction to control wildlife infection: rabbits and paratuberculosis. Epidemiol. Infect. 137, 131–138 (2009).

    CAS  PubMed  Google Scholar 

  • 77.

    Beeton, N. & McCallum, H. Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J. Appl. Ecol. 48, 1315–1323 (2011).

    Google Scholar 

  • 78.

    Horan, R. D. et al. Joint Management of Wildlife and Livestock Disease. Environ. Resour. Econ. 41, 47–70 (2008).

    Google Scholar 

  • 79.

    Miguel., E., et al. Optimizing public health strategies in low-income countries: Epidemiology, ecology and evolution for the control of malaria. Ecology and Evolution of Infectious Diseases. 320 (Oxford University Press, Oxford, 2018).

  • 80.

    Harrison, A. et al. Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 47, 926–930 (2010).

    Google Scholar 

  • 81.

    Bolzoni, L. & De Leo, G.A.. in Environment and Development Economics vol 12: 653–671 (Cambridge University Press, 2007.

  • 82.

    Defra, Department for Environment Food and Rural Affairs: Government badger control costs 2017. https://www.gov.uk/government/publications/bovine-tb-government-badger-control-costs/government-badger-control-costs-2017 (Policy paper, 2018).

  • 83.

    Defra, National statistics on Bovine TB statistics for Great Britain. (retrieved on from http://www.defra.gov.uk/statistics/foodfarm/landuselivestock/cattletb/) (2017).

  • 84.

    Hampton, J. O. & Hyndman, T. H. Underaddressed animal-welfare issues in conservation. Conserv. Biol. 33, 803–811 (2019).

    PubMed  Google Scholar 

  • 85.

    O’Connor, C. M., Haydon, D. T. & Kao, R. R. An ecological and comparative perspective on the control of bovine tuberculosis in Great Britain and the Republic of Ireland. Preventive Vet. Med. 104, 185–197 (2012).

    Google Scholar 

  • 86.

    Enticott, G. Public attitudes to badger culling to control bovine tuberculosis in rural Wales. Eur. J. Wildl. Res. 61, 387–398 (2015).

    Google Scholar 

  • 87.

    White, P. C. et al. Control of bovine tuberculosis in British livestock: there is no ‘silver bullet’. Trends Microbiol. 16, 420–427 (2008).

    CAS  PubMed  Google Scholar 

  • 88.

    Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Lambert., P. Arreté N° DDT-2019-790 authorization for euthanasia of Capra Ibex in massif du Bargy Alps, in Préfet de la Haute-Savoie, D.d.d. territoires, Editor (2019).

  • 90.

    Smith, G. C. Models of Mycobacterium bovis in wildlife and cattle. Tuberculosis 81, 51–64 (2001).

    CAS  PubMed  Google Scholar 

  • 91.

    Martin, L. E. R. et al. Weather influences trapping success for tuberculosis management in European badgers (Meles meles). Eur. J. Wildl. Res. 63, 30 (2017).

    Google Scholar 

  • 92.

    Conner, M. M. et al. A meta-BACI approach for evaluating management intervention on chronic wasting disease in mule deer. Ecol. Appl. 17, 140–153 (2007).

    PubMed  Google Scholar 

  • 93.

    Haley, N. & Richt, J. Evolution of diagnostic tests for chronic wasting disease, a naturally occurring prion disease of cervids. Pathogens 6, 35 (2017).

    PubMed Central  Google Scholar 

  • 94.

    Bunk, S. Chronic wasting disease—prion disease in the wild. PLos Biol. 2, 427–430 (2004).

    CAS  Google Scholar 

  • 95.

    Miller, M. W. & Conner, M. M. Epidemiology of chronic wasting disease in free-ranging mule deer: Spatial, temporal, and demographic influences on observed prevalence patterns. J. Wildl. Dis. 41, 275–290 (2005).

    PubMed  Google Scholar 

  • 96.

    ANSES, Control measures for brucellosis in Ibex from Bargy (in French: Mesures de maîtrise de la brucellose chez les bouquetins du Bargy). Edition scientifique, E. scientifique, Editor. (2015).

  • 97.

    ANSES, Evaluation de la pertinence de la vaccination des bouquetins du Bargy contre la brucellose. Rapport d’expertise collective (2019).

  • 98.

    Choisy, M. & Rohani, P. Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. Lond. Ser. B 273, 2025–2034 (2006).

    Google Scholar 

  • 99.

    Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: implications for the control of bovine tuberculosis. J. Appl. Ecol. 43, 1–10 (2006).

    Google Scholar 

  • 100.

    Woodroffe, R. et al. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl Acad. Sci. USA 103, 14713–14717 (2006).

    CAS  PubMed  Google Scholar 

  • 101.

    Cross, P. C., et al., in Management of Disease in Wild Mammals. (eds Delahay, R., Smith, G. C., Hutchings, M. R.) Chapter 2, 284–284 (Springer, Tokyo, 2009).

  • 102.

    Riordan, P. et al. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6, e28904 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 103.

    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    CAS  PubMed  Google Scholar 

  • 104.

    Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436 (2009).

    PubMed  Google Scholar 

  • 105.

    Douglass, R. J. et al. Removing deer mice from buildings and the risk for human exposure to Sin Nombre virus. Emerg. Infect. Dis. 9, 390–392 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 106.

    Myers, J. H. et al. Eradication revisited: dealing with exotic species. Trends Ecol. Evolution 15, 316–320 (2000).

    CAS  Google Scholar 

  • 107.

    Woodroffe, R., et al. in Biology and Conservation of Wild Canids. (eds Macdonald, D. W. & Sillero-Zubiri, C.) (Oxford University Press, New York, 2004).

  • 108.

    Donnelly, C. et al. Four principles to make evidence synthesis more useful for policy. Nature 558, 361–364 (2018).

    CAS  PubMed  Google Scholar 

  • 109.

    Sinclair, A.R., Fryxell, J.M. & Caughley, G. Wildlife Ecology, Conservation and Management (Blackwell Publishing, Oxford, 2006).

  • 110.

    Colenutt, C., et al. Environmental sampling as a low-technology method for surveillance of foot-and-mouth disease virus in an area of endemicity. Appl Environ Microbiol. 84, e00686-18 (2018).

  • 111.

    Mouchantat, S. et al. Proof of principle: Non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Vet. Microbiol. 172, 329–333 (2014).

    PubMed  Google Scholar 

  • 112.

    Bataille, A. et al. Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci. Rep. 9, 4742 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 113.

    Bitome-Essono, P.-Y. et al. Tracking zoonotic pathogens using blood-sucking flies as ‘flying syringes’. eLife 6, e22069 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 114.

    Begon, M., Townsend, C.R. & Harper, J. L. Ecology: From Individuals to Ecosystems. 4th edn, 738 (Blackwell Publishing, Oxford, 2006).

  • 115.

    Roche, B. et al. The niche reduction approach: an opportunity for optimal control of infectious diseases in low-income countries? BMC Public Health 14, 753 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 116.

    Wint, G. R. et al. Mapping bovine tuberculosis in Great Britain using environmental data. Trends Microbiol. 10, 441–444 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 117.

    Mace, G. M. Whose conservation? Changes in the perception and goals of nature conservation require a solid scientific basis. Science 345, 1558–1560 (2014).

    CAS  PubMed  Google Scholar 

  • 118.

    Lloyd-Smith, J. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evolution 20, 511–519 (2005).

    Google Scholar 

  • 119.

    Eberhardt, L. L. Quantitative ecology and impact assessment. J. Environ. Manag. 4, 27–70 (1976).

    Google Scholar 

  • 120.

    Tildesley, M. J. et al. Impact of spatial clustering on disease transmission and optimal control. Proc. Natl Acad. Sci. USA 107, 1041–1046 (2010).

    CAS  PubMed  Google Scholar 

  • 121.

    Carrington, D. Gassing of badgers considered in plan to eradicate TB in cattle. Available from: https://www.theguardian.com/environment/2013/jul/04/gassing-badgers-eradicate-tb-cattle (2013).

  • 122.

    Wobeser, G. Disease management strategies for wildlife. Rev. Scientifique Et. Tech. De. L Off. Int. Des. Epizooties 21, 159–178 (2002).

    CAS  Google Scholar 

  • 123.

    Bartlett, M. S. The critical community size for measles in the United States. J. R. Stat. Soc. A Stat. 123, 37–44 (1960).

    Google Scholar 

  • 124.

    Lefevre, T. & Raymond, M. Biologie évolutive. 2010: Edition de boeck université. Groupe De Boeck s.a. (2010).

  • 125.

    Gilbert, L. et al. Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J. Anim. Ecol. 70, 1053–1061 (2001).

    Google Scholar 

  • 126.

    Grenfell, B. & Harwood, J. (Meta)population dynamics of infectious diseases. Trends Ecol. Evolution 12, 395–399 (1997).

    CAS  Google Scholar 

  • 127.

    McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evolution 16, 295–300 (2001).

    CAS  Google Scholar 

  • 128.

    Keeling, M. J. et al. Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003).

    CAS  PubMed  Google Scholar 

  • 129.

    May, R. M. & Anderson, R. M. Transmission dynamics of HIV infection. Nature 326, 137–142 (1987).

    CAS  PubMed  Google Scholar 

  • 130.

    Antonovics, J., Iwasa, Y. & Hassell, M. P. A generalized model of parasitoid, venereal, and vector-based transmission processes. Am. Naturalist 145, 661–675 (1995).

    Google Scholar 

  • 131.

    Clayton, D. A. & Tompkins, D. M. Ectoparasite virulence is linked to mode of transmission. Proc. Biol. Sci. 256, 211–217 (1994).

    CAS  PubMed  Google Scholar 

  • 132.

    Pollock, K. H. et al. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13, 105–119 (2002).

    Google Scholar 

  • 133.

    Buckland, S. T. et al. in Distance Sampling: Methods and Applications (eds Buckland, S. T. et al.) 29–34 (Springer International Publishing: Cham., 2015).

  • 134.

    Miguel, E. et al. Characterising African tick communities at a wild-domestic interface using repeated sampling protocols and models. Acta Tropica 138, 5–14 (2014).

    PubMed  Google Scholar 

  • 135.

    Howe, E. J. et al. Distance sampling with camera traps. Methods Ecol. Evolution 8, 1558–1565 (2017).

    Google Scholar 

  • 136.

    Gopal, R. et al. Introduction of bovine tuberculosis to north-east England by bought-in cattle. Vet. Rec. 159, 265–271 (2006).

    CAS  PubMed  Google Scholar 

  • 137.

    de la Rua-Domenech, R. et al. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 81, 190–210 (2006).

    PubMed  Google Scholar 

  • 138.

    Gilbert, M. et al. Cattle movements and bovine tuberculosis in Great Britain. Nature 435, 491–496 (2005).

    CAS  PubMed  Google Scholar 

  • 139.

    Brooks-Pollock, E., Roberts, G.O. & Keeling, M.J. A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511: 228–231 (2014)

  • 140.

    Defra, Bovine Tuberculosis Evidence Plan. Department for Environment Food and Rural Affairs. (National Audit, 2013).

  • 141.

    Vial, F. et al. Bovine tuberculosis risk factors for british herds before and after the 2001 foot-and-mouth epidemic: what have we learned from the TB99 and CCS2005 Studies? Transbound. Emerg. Dis. 62, 505–515 (2015).

    CAS  PubMed  Google Scholar 

  • 142.

    Menzies, F. D. & Neill, S. D. Cattle-to-cattle transmission of bovine tuberculosis. Vet. J. 160, 92–106 (2000).

    CAS  PubMed  Google Scholar 

  • 143.

    Donnelly, C.A. & Nouvellet, P. The contribution of badgers to confirmed tuberculosis in cattle in high-incidence areas in England. PLoS Curr. https://currents.plos.org/outbreaks/index.html%3Fp=22371.html (2013).

  • 144.

    Corner, L. A. L., Murphy, D. & Gormley, E. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. J. Comp. Pathol. 144, 1–24 (2011).

    CAS  PubMed  Google Scholar 

  • 145.

    Defra. Bovine TB: authorisation for badger control in 2017. https://www.gov.uk/government/publications/bovine-tb-authorisation-for-badger-control-in-2017 (2017).

  • 146.

    Aguilar, X. F. et al. PPR virus threatens wildlife conservation. Science 362, 165 (2018).

    CAS  PubMed  Google Scholar 

  • 147.

    Hamede, R. et al. Reduced effect of tasmanian devil facial tumor disease at the disease front. Conserv. Biol. 26, 124–134 (2012).

    PubMed  Google Scholar 

  • 148.

    Lachish, S., Jones, M. & McCallum, H. The impact of disease on the survival and population growth rate of the Tasmanian devil. J. Anim. Ecol. 76, 926–936 (2007).

    PubMed  Google Scholar 

  • 149.

    Hawkins, C. E. et al. Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 131, 307–324 (2006).

    Google Scholar 

  • 150.

    Rosatte, R. et al. The elimination of raccoon rabies from Wolfe Island, Ontario: Animal density and movements. J. Wildl. Dis. 43, 242–250 (2007).

    PubMed  Google Scholar 

  • 151.

    Haydon, D. T. et al. Low-coverage vaccination strategies for the conservation of endangered species. Nature 443, 692–695 (2006).

    CAS  PubMed  Google Scholar 

  • 152.

    Ramsey, D. S. L. & Efford, M. G. Management of bovine tuberculosis in brushtail possums in New Zealand: predictions from a spatially explicit, individual-based model. J. Appl. Ecol. 47, 911–919 (2010).

    Google Scholar 

  • 153.

    Tompkins, D. M. et al. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc. Biol. Sci. 276, 2987–2995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 154.

    Brochier, B. et al. Large-scale eradication of rabies using recombinant vaccina rabies vaccines. Nature 354, 520–522 (1991).

    CAS  PubMed  Google Scholar 

  • 155.

    Ballesteros, C. et al. Acceptance and palatability for domestic and wildlife hosts of baits designed to deliver a tuberculosis vaccine to wild boar piglets. Preventive Vet. Med. 98, 198–203 (2011).

    Google Scholar 

  • 156.

    Rossi, S. et al. New insights on the management of wildlife diseases using multi-state recapture models: the case of classical swine fever in wild boar. PLoS ONE 6, e24257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 157.

    Kaden, V. et al. Oral immunisation of wild boar against classical swine fever: evaluation of the first field study in Germany. Vet. Microbiol. 73, 239–252 (2000).

    CAS  PubMed  Google Scholar 

  • 158.

    Wilkinson, D. et al. A model of bovine tuberculosis in the badger Meles meles: An evaluation of different vaccination strategies. J. Appl. Ecol. 41, 492–501 (2004).

    Google Scholar 

  • 159.

    Foggin, C. in Fencing Impacts: A review of the environmental, social and economic impacts of game and veterinary fencing in Africa with particular reference to the Great Limpopo and Kavango-Zambezi transfrontier Conservation Areas (eds Ferguson, K. & Hamks, J) (University of Pretoria: Pretoria, 2010)

  • 160.

    Smith, G. C. & Cheeseman, C. L. A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecol. Model. 150, 45–53 (2002).

    Google Scholar 

  • 161.

    Lindsey., P. A. et al. in Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? Chapter 12(eds Somers, M. J. & Hayward, M. W.) (Springer Science+Business Media, LLC, 2012).

  • 162.

    Pepperell, C. S. et al. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade. Proc. Natl Acad. Sci. USA 108, 6526–6531 (2011).

    CAS  PubMed  Google Scholar 

  • 163.

    Livingstone, P. G. et al. Regionalization: a strategy that will assist with bovine tuberculosis control and facilitate trade. Vet. Microbiol. 112, 291–301 (2006).

    CAS  PubMed  Google Scholar 

  • 164.

    Animal and Plant Health Agency. Bovine TB testing intervals (2017).

  • 165.

    Packer, C. et al. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 797–802 (2003).

    Google Scholar 

  • 166.

    Duffy, M. A. et al. Unhealthy herds: indirect effects of predators enhance two drivers of disease spread. Funct. Ecol. 25, 945–953 (2011).

    Google Scholar 

  • 167.

    Proffitt, K. M., White, P. J. & Garrott, R. A. Spatio-temporal overlap between Yellowstone bison and elk— implications of wolf restoration and other factors for brucellosis transmission risk. J. Appl. Ecol. 47, 281–289 (2010).

    Google Scholar 

  • 168.

    Wild, M. A. et al. The role of predation in disease control: a comparison of selective and nonselective removal on prion disease dynamics in deer. J. Wildl. Dis. 47, 78–93 (2011).

    PubMed  Google Scholar 

  • 169.

    Miguel, E. et al. Drivers of Foot and Mouth Disease in cattle at wild/domestic interface: insights from farmers, buffalo and lions. Diversity Distrib. 23, 1018–1030 (2017).

    Google Scholar 

  • 170.

    Hosseini, P. R., et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1722 (2017).

  • 171.

    FAO, The second report on the state of the world’s animal genetic resources for food and agriculture (F.c.o.g.r.f.f.a.a. assessments, 2015).

  • 172.

    Clifton-Hadley, R. S., Wilesmith, J. W. & Stuart, F. A. Mycobacterium bovis in the European badger (Meles meles): epidemiological findings in tuberculous badgers from a naturally infected population. Epidemiol Infect.111, 9–19 (1993).

  • 173.

    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Preventive Vet. Med. 88, 178–184 (2009).

    CAS  Google Scholar 

  • 174.

    Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Preventive Vet. Med. 67, 237–266 (2005).

    CAS  Google Scholar 

  • 175.

    le Roex, N., et al. Disease control in wildlife: evaluating a test and cull programme for bovine tuberculosis in African buffalo. Transbound Emerg. Dis. 63, 647–657 (2015).

  • 176.

    Radunz, B. Surveillance and risk management during the latter stages of eradication: experiences from Australia. Vet. Microbiol. 112, 283–290 (2006).

    PubMed  Google Scholar 

  • 177.

    O’Brien, D. J. et al. Recent advances in the management of bovine tuberculosis in free-ranging wildlife. Vet. Microbiol. 151, 22–33 (2011).

    Google Scholar 

  • 178.

    Livingstone, P. G., et al. Development of the New Zealand strategy for local eradication of tuberculosis from wildlife and livestock. N. Z. Vet. J. 63, 98–107 (2015)..

  • 179.

    Boadella, M. et al. Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky’s disease virus. Preventive Vet. Med. 107, 214–221 (2012).

    CAS  Google Scholar 

  • 180.

    García-Jiménez, W. L. et al. Reducing Eurasian wild boar (Sus scrofa) population density as a measure for bovine tuberculosis control: effects in wild boar and a sympatric fallow deer (Dama dama) population in Central Spain. Preventive Vet. Med. 110, 435–446 (2013).

    Google Scholar 

  • 181.

    Carstensen, M. & DonCarlos, M. W. Preventing the establishment of a wildlife disease reservoir: a case study of bovine tuberculosis in wild deer in minnesota, USA. Vet. Med. Int. 2011, 10 (2011).

    Google Scholar 

  • 182.

    Cosgrove, M. K., et al. Live-trapping and bovine tuberculosis testing of free-ranging white-tailed deer for targeted removal. Wildlife Res. 39, 104–111 (2012).


  • Source: Ecology - nature.com

    Increasing dependence of lowland populations on mountain water resources

    Innovations in environmental training for the mining industry