in

Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish

  • 1.

    The Global Burden of Disease: 2004 Update (WHO, 2004).

  • 2.

    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

    CAS  PubMed  Google Scholar 

  • 3.

    Schmid-Hempel, P. Variation in immune defence as a question of evolutionary ecology. Proc. R. Soc. B. 270, 357–366 (2003).

    PubMed  Google Scholar 

  • 4.

    Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2013).

  • 5.

    Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).

    CAS  PubMed  Google Scholar 

  • 6.

    von Hertzen, L., Hanski, I. & Haahtela, T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep. 12, 1089–1093 (2011).

    Google Scholar 

  • 7.

    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).

    CAS  PubMed  Google Scholar 

  • 9.

    Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  • 10.

    Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Lafferty, K. D. Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. Lond. B 367, 2814–2827 (2012).

    Google Scholar 

  • 12.

    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Google Scholar 

  • 13.

    McDade, T. W., Georgiev, A. V. & Kuzawa, C. W. Trade-offs between acquired and innate immune defenses in humans. Evol. Med. Public Health 2016, 1–16 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Lindstrom, K. M., Foufopoulos, J., Parn, H. & Wikelski, M. Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc. R. Soc. B 271, 1513–1519 (2004).

    PubMed  Google Scholar 

  • 15.

    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).

    CAS  PubMed  Google Scholar 

  • 16.

    Scharsack, J. P., Kalbe, M., Harrod, C. & Rauch, G. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc. R. Soc. B 274, 1523–1532 (2007).

    PubMed  Google Scholar 

  • 17.

    Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–E6106 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Herman, A. et al. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol. Ecol. 27, 4397–4416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Fumey, J. et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol. Biol. 18, 43 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Gibert, J. & Deharveng, L. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52, 473–481 (2002).

  • 21.

    Tabin, J. A. et al. Temperature preference of cave and surface populations of Astyanax mexicanus. Dev. Biol. 441, 338–344 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Trama, A. M. et al. Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol. Immunol. 9, 163–174 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl Acad. Sci. USA 112, 9668–9673 (2015).

    CAS  PubMed  Google Scholar 

  • 25.

    Xiong, S., Krishnan, J., Peuss, R. & Rohner, N. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441, 297–304 (2018).

    CAS  PubMed  Google Scholar 

  • 26.

    Wiens, G. D. & Vallejo, R. L. Temporal and pathogen-load dependent changes in rainbow trout (Oncorhynchus mykiss) immune response traits following challenge with biotype 2 Yersinia ruckeri. Fish Shellfish Immunol. 29, 639–647 (2010).

    CAS  PubMed  Google Scholar 

  • 27.

    Krishnan, J. et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B https://doi.org/10.1002/jez.b.22933 (2020).

  • 28.

    Moller, A. M., Korytar, T., Kollner, B., Schmidt-Posthaus, H. & Segner, H. The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 46, 518–529 (2014).

    CAS  PubMed  Google Scholar 

  • 29.

    Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).

    CAS  PubMed  Google Scholar 

  • 30.

    Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Ramsey, S. et al. Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos. Trans. R. Soc. Lond. B. 361, 495–506 (2006).

    CAS  Google Scholar 

  • 32.

    Ogryzko, N. V., Renshaw, S. A. & Wilson, H. L. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev. Comp. Immunol. 46, 53–62 (2014).

  • 33.

    Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 7126–7135 (2011).

    CAS  PubMed  Google Scholar 

  • 34.

    Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: Insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug Targets 12, 200–212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl Acad. Sci. USA 107, 15850–15855 (2010).

    CAS  PubMed  Google Scholar 

  • 36.

    Haugland, G. T. et al. Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS ONE 7, e47909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).

    CAS  PubMed  Google Scholar 

  • 38.

    Balla, K. M. et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944–3954 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Bolnick, D. I., Shim, K. C., Schmerer, M. & Brock, C. D. Population-specific covariation between immune function and color of nesting male threespine stickleback. PLoS ONE 10, e0126000 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Peuß, R. et al. Label-independent flow cytometry and unsupervised neural network method for de novo clustering of cell populations. Preprint at bioRxiv https://doi.org/10.1101/603035 (2020).

  • 41.

    van der Meer, W., Scott, C. S. & de Keijzer, M. H. Automated flagging influences the inconsistency and bias of band cell and atypical lymphocyte morphological differentials. Clin. Chem. Lab. Med. 42, 371–377 (2004).

    PubMed  Google Scholar 

  • 42.

    Getz, G. S. Thematic review series: the immune system and atherogenesis. Bridging the innate and adaptive immune systems. J. Lipid Res. 46, 619–622 (2005).

    CAS  PubMed  Google Scholar 

  • 43.

    Wan, F. et al. Characterization of gammadelta T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Front. Immunol. 7, 675 (2016).

    PubMed  Google Scholar 

  • 44.

    Shilpi, Paul,S. & Lal, G. Role of gamma-delta (gammadelta) T cells in autoimmunity. J. Leukoc. Biol. 97, 259–271 (2015).

    PubMed  Google Scholar 

  • 45.

    Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).

    CAS  PubMed  Google Scholar 

  • 47.

    Fay, N. S., Larson, E. C. & Jameson, J. M. Chronic Inflammation and gammadelta T. Cells Front. Immunol. 7, 210 (2016).

    PubMed  Google Scholar 

  • 48.

    Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  Google Scholar 

  • 49.

    Bolli, N. et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115, 3329–3340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Stachura, D. L. et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118, 1274–1282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    CAS  PubMed  Google Scholar 

  • 53.

    Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87, 479–490 (1996).

    CAS  PubMed  Google Scholar 

  • 54.

    Anjos-Afonso, F. et al. CD34() cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13, 161–174 (2013).

    CAS  PubMed  Google Scholar 

  • 55.

    Amin, R. H. & Schlissel, M. S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).

    CAS  PubMed  Google Scholar 

  • 57.

    Naito, Y. et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell Biol. 27, 3008–3022 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Laszlo, G., Hathcock, K. S., Dickler, H. B. & Hodes, R. J. Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 150, 5252–5262 (1993).

    CAS  PubMed  Google Scholar 

  • 59.

    Fänge, R. & Nilsson, S. The fish spleen: structure and function. Experientia 41, 152–158 (1985).

    PubMed  Google Scholar 

  • 60.

    Steinel, N. C. & Bolnick, D. I. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Front. Immunol. 8, 827 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Cervenak, L., Magyar, A., Boja, R. & Laszlo, G. Differential expression of GL7 activation antigen on bone marrow B cell subpopulations and peripheral B cells. Immunol. Lett. 78, 89–96 (2001).

    CAS  PubMed  Google Scholar 

  • 62.

    Secombes, C. J., Wang, T. & Bird, S. The interleukins of fish. Dev. Comp. Immunol. 35, 1336–1345 (2011).

    CAS  PubMed  Google Scholar 

  • 63.

    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 e114 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

  • 66.

    Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Mitchell, R. G., Russell, W. H. & Elliott, W. R. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution (Texas Tech Press, 1977).

  • 68.

    Espinasa, L. et al. A new cave locality for Astyanax cavefish in Sierra de El Abra, Mexico. Subterr. Biol. 26, 39–53 (2018).

    Google Scholar 

  • 69.

    Embryo Surface Sanitation (Egg Bleaching) Protocol https://zebrafish.org/wiki/protocols/ess (ZIRC, 2019).

  • 70.

    Peuß, R., Eggert, H., Armitage, S. A. & Kurtz, J. Downregulation of the evolutionary capacitor Hsp90 is mediated by social cues. Proc. R. Soc. B 282, 20152041 (2015).

    PubMed  Google Scholar 

  • 71.

    Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e (2002).

    Google Scholar 

  • 72.

    Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Rowe, R. G., Mandelbaum, J., Zon, L. I. & Daley, G. Q. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18, 707–720 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Stachura, D. L. et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122, 3918–3928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    de Jong, J. L. & Zon, L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann. Rev. Genet. 39, 481–501 (2005).

    PubMed  Google Scholar 

  • 76.

    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Zeng, A. et al. Prospectively isolated tetraspanin(+) neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173, 1593–1608 (2018).

    CAS  PubMed  Google Scholar 

  • 78.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  • 79.

    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 80.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  • 81.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 


  • Source: Ecology - nature.com

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs