in

Climate change increases predation risk for a keystone species of the boreal forest

  • 1.

    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).

    Article  Google Scholar 

  • 2.

    Ims, R. A. et al. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Change 9, 607–610 (2019).

    Article  Google Scholar 

  • 3.

    Stenseth, N. et al. Snow conditions may create an invisible barrier for lynx. Proc. Natl Acad. Sci. USA 101, 10632–10634 (2004).

    CAS  Article  Google Scholar 

  • 4.

    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change induced camouflage mismatch in a seasonally colour moulting mammal. Ecol. Lett. 19, 299–307 (2016).

    Article  Google Scholar 

  • 5.

    Post, E., Peterson, R. O., Stenseth, N. C. & McLaren, B. E. Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999).

    CAS  Article  Google Scholar 

  • 6.

    Iles, D. T., Rockwell, R. F. & Koons, D. N. Shifting vital rate correlations alter predicted population responses to increasingly variable environments. Am. Nat. 193, E57–E64 (2019).

    Article  Google Scholar 

  • 7.

    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).

    Article  Google Scholar 

  • 8.

    Myers, J. H. Population cycles: generalities, exceptions and remaining mysteries. Proc. R. Soc. B 285, 20172841 (2018).

    Article  Google Scholar 

  • 9.

    Boutin, S. et al. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74, 69–80 (1995).

    Article  Google Scholar 

  • 10.

    Murray, D. L. & Boutin, S. The influence of snow on lynx and coyote movements: does morphology affect behavior? Oecologia 88, 463–469 (1991).

    Article  Google Scholar 

  • 11.

    Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).

    Article  Google Scholar 

  • 12.

    Cornulier, T. et al. Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63–66 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).

    Article  Google Scholar 

  • 15.

    Hodges, K. et al. in Ecosystem Dynamics of the Boreal Forest (eds Krebs, C. et al.) 141–178 (Oxford Univ. Press, 2001).

  • 16.

    Oli, M. K. et al. Demography of snowshoe hare population cycles. Ecology 101, e02969 (2020).

    Article  Google Scholar 

  • 17.

    Peacock, S. Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Clim. 25, 4405–4429 (2012).

    Article  Google Scholar 

  • 18.

    Krebs, C. J. et al. What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can. J. Zool. 92, 1039–1048 (2014).

    Article  Google Scholar 

  • 19.

    Yan, C., Stenseth, N. C., Krebs, C. J. & Zhang, Z. Linking climate change to population cycles of hares and lynx. Glob. Change Biol. 19, 3263–3271 (2013).

    Google Scholar 

  • 20.

    Studd, E. K. et al. Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free-ranging snowshoe hares. Front. Ecol. Evol. 7, e154 (2019).

    Article  Google Scholar 

  • 21.

    Mills, L. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).

    CAS  Article  Google Scholar 

  • 22.

    Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv. Lett. 12, e12614 (2019).

    Article  Google Scholar 

  • 23.

    Guillaumet, A., Bowman, J., Thornton, D. & Murray, D. L. The influence of coyote on Canada lynx populations assessed at two different spatial scales. Community Ecol. 16, 135–146 (2015).

    Article  Google Scholar 

  • 24.

    Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist–generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).

    CAS  Article  Google Scholar 

  • 25.

    Bowler, B., Krebs, C., O’Donoghue, M. & Hone, J. Climatic amplification of the numerical response of a predator population to its prey. Ecology 95, 1153–1161 (2014).

    Article  Google Scholar 

  • 26.

    Krebs, C. J., Boutin, S. & Boonstra, R. (eds) Ecosystem Dynamics of the Boreal Forest (Oxford Univ. Press, 2001).

  • 27.

    O’Donoghue, M., Boutin, S., Krebs, C. & Hofer, E. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80, 150–162 (1997).

    Article  Google Scholar 

  • 28.

    Hodges, K. in Ecology and Conservation of Lynx in the United States (eds Ruggiero, L. F. et al.) 117–161 (Univ. Press of Colorado, 2000).

  • 29.

    Brown, R. D. & Mote, P. W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 22, 2124–2145 (2009).

    Article  Google Scholar 

  • 30.

    Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710 (2013).

    Article  Google Scholar 

  • 31.

    Kielland, K., Olson, K. & Euskirchen, E. Demography of snowshoe hares in relation to regional climate variability during a 10-year population cycle in interior Alaska. Can. J. Res. 40, 1265–1272 (2010).

    Article  Google Scholar 

  • 32.

    Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).

    Article  Google Scholar 

  • 33.

    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13275 (2020).

  • 34.

    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).

    Article  Google Scholar 

  • 35.

    Krebs, C. J. et al. The Community Ecological Monitoring Program Annual Data Report (Univ. of British Columbia, 2018).

  • 36.

    Zeileis, A., Grothendieck, G., Ryan, J., Ulrich, J. & Andrews, F. zoo: S3 infrastructure for regular and irregular time series (Z’s ordered observations). R package version 1.8-8 (2019).

  • 37.

    Fieberg, J. & Delgiudice, G. D. What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology 90, 1687–1697 (2009).

    Article  Google Scholar 

  • 38.

    Murray, D. L. et al. Death from anthropogenic causes is partially compensatory in recovering wolf populations. Biol. Conserv. 143, 2514–2524 (2010).

    Article  Google Scholar 

  • 39.

    Murray, D. & Bastille-Rousseau, G. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 123–156 (Wiley-Blackwell, 2020).

  • 40.

    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).

  • 41.

    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article  Google Scholar 

  • 42.

    McLellan, B. N. Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. J. Wildl. Manag. 79, 749–765 (2015).

    Article  Google Scholar 

  • 43.

    Lunn, M. & McNeil, D. Applying Cox regression to competing risks. Biometrics 51, 524–532 (1995).

    CAS  Article  Google Scholar 

  • 44.

    Bastille-Rousseau, G. et al. Phase-dependent climate–predator interactions explain three decades of variation in neonatal caribou survival. J. Anim. Ecol. 85, 445–456 (2016).

    Article  Google Scholar 

  • 45.

    Murray, D. L., Bastille-Rousseau, G., Hornseth, M., Row, J. & Thornton, D. H. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 17–46 (Wiley-Blackwell, 2020).

  • 46.

    Hodges, K. E., Krebs, C. J. & Sinclair, A. R. E. Snowshoe hare demography during a cyclic population low. J. Anim. Ecol. 68, 581–594 (1999).

    Article  Google Scholar 

  • 47.

    Boutin, S., Gilbert, B. S., Krebs, C. J., Sinclair, A. R. E. & Smith, J. N. M. The role of dispersal in the population dynamics of snowshoe hares. Can. J. Zool. 63, 106–115 (1984).

    Article  Google Scholar 

  • 48.

    Gillis, E. A. Survival of juvenile hares during a cyclic population increase. Can. J. Zool. 76, 1949–1956 (1998).

    Article  Google Scholar 

  • 49.

    Graf, P. M., Wilson, R. P., Qasem, L., Hackländer, K. & Rosell, F. The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber. PLoS ONE 10, 1–17 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields