Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).
Ims, R. A. et al. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Change 9, 607–610 (2019).
Stenseth, N. et al. Snow conditions may create an invisible barrier for lynx. Proc. Natl Acad. Sci. USA 101, 10632–10634 (2004).
Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change induced camouflage mismatch in a seasonally colour moulting mammal. Ecol. Lett. 19, 299–307 (2016).
Post, E., Peterson, R. O., Stenseth, N. C. & McLaren, B. E. Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999).
Iles, D. T., Rockwell, R. F. & Koons, D. N. Shifting vital rate correlations alter predicted population responses to increasingly variable environments. Am. Nat. 193, E57–E64 (2019).
Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).
Myers, J. H. Population cycles: generalities, exceptions and remaining mysteries. Proc. R. Soc. B 285, 20172841 (2018).
Boutin, S. et al. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74, 69–80 (1995).
Murray, D. L. & Boutin, S. The influence of snow on lynx and coyote movements: does morphology affect behavior? Oecologia 88, 463–469 (1991).
Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).
Cornulier, T. et al. Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63–66 (2013).
Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).
Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).
Hodges, K. et al. in Ecosystem Dynamics of the Boreal Forest (eds Krebs, C. et al.) 141–178 (Oxford Univ. Press, 2001).
Oli, M. K. et al. Demography of snowshoe hare population cycles. Ecology 101, e02969 (2020).
Peacock, S. Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Clim. 25, 4405–4429 (2012).
Krebs, C. J. et al. What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can. J. Zool. 92, 1039–1048 (2014).
Yan, C., Stenseth, N. C., Krebs, C. J. & Zhang, Z. Linking climate change to population cycles of hares and lynx. Glob. Change Biol. 19, 3263–3271 (2013).
Studd, E. K. et al. Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free-ranging snowshoe hares. Front. Ecol. Evol. 7, e154 (2019).
Mills, L. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).
Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv. Lett. 12, e12614 (2019).
Guillaumet, A., Bowman, J., Thornton, D. & Murray, D. L. The influence of coyote on Canada lynx populations assessed at two different spatial scales. Community Ecol. 16, 135–146 (2015).
Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist–generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).
Bowler, B., Krebs, C., O’Donoghue, M. & Hone, J. Climatic amplification of the numerical response of a predator population to its prey. Ecology 95, 1153–1161 (2014).
Krebs, C. J., Boutin, S. & Boonstra, R. (eds) Ecosystem Dynamics of the Boreal Forest (Oxford Univ. Press, 2001).
O’Donoghue, M., Boutin, S., Krebs, C. & Hofer, E. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80, 150–162 (1997).
Hodges, K. in Ecology and Conservation of Lynx in the United States (eds Ruggiero, L. F. et al.) 117–161 (Univ. Press of Colorado, 2000).
Brown, R. D. & Mote, P. W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 22, 2124–2145 (2009).
Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710 (2013).
Kielland, K., Olson, K. & Euskirchen, E. Demography of snowshoe hares in relation to regional climate variability during a 10-year population cycle in interior Alaska. Can. J. Res. 40, 1265–1272 (2010).
Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).
Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13275 (2020).
Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).
Krebs, C. J. et al. The Community Ecological Monitoring Program Annual Data Report (Univ. of British Columbia, 2018).
Zeileis, A., Grothendieck, G., Ryan, J., Ulrich, J. & Andrews, F. zoo: S3 infrastructure for regular and irregular time series (Z’s ordered observations). R package version 1.8-8 (2019).
Fieberg, J. & Delgiudice, G. D. What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology 90, 1687–1697 (2009).
Murray, D. L. et al. Death from anthropogenic causes is partially compensatory in recovering wolf populations. Biol. Conserv. 143, 2514–2524 (2010).
Murray, D. & Bastille-Rousseau, G. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 123–156 (Wiley-Blackwell, 2020).
Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).
Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
McLellan, B. N. Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. J. Wildl. Manag. 79, 749–765 (2015).
Lunn, M. & McNeil, D. Applying Cox regression to competing risks. Biometrics 51, 524–532 (1995).
Bastille-Rousseau, G. et al. Phase-dependent climate–predator interactions explain three decades of variation in neonatal caribou survival. J. Anim. Ecol. 85, 445–456 (2016).
Murray, D. L., Bastille-Rousseau, G., Hornseth, M., Row, J. & Thornton, D. H. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 17–46 (Wiley-Blackwell, 2020).
Hodges, K. E., Krebs, C. J. & Sinclair, A. R. E. Snowshoe hare demography during a cyclic population low. J. Anim. Ecol. 68, 581–594 (1999).
Boutin, S., Gilbert, B. S., Krebs, C. J., Sinclair, A. R. E. & Smith, J. N. M. The role of dispersal in the population dynamics of snowshoe hares. Can. J. Zool. 63, 106–115 (1984).
Gillis, E. A. Survival of juvenile hares during a cyclic population increase. Can. J. Zool. 76, 1949–1956 (1998).
Graf, P. M., Wilson, R. P., Qasem, L., Hackländer, K. & Rosell, F. The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber. PLoS ONE 10, 1–17 (2015).
Source: Ecology - nature.com