in

Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 bce to 4,500 bce

  • 1.

    Price, T. D. Europe’s First Farmers (Cambridge Univ. Press, 2000).

  • 2.

    Perlès, C., Quiles, A. & Valladas, H. Early seventh-millennium AMS dates from domestic seeds in the initial Neolithic at Franchthi Cave (Argolid, Greece). Antiquity 87, 1001–1015 (2013).

    Google Scholar 

  • 3.

    Pinhasi, R. & von Cramon-Taubadel, N. Craniometric data supports demic diffusion model for the spread of agriculture into Europe. PLoS ONE 4, e6747 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Von Cramon-Taubadel, N. & Pinhasi, R. Craniometric data support a mosaic model of demic and cultural Neolithic diffusion to outlying regions of Europe. Proc. R. Soc. B Biol. Sci. 278, 2874–2880 (2011).

    Google Scholar 

  • 5.

    Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    CAS  PubMed  Google Scholar 

  • 6.

    Kılınç, G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 26, 2659–2666 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    CAS  PubMed  Google Scholar 

  • 9.

    Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    PubMed  Google Scholar 

  • 11.

    Banks, W. E., Antunes, N., Rigaud, S. & d’Errico, F. Ecological constraints on the first prehistoric farmers in Europe. J. Archaeol. Sci. 40, 2746–2753 (2013).

    Google Scholar 

  • 12.

    Bocquet-Appel, J.-P., Naji, S., Linden, M. V. & Kozlowski, J. K. Detection of diffusion and contact zones of early farming in Europe from the space–time distribution of 14C dates. J. Archaeol. Sci. 36, 807–820 (2009).

    Google Scholar 

  • 13.

    Isern, N., Fort, J. & Linden, M. V. Space competition and time delays in human range expansions. Application to the Neolithic transition. PLoS ONE 7, e51106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Rasse, M. Modélisation de la diffusion du Néolithique en Europe. Mappemonde 3, 14302 (2014).

    Google Scholar 

  • 15.

    Fort, J. Demic and cultural diffusion propagated the Neolithic transition across different regions of Europe. J. R. Soc. Interface 12, 20150166 (2015).

    PubMed Central  Google Scholar 

  • 16.

    Isern, N. & Fort, J. Anisotropic dispersion, space competition and the slowdown of the Neolithic transition. N. J. Phys. 12, 123002 (2010).

    Google Scholar 

  • 17.

    Silva, F. & Steele, J. New methods for reconstructing geographical effects on dispersal rates and routes from large-scale radiocarbon databases. J. Archaeol. Sci. 52, 609–620 (2014).

    Google Scholar 

  • 18.

    Bogucki, P. The spread of early farming in Europe. Am. Sci. 84, 242–253 (1996).

    Google Scholar 

  • 19.

    Bonsall, C., Macklin, M. G., Anderson, D. E. & Payton, R. W. Climate change and the adoption of agriculture in North-West Europe. Eur. J. Archaeol. 5, 9–23 (2002).

    Google Scholar 

  • 20.

    Cockram, J. et al. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exp. Bot. 58, 1231–1244 (2007).

    CAS  PubMed  Google Scholar 

  • 21.

    Halstead, P. in The Beginnings of Agriculture Vol. 496 (eds. Milles, A. et al.) 23–53 (1989).

  • 22.

    Colledge, S., Conolly, J. & Shennan, S. The evolution of Neolithic farming from SW Asian origins to NW European limits. Eur. J. Archaeol. 8, 137–156 (2005).

    Google Scholar 

  • 23.

    Paludan-Müller, C. in New Directions in Scandinavian Archaeology (eds. Kristiansen, K. & Paludan-Müller, C.) 120–157 (National Museum of Denmark, 1978).

  • 24.

    Price, T. D. in The Widening Harvest. The Neolithic Transition in Europe: Looking Forward, Looking Back (eds. Ammerman, A. J. & Biagi, P.) 273–294 (Archaeological Institute of America, 2003).

  • 25.

    Price, T. D. in Prehistoric Hunter-Gatherers: The Emergence of Cultural Complexity (eds. Price, T. D. & Brown, J. A.) 341–360 (Academic Press, 1985).

  • 26.

    Zvelebil, M. & Dolukhanov, P. The transition to farming in Eastern and Northern Europe. J. World Prehistory 5, 233–278 (1991).

    Google Scholar 

  • 27.

    Isern, N., Zilhão, J., Fort, J. & Ammerman, A. J. Modeling the role of voyaging in the coastal spread of the early Neolithic in the West Mediterranean. Proc. Natl Acad. Sci. USA 114, 897–902 (2017).

    CAS  PubMed  Google Scholar 

  • 28.

    Codling, E. A., Plank, M. J. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Russelle, M. P., Wilhelm, W. W., Olson, R. A. & Power, J. F. Growth analysis based on degree days. Crop Sci. 24, 28–32 (1984).

    Google Scholar 

  • 30.

    Schlenker, W., Hanemann, W. M. & Fisher, A. C. The impact of global warming on U.S. agriculture: an econometric analysis of optimal growing conditions. Rev. Econ. Stat. 88, 113–125 (2006).

    Google Scholar 

  • 31.

    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Pinhasi, R., Foley, R. A. & Lahr, M. M. in Archaeogenetics: DNA and the Population Prehistory of Europe (eds. Renfrew, C. & Boyle, K.) 45–56 (McDonald Institute for Archaeological Research, 2000).

  • 33.

    Steele, J. & Shennan, S. J. Spatial and chronological patterns in the neolithisation of Europe. Archaeology Data Service https://doi.org/10.5284/1000207 (2000).

  • 34.

    Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database Version 21 (Katholieke Universiteit Leuven, 2017); http://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html

  • 35.

    Silva, F. & Vander Linden, M. Amplitude of travelling front as inferred from 14C predicts levels of genetic admixture among European early farmers. Sci. Rep. 7, 11985 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Coward, F., Shennan, S., Colledge, S., Conolly, J. & Collard, M. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. J. Archaeol. Sci. 35, 42–56 (2008).

    Google Scholar 

  • 37.

    Conolly, J., Colledge, S. & Shennan, S. Founder effect, drift, and adaptive change in domestic crop use in early Neolithic Europe. J. Archaeol. Sci. 35, 2797–2804 (2008).

    Google Scholar 

  • 38.

    Bogucki, P. in Europe’s First Farmers (ed. Price, T. D.) 197–218 (Cambridge Univ. Press, 2000).

  • 39.

    Sørensen, L. & Karg, S. The expansion of agrarian societies towards the north—new evidence for agriculture during the Mesolithic/Neolithic transition in Southern Scandinavia. J. Archaeol. Sci. 51, 98–114 (2014).

    Google Scholar 

  • 40.

    Stevens, C. J. & Fuller, D. Q. Did Neolithic farming fail? The case for a Bronze Age agricultural revolution in the British Isles. Antiquity 86, 707–722 (2012).

    Google Scholar 

  • 41.

    Stevens, C. J. & Fuller, D. Q. Alternative strategies to agriculture: the evidence for climatic shocks and cereal declines during the British Neolithic and Bronze Age (a reply to Bishop). World Archaeol. 47, 856–875 (2015).

    Google Scholar 

  • 42.

    Bishop, R. R. Did late Neolithic farming fail or flourish? A Scottish perspective on the evidence for late Neolithic arable cultivation in the British Isles. World Archaeol. 47, 834–855 (2015).

    Google Scholar 

  • 43.

    Fuller, D. Q. & Allaby, R. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. in Annual Plant Reviews Vol. 38 (ed. Østergaard, L.) 238–295 (Wiley-Blackwell, 2009).

  • 44.

    Giampoudakis, K. et al. Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359–370 (2017).

    Google Scholar 

  • 45.

    Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).

    CAS  PubMed  Google Scholar 

  • 46.

    Galeta, P., Sládek, V., Sosna, D. & Bruzek, J. Modeling Neolithic dispersal in Central Europe: demographic implications. Am. J. Phys. Anthropol. 146, 104–115 (2011).

    PubMed  Google Scholar 

  • 47.

    Bar-Yosef, O. Climatic fluctuations and early farming in West and East Asia. Curr. Anthropol. 52, S175–S193 (2011).

    Google Scholar 

  • 48.

    Siska, V. et al. Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci. Adv. 3, e1601877 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, e410 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    Google Scholar 

  • 51.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  • 52.

    Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).

    Google Scholar 

  • 53.

    Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proc. Natl Acad. Sci. USA 109, 16089–16094 (2012).

    CAS  PubMed  Google Scholar 

  • 54.

    Maraun, D. & Widmann, M. Statistical Downscaling and Bias Correction for Climate Research (Cambridge Univ. Press, 2017).

  • 55.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Google Scholar 

  • 56.

    Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata–model comparisons, and future projections. J. Geophys. Res. Atmos. 108, 8171 (2003).

    Google Scholar 

  • 57.

    Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Google Scholar 

  • 58.

    Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361, 92–95 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Attenbrow, V. What’s Changing: Population Size or Land-Use Patterns? The Archaeology of Upper Mangrove Creek, Sydney Basin Vol. 21 (ANU Press, 2006).

  • 69.

    Naudinot, N., Tomasso, A., Tozzi, C. & Peresani, M. Changes in mobility patterns as a factor of 14C date density variation in the Late Epigravettian of Northern Italy and Southeastern France. J. Archaeol. Sci. 52, 578–590 (2014).

    Google Scholar 

  • 70.

    Tallavaara, M., Pesonen, P. & Oinonen, M. Prehistoric population history in eastern Fennoscandia. J. Archaeol. Sci. 37, 251–260 (2010).

    Google Scholar 

  • 71.

    Binford, L. R. Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 45, 4–20 (1980).

    Google Scholar 

  • 72.

    Kelly, R. L. The Lifeways of Hunter-Gatherers (Cambridge Univ. Press, 2013).

  • 73.

    Layton, R. & O’Hara, S. in Social Brain, Distributed Mind (eds. Dunbar, R. et al.) 83–113 (British Academy, 2010).

  • 74.

    Becker, R. A. & Wilks, A. R. R maps: Draw geographical maps. R version 3.3.0 https://cran.r-project.org/web/packages/maps/ (2018).

  • 75.

    Greene, C. A. et al. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism