
Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).
Sirén, A. P. K. & Morelli, T. L. Interactive range-limit theory (iRLT): an extension for predicting range shifts. J. Anim. Ecol. 89, 940–954 (2020).
Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S. 40, 415–436 (2009).
Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).
Trân, J. K., Ylioja, T., Billings, R. F., Régnière, J. & Ayres, M. P. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis Ecol. Appl. 17, 882–899 (2007).
Reeve, J. D. Synchrony, weather, and cycles in southern pine beetle (Coleoptera: Curculionidae). Environ. Entomol. 47, 19–25 (2017).
Posledovich, D., Toftegaard, T., Wiklund, C., Ehrlén, J. & Gotthard, K. Phenological synchrony between a butterfly and its host plants: experimental test of effects of spring temperature. J. Anim. Ecol. 87, 150–161 (2018).
Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).
Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).
Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).
Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).
Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319–328 (2020).
Marini, L., Ayres, M. P., Battisti, A. & Faccoli, M. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Clim. Change 115, 327–341 (2012).
Goodsman, D. W. et al. The effect of warmer winters on the demography of an outbreak insect is hidden by intraspecific competition. Glob. Change Biol. 24, 3620–3628 (2018).
Battisti, A. & Larsson, S. Climate Change and Insect Pest Distribution Range. Vol. 8 1–14 (CABI, 2015).
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
Zalucki, M. P. & Van Klinken, R. D. Predicting population dynamics of weed biological control agents: science or gazing into crystal balls?. Aust. J. Entomol. 45, 331–344 (2006).
McFadyen, R. C. in Proceedings of the X International Symposium on Biological Control of Weeds. 3–14 (Montana State University, Bozeman).
Owens, C. S., Smart, R. M. & Stewart, R. M. Low temperature limits of giant salvinia. J. Aquat. Plant Manage. 42, 91–94 (2004).
Whiteman, J. & Room, P. Temperatures lethal to Salvinia molesta Mitchell. Aquat. Bot. 40, 27–35 (1991).
Mukherjee, A., Knutson, A., Hahn, D. A. & Heinz, K. M. Biological control of giant salvinia (Salvinia molesta) in a temperate region: cold tolerance and low temperature oviposition of Cyrtobagous salviniae. Biocontrol 59, 781–790 (2014).
Fourcade, Y. & Öckinger, E. Host plant density and patch isolation drive occupancy and abundance at a butterfly’s northern range margin. Ecol. Evol. 7, 331–345 (2016).
Dallas, T., Decker, R. R. & Hastings, A. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20, 1526–1533 (2017).
Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).
McLoughlin, P. D. & Ferguson, S. H. A hierarchical pattern of limiting factors helps explain variation in home range size. Écoscience 7, 123–130 (2000).
Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, Oxford, 2003).
Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).
Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).
Ju, R.-T., Gao, L., Wei, S.-J. & Li, B. Spring warming increases the abundance of an invasive specialist insect: links to phenology and life history. Sci. Rep. 7, 14805 (2017).
Davies, W. J. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology 100, e02612 (2019).
Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. S. 49, 165–182 (2018).
Forrest, J. R. K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).
Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philos. Trans. R. Soc. B. 365, 3161–3176 (2010).
Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography 20, 368–374 (1997).
Ju, R.-T., Zhu, H.-Y., Gao, L., Zhou, X.-H. & Li, B. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks. Sci. Rep. 5, 15715–15715 (2015).
Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Doležal, J. Niche asymmetry of vascular plants increases with elevation. J. Biogeogr. 44, 1418–1425 (2017).
Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits?. Trends Ecol. Evol. 30, 780–792 (2015).
Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744 (2017).
LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).
climatic and competitive constraints on tree growth. Anderegg, L. D. L. & HilleRisLambers, J. Local range boundaries vs. large-scale trade-offs. Ecol. Lett. 22, 787–796 (2019).
Easterling, D. R. et al. Observed variability and trends in extreme climate events: a brief review. B. Am. Meteorol. Soc. 81, 417–425 (2000).
Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. Lond. B. 281, 20132612 (2014).
Matthews, T., Mullan, D., Wilby, R. L., Broderick, C. & Murphy, C. Past and future climate change in the context of memorable seasonal extremes. Clim. Risk Manag. 11, 37–52 (2016).
Büntgen, U. et al. Return of the moth: rethinking the effect of climate on insect outbreaks. Oecologia 192, 543–552 (2020).
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).
Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. 31, 2118–2127 (2017).
Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B. 267, 739–745 (2000).
Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).
Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).
Watkinson, A. R. On the abundance of plants along an environmental gradient. J. Ecol. 73, 569–578 (1985).
Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: a global study. Ecology 86, 1395–1400 (2005).
Miller, T. E. X., Louda, S. M., Rose, K. A. & Eckberg, J. O. Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol. Monogr. 79, 155–172 (2009).
Buckingham, G. R. Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61, 232–243 (1996).
Walden, G. et al. Noteworthy collections, California (Alternanthera philoxeroides). Madroño 66, 4–7 (2019).
Coulson, J. R. Biological control of alligatorweed, 1959–1972: a review and evaluation. Report No. 0082-9811, 98 (U.S. Department of Agriculture, Agricultural Research Service, Hyattsville, Maryland, 1977).
Julien, M. H., Skarratt, B. & Maywald, G. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J. Aquat. Plant Manage. 33, 55–60 (1995).
Van Driesche, R., Blossey, B., Hoddle, M., Lyon, S. & Reardon, R. Biological Control of Invasive plants in the Eastern United States (US Department of Agriculture, Forest Service, Forest Health Technology, Fort Collins, 2002).
Chester, E. W. Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb. in Kentucky. Trans. Ken. Acad. Sci. 49, 140–142 (1988).
Vogt, G. B., Quimby, P. C. & Kay, S. Effects of Weather on the Biological Control of Alligatorweed in the Lower Mississippi Valley Region, 1973–83 (United States Department of Agriculture, Fort Collins, 1992).
Zhao, L. L. et al. Cold hardiness of the biological control agent, Agasicles hygrophila, and implications for its potential distribution. Biol. Control 87, 1–5 (2015).
Harms, N. E. & Cronin, J. T. Variability in weed biological control: Effects of foliar nitrogen on larval development and dispersal of the alligatorweed flea beetle, Agasicles hygrophila. Biol. Control 135, 16–22 (2019).
DeClerck-Floate, R. & Bourchier, R. in Proceedings of the X International Symposium on Biological Control of Weeds. 517–520.
Jia, D. et al. Heat sensitivity of eggs attributes to the reduction in Agasicles hygrophila populations. Insect Sci. 27, 159–169 (2020).
Zhao, M.-T. et al. Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109, 1586–1594 (2016).
Kumar, A., Maroju, S. & Bhat, A. Application of ArcGIS geostatistical analyst for interpolating environmental data from observations. Environ. Prog. 26, 220–225 (2007).
Kriticos, D. J., Jarošik, V. & Ota, N. Extending the suite of bioclim variables: a proposed registry system and case study using principal components analysis. Methods Ecol. Evol. 5, 956–960 (2014).
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
Stewart, C., Chapman, R., Emberson, R., Syrett, P. & Frampton, C. The effect of temperature on the development and survival of Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae), a biological control agent for alligator weed (Alternanthera philoxeroides). New Zeal. J. Zool. 26, 11–20 (1999).
Guo, J.-Y., Fu, J.-W., Xian, X.-Q., Ma, M.-Y. & Wan, F.-H. Performance of Agasicles hygrophila (Coleoptera: Chrysomelidae), a biological control agent of invasive alligator weed, at low non-freezing temperatures. Biol. Invasions 14, 1597–1608 (2012).
Wei, H., Lu, X. M. & Ding, J. Q. Direct and indirect impacts of different water regimes on the invasive plant, alligator weed (Alternanthera philoxeroides), and its biological control agent, Agasicles hygrophila. Weed. Biol. Manag. 15, 1–10 (2015).
Harms, N. E. & Shearer, J. F. Early-season dynamics of alligatorweed biological control by Agasicles hygrophila in Louisiana and Mississippi. J. Aquat. Plant Manage. 55, 89–95 (2017).
Gotelli, N. & Ellison, G. N. A Primer of Ecological Statistics (Sinauer Associates Inc, Sunderland, 2004).
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).
Kim, T. N. Plant damage and herbivore performance change with latitude for two old-field plant species, but rarely as predicted. Oikos 123, 886–896 (2014).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2003).
Source: Ecology - nature.com