in

Biological control agent attack timing and population variability, but not density, best explain target weed density across an environmental gradient

  • 1.

    Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).

    PubMed  Google Scholar 

  • 2.

    Sirén, A. P. K. & Morelli, T. L. Interactive range-limit theory (iRLT): an extension for predicting range shifts. J. Anim. Ecol. 89, 940–954 (2020).

    PubMed  Google Scholar 

  • 3.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. S. 40, 415–436 (2009).

    Google Scholar 

  • 4.

    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS  Google Scholar 

  • 5.

    Trân, J. K., Ylioja, T., Billings, R. F., Régnière, J. & Ayres, M. P. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis Ecol. Appl. 17, 882–899 (2007).

    Google Scholar 

  • 6.

    Reeve, J. D. Synchrony, weather, and cycles in southern pine beetle (Coleoptera: Curculionidae). Environ. Entomol. 47, 19–25 (2017).

    Google Scholar 

  • 7.

    Posledovich, D., Toftegaard, T., Wiklund, C., Ehrlén, J. & Gotthard, K. Phenological synchrony between a butterfly and its host plants: experimental test of effects of spring temperature. J. Anim. Ecol. 87, 150–161 (2018).

    PubMed  Google Scholar 

  • 8.

    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).

    ADS  Google Scholar 

  • 9.

    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    ADS  Google Scholar 

  • 10.

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed  Google Scholar 

  • 12.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).

    PubMed  Google Scholar 

  • 14.

    Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319–328 (2020).

    PubMed  Google Scholar 

  • 15.

    Marini, L., Ayres, M. P., Battisti, A. & Faccoli, M. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Clim. Change 115, 327–341 (2012).

    ADS  Google Scholar 

  • 16.

    Goodsman, D. W. et al. The effect of warmer winters on the demography of an outbreak insect is hidden by intraspecific competition. Glob. Change Biol. 24, 3620–3628 (2018).

    ADS  Google Scholar 

  • 17.

    Battisti, A. & Larsson, S. Climate Change and Insect Pest Distribution Range. Vol. 8 1–14 (CABI, 2015).

  • 18.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Zalucki, M. P. & Van Klinken, R. D. Predicting population dynamics of weed biological control agents: science or gazing into crystal balls?. Aust. J. Entomol. 45, 331–344 (2006).

    Google Scholar 

  • 20.

    McFadyen, R. C. in Proceedings of the X International Symposium on Biological Control of Weeds. 3–14 (Montana State University, Bozeman).

  • 21.

    Owens, C. S., Smart, R. M. & Stewart, R. M. Low temperature limits of giant salvinia. J. Aquat. Plant Manage. 42, 91–94 (2004).

    Google Scholar 

  • 22.

    Whiteman, J. & Room, P. Temperatures lethal to Salvinia molesta Mitchell. Aquat. Bot. 40, 27–35 (1991).

    Google Scholar 

  • 23.

    Mukherjee, A., Knutson, A., Hahn, D. A. & Heinz, K. M. Biological control of giant salvinia (Salvinia molesta) in a temperate region: cold tolerance and low temperature oviposition of Cyrtobagous salviniae. Biocontrol 59, 781–790 (2014).

    Google Scholar 

  • 24.

    Fourcade, Y. & Öckinger, E. Host plant density and patch isolation drive occupancy and abundance at a butterfly’s northern range margin. Ecol. Evol. 7, 331–345 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Dallas, T., Decker, R. R. & Hastings, A. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20, 1526–1533 (2017).

    PubMed  Google Scholar 

  • 26.

    Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).

    Google Scholar 

  • 27.

    McLoughlin, P. D. & Ferguson, S. H. A hierarchical pattern of limiting factors helps explain variation in home range size. Écoscience 7, 123–130 (2000).

    Google Scholar 

  • 28.

    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, Oxford, 2003).

    Google Scholar 

  • 29.

    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Google Scholar 

  • 30.

    Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).

    Google Scholar 

  • 31.

    Ju, R.-T., Gao, L., Wei, S.-J. & Li, B. Spring warming increases the abundance of an invasive specialist insect: links to phenology and life history. Sci. Rep. 7, 14805 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Davies, W. J. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology 100, e02612 (2019).

    PubMed  Google Scholar 

  • 33.

    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. S. 49, 165–182 (2018).

    Google Scholar 

  • 34.

    Forrest, J. R. K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).

    PubMed  Google Scholar 

  • 35.

    Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philos. Trans. R. Soc. B. 365, 3161–3176 (2010).

    Google Scholar 

  • 36.

    Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography 20, 368–374 (1997).

    Google Scholar 

  • 37.

    Ju, R.-T., Zhu, H.-Y., Gao, L., Zhou, X.-H. & Li, B. Increases in both temperature means and extremes likely facilitate invasive herbivore outbreaks. Sci. Rep. 5, 15715–15715 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Doležal, J. Niche asymmetry of vascular plants increases with elevation. J. Biogeogr. 44, 1418–1425 (2017).

    Google Scholar 

  • 39.

    Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits?. Trends Ecol. Evol. 30, 780–792 (2015).

    PubMed  Google Scholar 

  • 40.

    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    climatic and competitive constraints on tree growth. Anderegg, L. D. L. & HilleRisLambers, J. Local range boundaries vs. large-scale trade-offs. Ecol. Lett. 22, 787–796 (2019).

    Google Scholar 

  • 43.

    Easterling, D. R. et al. Observed variability and trends in extreme climate events: a brief review. B. Am. Meteorol. Soc. 81, 417–425 (2000).

    Google Scholar 

  • 44.

    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. Lond. B. 281, 20132612 (2014).

    Google Scholar 

  • 45.

    Matthews, T., Mullan, D., Wilby, R. L., Broderick, C. & Murphy, C. Past and future climate change in the context of memorable seasonal extremes. Clim. Risk Manag. 11, 37–52 (2016).

    Google Scholar 

  • 46.

    Büntgen, U. et al. Return of the moth: rethinking the effect of climate on insect outbreaks. Oecologia 192, 543–552 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).

    Google Scholar 

  • 49.

    Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. 31, 2118–2127 (2017).

    Google Scholar 

  • 50.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B. 267, 739–745 (2000).

    CAS  Google Scholar 

  • 51.

    Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).

    PubMed  Google Scholar 

  • 52.

    Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).

    Google Scholar 

  • 53.

    Watkinson, A. R. On the abundance of plants along an environmental gradient. J. Ecol. 73, 569–578 (1985).

    Google Scholar 

  • 54.

    Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: a global study. Ecology 86, 1395–1400 (2005).

    Google Scholar 

  • 55.

    Miller, T. E. X., Louda, S. M., Rose, K. A. & Eckberg, J. O. Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol. Monogr. 79, 155–172 (2009).

    Google Scholar 

  • 56.

    Buckingham, G. R. Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61, 232–243 (1996).

    Google Scholar 

  • 57.

    Walden, G. et al. Noteworthy collections, California (Alternanthera philoxeroides). Madroño 66, 4–7 (2019).

    Google Scholar 

  • 58.

    Coulson, J. R. Biological control of alligatorweed, 1959–1972: a review and evaluation. Report No. 0082-9811, 98 (U.S. Department of Agriculture, Agricultural Research Service, Hyattsville, Maryland, 1977).

  • 59.

    Julien, M. H., Skarratt, B. & Maywald, G. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J. Aquat. Plant Manage. 33, 55–60 (1995).

    Google Scholar 

  • 60.

    Van Driesche, R., Blossey, B., Hoddle, M., Lyon, S. & Reardon, R. Biological Control of Invasive plants in the Eastern United States (US Department of Agriculture, Forest Service, Forest Health Technology, Fort Collins, 2002).

    Google Scholar 

  • 61.

    Chester, E. W. Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb. in Kentucky. Trans. Ken. Acad. Sci. 49, 140–142 (1988).

    Google Scholar 

  • 62.

    Vogt, G. B., Quimby, P. C. & Kay, S. Effects of Weather on the Biological Control of Alligatorweed in the Lower Mississippi Valley Region, 1973–83 (United States Department of Agriculture, Fort Collins, 1992).

    Google Scholar 

  • 63.

    Zhao, L. L. et al. Cold hardiness of the biological control agent, Agasicles hygrophila, and implications for its potential distribution. Biol. Control 87, 1–5 (2015).

    CAS  Google Scholar 

  • 64.

    Harms, N. E. & Cronin, J. T. Variability in weed biological control: Effects of foliar nitrogen on larval development and dispersal of the alligatorweed flea beetle, Agasicles hygrophila. Biol. Control 135, 16–22 (2019).

    Google Scholar 

  • 65.

    DeClerck-Floate, R. & Bourchier, R. in Proceedings of the X International Symposium on Biological Control of Weeds. 517–520.

  • 66.

    Jia, D. et al. Heat sensitivity of eggs attributes to the reduction in Agasicles hygrophila populations. Insect Sci. 27, 159–169 (2020).

    CAS  PubMed  Google Scholar 

  • 67.

    Zhao, M.-T. et al. Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera: Chrysomelidae). J. Econ. Entomol. 109, 1586–1594 (2016).

    PubMed  Google Scholar 

  • 68.

    Kumar, A., Maroju, S. & Bhat, A. Application of ArcGIS geostatistical analyst for interpolating environmental data from observations. Environ. Prog. 26, 220–225 (2007).

    CAS  Google Scholar 

  • 69.

    Kriticos, D. J., Jarošik, V. & Ota, N. Extending the suite of bioclim variables: a proposed registry system and case study using principal components analysis. Methods Ecol. Evol. 5, 956–960 (2014).

    Google Scholar 

  • 70.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 71.

    Stewart, C., Chapman, R., Emberson, R., Syrett, P. & Frampton, C. The effect of temperature on the development and survival of Agasicles hygrophila Selman & Vogt (Coleoptera: Chrysomelidae), a biological control agent for alligator weed (Alternanthera philoxeroides). New Zeal. J. Zool. 26, 11–20 (1999).

    Google Scholar 

  • 72.

    Guo, J.-Y., Fu, J.-W., Xian, X.-Q., Ma, M.-Y. & Wan, F.-H. Performance of Agasicles hygrophila (Coleoptera: Chrysomelidae), a biological control agent of invasive alligator weed, at low non-freezing temperatures. Biol. Invasions 14, 1597–1608 (2012).

    Google Scholar 

  • 73.

    Wei, H., Lu, X. M. & Ding, J. Q. Direct and indirect impacts of different water regimes on the invasive plant, alligator weed (Alternanthera philoxeroides), and its biological control agent, Agasicles hygrophila. Weed. Biol. Manag. 15, 1–10 (2015).

    Google Scholar 

  • 74.

    Harms, N. E. & Shearer, J. F. Early-season dynamics of alligatorweed biological control by Agasicles hygrophila in Louisiana and Mississippi. J. Aquat. Plant Manage. 55, 89–95 (2017).

    Google Scholar 

  • 75.

    Gotelli, N. & Ellison, G. N. A Primer of Ecological Statistics (Sinauer Associates Inc, Sunderland, 2004).

    Google Scholar 

  • 76.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  • 77.

    Kim, T. N. Plant damage and herbivore performance change with latitude for two old-field plant species, but rarely as predicted. Oikos 123, 886–896 (2014).

    Google Scholar 

  • 78.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2003).

    Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism