in

Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora

  • 1.

    Hoy, M. A. Genetic improvement of arthropod natural enemies: becoming a conventional tactic? UCLA Symp. Mol. Cell. Biol. 112, 405–417 (1990).

    Google Scholar 

  • 2.

    Yokoyama, T. The history of sericultural science in relation to industry. Hist. Entomol. 267–285 (1973).

  • 3.

    Hoy, M. A. Recent Advances in Genetics and Genetic Improvement of the Phytoseiidae. Annu. Rev. Entomol. 30, 345–370 (1985).

    Google Scholar 

  • 4.

    Hoy, M. A. Use of genetic improvement in biological control. Agric. Ecosyst. Environ. 15, 109–119 (1986).

    Google Scholar 

  • 5.

    White, E. B., DeBach, P. & Garber, M. J. Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae). Hilgardia 40, 161–192 (1970).

    Google Scholar 

  • 6.

    Wilkes, A. The influence of selection on the preferendum of a Chalcid (Microplectron fuscipennis Zett.) and its significance in the biological control of an insect pest. Proc. R. Soc. London. Ser. B – Biol. Sci. 130, 400–415 (1942).

    ADS  Google Scholar 

  • 7.

    Allen, H. W. Propagation of Horogenes molestae, a parasite of the oriental fruit moth, on the potato tuber-worm. J. Econ. Entomol. 47, 278–281 (1954).

    Google Scholar 

  • 8.

    Sugar., H. B.- & 1956, U. Battle against Venezuela’s cane borer: Preliminary investigations and the launching of a general campaign. sugar 51, 25–27 (1956).

    Google Scholar 

  • 9.

    Simmonds, F. J. Improvement of the sex-ratio of a parasite by selection. Can. Entomol. 79, 41–44 (1947).

    Google Scholar 

  • 10.

    Wilkes, A. The effects of selective breeding on the laboratory propagation of insect parasites. Proc. R. Soc. London. Ser. B 134, 227–245 (1947).

    ADS  CAS  Google Scholar 

  • 11.

    Ram, A. & Sharma, K. Selective breeding for improving the fecundity and sex-ratio of Trichogramma fasciatum (Perkins) (Trichogrammatidae: Hymenoptera), an egg parasite of Lepidopterous hosts. Entomology 2, 133–137 (1977).

    Google Scholar 

  • 12.

    Havron, A., Kenan, G. & Rosen, D. Selection for pesticide resistance in Aphytis II. A. lingnanensis, a parasite of the California red scale. Entomol. Exp. Appl. 61, 221–228 (1991).

    Google Scholar 

  • 13.

    Pielou, D. P. & Glasser, R. F. Selection for DDT Resistance in a Beneficial Insect Parasite. Science (80-.). 115, 117–118 (1952).

    ADS  CAS  Google Scholar 

  • 14.

    Grewal, P. S., Bornstein-Forst, S., Burnell, A. M., Glazer, I. & Jagdale, G. B. Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol. Control 38, 54–65 (2006).

    CAS  Google Scholar 

  • 15.

    Shapiro-Ilan, D. I., Han, R. & Dolinksi, C. Entomopathogenic nematode production and application technology. J. Nematol. 44, 206–217 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Gaugler, R. Entomogenous Nematodes and Their Prospects for Genetic Improvement. In Biotechnology in Invertebrate Pathology and Cell Culture 457–484 (Elsevier), https://doi.org/10.1016/b978-0-12-470255-4.50033-x (1987).

  • 17.

    Glazer, I. Improvement of entomopathogenic nematodes: A genetic approach. In Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection 29–55 (Springer International Publishing), https://doi.org/10.1007/978-3-319-18266-7_2 (2015).

  • 18.

    Stuart, R. J., Barbercheck, M. E. & Grewal, P. S. Entomopathogenic Nematodes in the Soil Environment: Distributions, Interactions and the Influence of Biotic and Abiotic Factors. In Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection (ed. Campos-Herrera, R.) 97–137 (Springer International Publishing), https://doi.org/10.1007/978-3-319-18266-7_4 (2015).

  • 19.

    Griffin, C. T. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. J. Nematol. 44, 177–84 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Strauch, O., Oestergaard, J., Hollmer, S. & Ehlers, R. U. Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biol. Control 31, 218–226 (2004).

    Google Scholar 

  • 21.

    Salame, L., Glazer, I., Miqaia, N. & Chkhubianishvili, T. Characterization of populations of entomopathogenic nematodes isolated at diverse sites across Israel. Phytoparasitica 38, 39–52 (2010).

    Google Scholar 

  • 22.

    Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).

    Google Scholar 

  • 23.

    Harvey, C. D., Williams, C. D., Dillon, A. B. & Griffin, C. T. Inundative pest control: How risky is it? A case study using entomopathogenic nematodes in a forest ecosystem. For. Ecol. Manage. 380, 242–251 (2016).

    Google Scholar 

  • 24.

    Leggett, M., Leland, J., Kellar, K. & Epp, B. Formulation of microbial biocontrol agents-an industrial perspective. Can. J. Plant Pathol. 33, 101–107 (2011).

    CAS  Google Scholar 

  • 25.

    Glazer, I., Kozodoi, E., Hashmi, G. & Gaugler, R. Biological characteristics of the entomopathogenic nematode Heterorhabditis sp. IS-5: A heat tolerant isolate from Israel. Nematologica 42, 481–492 (1996).

    Google Scholar 

  • 26.

    Salame, L. & Glazer, I. Stress avoidance: vertical movement of entomopathogenic nematodes in response to soil moisture gradient. Phytoparasitica 43, 647–655 (2015).

    CAS  Google Scholar 

  • 27.

    Perry, R. N., Ehlers, R.-U. & Glazer, I. A realistic appraisal of methods to enhance desiccation tolerance of entomopathogenic nematodes. J. Nematol. 44, 185–190 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Somvanshi, V. S., Koltai, H. & Glazer, I. Expression of different desiccation-tolerance related genes in various species of entomopathogenic nematodes. Mol. Biochem. Parasitol. 158, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  • 29.

    Yaari, M., Doron-Faigenboim, A., Koltai, H., Salame, L. & Glazer, I. Transcriptome analysis of stress tolerance in entomopathogenic nematodes of the genus Steinernema. Int. J. Parasitol. 46, 83–95 (2016).

    CAS  PubMed  Google Scholar 

  • 30.

    Campos-Herrera, R. et al. Distribution of the entomopathogenic nematodes from La Rioja (Northern Spain). J. Invertebr. Pathol. 95, 125–139 (2007).

    PubMed  Google Scholar 

  • 31.

    Glazer, I., Liran, N. & Steinberger, Y. A survey of entomopathogenic nematodes (rhabditida) in the negev desert. Phytoparasitica 19, 291–300 (1991).

    Google Scholar 

  • 32.

    De Brida, A. L. et al. Entomopathogenic nematodes in agricultural areas in Brazil. Sci. Rep. 7, 1–7 (2017).

    Google Scholar 

  • 33.

    Ram, K., Preisser, E. L., Gruner, D. S. & Strong, D. R. Metapopulation dynamics override local limits on long-term parasite persistence. Ecology 89, 3290–3297 (2008).

    PubMed  Google Scholar 

  • 34.

    Mráček, Z., Bečvář, S., Kindlmann, P. & Jersáková, J. Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biol. Control 34, 27–37 (2005).

    Google Scholar 

  • 35.

    Bal, H. K., Acosta, N., Cheng, Z., Grewal, P. S. & Hoy, C. W. Effect of habitat and soil management on dispersal and distribution patterns of entomopathogenic nematodes. Appl. Soil Ecol. 121, 48–59 (2017).

    Google Scholar 

  • 36.

    Sharmila, R., Priya, M. S., Subramanian, S., Poornima, K. & Pandiyan, M. Review on ecology of entomopathogenic nematodes. J. Entomol. Zool. Stud. 6, 1086–1093 (2018).

    Google Scholar 

  • 37.

    Campos-Herrera, R. et al. Vegetation drives assemblages of entomopathogenic nematodes and other soil organisms: Evidence from the Algarve, Portugal. Soil Biol. Biochem. 128, 150–163 (2019).

    CAS  Google Scholar 

  • 38.

    Campos-Herrera, R. et al. Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol. Biochem. 66, 163–174 (2013).

    CAS  Google Scholar 

  • 39.

    Salame, L., Glazer, I., Chubinishvilli, M. T. & Chkhubianishvili, T. Genetic improvement of the desiccation tolerance and host-seeking ability of the entomopathogenic nematode Steinernema feltiae. Phytoparasitica 38, 359–368 (2010).

    Google Scholar 

  • 40.

    Efron, D., Nestel, D. & Glazer, I. spatial analysis of Entomopathogenic nematodes and insect hosts in a Citrus grove in semi-arid region in Israel. Popul. Ecol. 30, 254–261 (2001).

    Google Scholar 

  • 41.

    Lewis, E. E., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control 38, 66–79 (2006).

    Google Scholar 

  • 42.

    Liu, Q. Z. & Glazer, I. Desiccation survival of entomopathogenic nematodes of the genus Heterorhabditis. Phytoparasitica 28, 331–340 (2000).

    Google Scholar 

  • 43.

    Abate, B. A., Slippers, B., Wingfield, M. J., Malan, A. P. & Hurley, B. P. Diversity of entomopathogenic nematodes and their symbiotic bacteria in south African plantations and indigenous forests. Nematology 20, 355–371 (2018).

    Google Scholar 

  • 44.

    Jagodič, A., Trdan, S. & Laznik, Ž. Entomopathogenic nematodes: can we use the current knowledge on belowground multitrophic interactions in future plant protection programmes? – Review. Plant Prot. Sci. 55, 243–254 (2019).

    Google Scholar 

  • 45.

    Mukuka, J. et al. Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. BioControl 55, 423–434 (2010).

    Google Scholar 

  • 46.

    Mukuka, J., Strauch, O. & Ehlers, R. U. Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology 12, 711–720 (2010).

    Google Scholar 

  • 47.

    Mukuka, J., Strauch, O., Hoppe, C. & Ehlers, R. U. Improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl 55, 511–521 (2010).

    Google Scholar 

  • 48.

    Grewal, P., Wang, X. & Taylor, R. A. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int. J. Parasitol. 32, 717–725 (2002).

    CAS  PubMed  Google Scholar 

  • 49.

    Somvanshi, V. S. et al. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 17, 1–17 (2016).

    Google Scholar 

  • 50.

    Bai, X. et al. A Lover and a Fighter: The Genome Sequence of an Entomopathogenic Nematode Heterorhabditis bacteriophora. PLoS One 8, 1–13 (2013).

    Google Scholar 

  • 51.

    Glazer, I. Improvement of Entomopathogenic Nematodes: A Genetic Approach. In Nematode Pathogenesis of Insects and Other Pests: Ecology and Applied Technologies for Sustainable Plant and Crop Protection (ed. Campos-Herrera, R.) 29–55 (Springer International Publishing), https://doi.org/10.1007/978-3-319-18266-7 (2015).

  • 52.

    Bilskie, J. Soil Water Status: Content and potential. Campbell Sci. Inc. App. Note: 2S-1 (2001).

  • 53.

    Stock, S. P. & Goodrich-Blair, H. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In Manual of Techniques in Invertebrate Pathology 373–426 (Elsevier Ltd), https://doi.org/10.1016/B978-0-12-386899-2.00012-9 (2012).

  • 54.

    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of techniques in insect pathology (ed. Lacey, L. A.) 281–324 (Academic Press.), https://doi.org/10.1016/B978-012432555-5/50016-6 (1997).

  • 55.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Google Scholar 

  • 56.

    McLean, F., Berger, D., Laetsch, D. R., Schwartz, H. T. & Blaxter, M. Improving the annotation of the Heterorhabditis bacteriophora genome. Gigascience 7, 1–12 (2018).

    Google Scholar 

  • 57.

    Venny, O. J. C. An interactive tool for comparing lists with Venn Diagrams. BioinfoGP of CNB-CSIC (2007).

  • 58.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).

    PubMed  Google Scholar 

  • 59.

    Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  PubMed  Google Scholar 

  • 60.

    Upton, G. J. Fisher’s exact test. J. R. Stat. Soc. 155, 395–402 (1992).

    Google Scholar 

  • 61.

    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr. arXiv1303. 3997 00, 1–3 (2013).

  • 63.

    Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic