in

Competition experiments in a soil microcosm reveal the impact of genetic and biotic factors on natural yeast populations

  • 1.

    Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evolution. 2004;19:189–97.

    • Google Scholar
  • 2.

    Rainey PB, Buckling A, Kassen R, Travisano M. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evolution. 2000;15:243–7.

    • Google Scholar
  • 3.

    Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci. 2016;283:20161458.

    • Google Scholar
  • 4.

    Rúa MA, Lamit LJ, Gehring C, Antunes PM, Hoeksema JD, Zabinski C, et al. Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. Mycorrhiza. 2018;28:187–95.

    • Google Scholar
  • 5.

    Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. Local adaptation of bacteriophages to their bacterial hosts in soil. Science. 2009;325:833.

    • Google Scholar
  • 6.

    Gutiérrez N, Garrido D. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes. mSystems. 2019;4:e00185–19.

    • Google Scholar
  • 7.

    Venturelli OS, Carr AV, Fisher G, Hsu RH, Lau R, Bowen BP, et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol. 2018;14:e8157.

    • Google Scholar
  • 8.

    Wolfe BE, Button JE, Santarelli M, Dutton RJ. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell. 2014;158:422–33.

    • Google Scholar
  • 9.

    Barraclough TG. How do species interactions affect evolutionary dynamics across whole communities? Annu Rev Ecol, Evolution, Syst. 2015;46:25–48.

    • Google Scholar
  • 10.

    Fraser LH, Keddy P. The role of experimental microcosms in ecological research. Trends Ecol Evolution. 1997;12:478–81.

    • Google Scholar
  • 11.

    Benton TG, Solan M, Travis JMJ, Sait SM. Microcosm experiments can inform global ecological problems. Trends Ecol Evolution. 2007;22:516–21.

    • Google Scholar
  • 12.

    Belotte D, Curien JB, Maclean RC, Bell G. An experimental test of local adaptation in soil bacteria. Evolution. 2003;57:27–36.

    • Google Scholar
  • 13.

    Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLOS Biol. 2012;10:e1001330.

    • Google Scholar
  • 14.

    Kraemer SA, Kassen R. Patterns of local adaptation in space and time among soil bacteria. Am Naturalist. 2015;185:317–31.

    • Google Scholar
  • 15.

    Fiegna F, Moreno-Letelier A, Bell T, Barraclough TG. Evolution of species interactions determines microbial community productivity in new environments. ISME J. 2015;9:1235–45.

    • Google Scholar
  • 16.

    Replansky T, Koufopanou V, Greig D, Bell G. Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evolution. 2008;23:494–501.

    • Google Scholar
  • 17.

    Botstein D, Fink GR. Yeast: an experimental organism for 21st century biology. Genetics. 2011;189:695–704.

    • Google Scholar
  • 18.

    Charron G, Leducq J-B, Bertin C, Dubé AK, Landry CR. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. FEMS Yeast Res. 2014;14:281–8.

    • Google Scholar
  • 19.

    Sampaio JP, Gonçalves P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol. 2008;74:2144–52.

    • Google Scholar
  • 20.

    Kowallik V, Greig D. A systematic forest survey showing an association of Saccharomyces paradoxus with oak leaf litter. Environ Microbiol Rep. 2016;8:833–41.

    • Google Scholar
  • 21.

    Alsammar HF, Naseeb S, Brancia LB, Gilman RT, Wang P, Delneri D. Targeted metagenomics approach to capture the biodiversity of Saccharomyces genus in wild environments. Environ Microbiol Rep. 2019;11:206–14.

  • 22.

    Boynton PJ, Stelkens R, Kowallik V, Greig D. Measuring microbial fitness in a field reciprocal transplant experiment. Mol Ecol Resour. 2017;17:370–80.

    • Google Scholar
  • 23.

    Anderson JB, Kasimer D, Xia W, Schröder NCH, Cichowicz P, Lioniello S, et al. Persistence of resident and transplanted genotypes of the undomesticated yeast Saccharomyces paradoxus in forest soil. mSphere. 2018;3:e00211–8.

  • 24.

    Kowallik V, Miller E, Greig D. The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Mol Ecol. 2015;24:1596–610.

    • Google Scholar
  • 25.

    Filteau M, Charron G, Landry CR. Identification of the fitness determinants of budding yeast on a natural substrate. ISME J. 2016;11:959–71.

    • Google Scholar
  • 26.

    Botha A. The importance and ecology of yeasts in soil. Soil Biol Biochem. 2011;43:1–8.

    • Google Scholar
  • 27.

    Kuehne HA, Murphy HA, Francis Chantal A, Sniegowski PD. Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr Biol. 2007;17:407–11.

    • Google Scholar
  • 28.

    Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol. 2016;1:15003.

    • Google Scholar
  • 29.

    Robinson HA, Pinharanda A, Bensasson D. Summer temperature can predict the distribution of wild yeast populations. Ecol Evol. 2016;6:1236–50.

    • Google Scholar
  • 30.

    Leducq J-B, Charron G, Samani P, Dubé AK, Sylvester K, James B, et al. Local climatic adaptation in a widespread microorganism. Proc R Soc B. 2014;281:20132472.

  • 31.

    Bleuven C, Dubé AK, Nguyen GQ, Gagnon-Arsenault I, Martin H, Landry CR. A collection of barcoded natural isolates of Saccharomyces paradoxus to study microbial evolutionary ecology. MicrobiologyOpen. 2019;8:e00773.

  • 32.

    Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci. 2008;59:540–50.

    • Google Scholar
  • 33.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    • Google Scholar
  • 34.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    • Google Scholar
  • 35.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. 2017; Rpackage version 2.4-5. https://CRAN.R-project.org/package=vegan.

  • 36.

    Faircloth BC, Glenn TC. Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS ONE. 2012;7:e42543.

    • Google Scholar
  • 37.

    Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • 38.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    • Google Scholar
  • 39.

    Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, Chee M, et al. Quantitative phenotyping via deep barcode sequencing. Genome Res. 2009;19:1836–42.

    • Google Scholar
  • 40.

    Kloke JD, Mckean JW. Rfit: rank-based estimation for linear models. R J. 2012;4:57–64.

  • 41.

    Hettmansperger TP, McKean JW Robust. Nonparametric statistical methods. 2nd ed. Boca Raton, FL: CRC Press; 2010.

  • 42.

    RC Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/.

  • 43.

    Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and Grassland soils. PLoS ONE. 2011;6:e17000.

    • Google Scholar
  • 44.

    Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem. 2015;84:53–64.

    • Google Scholar
  • 45.

    Eberlein C, Hénault M, Fijarczyk A, Charron G, Bouvier M, Kohn LM, et al. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nat Commun. 2019;10:923.

    • Google Scholar
  • 46.

    Li Y, Venkataram S, Agarwala A, Dunn B, Petrov DA, Sherlock G, et al. Hidden complexity of yeast adaptation under simple evolutionary conditions. Curr Biol. 2018;28:515–25.e6.

    • Google Scholar
  • 47.

    Maclean CJ, Metzger BPH, Yang J-R, Ho W-C, Moyers B, Zhang J. Deciphering the genic basis of yeast fitness variation by simultaneous forward and reverse genetics. Mol Biol Evolution. 2017;34:2486–502.

    • Google Scholar
  • 48.

    Payen C, Sunshine AB, Ong GT, Pogachar JL, Zhao W, Dunham MJ. High-throughput identification of adaptive mutations in experimentally evolved yeast populations. PLOS Genet. 2016;12:e1006339.

    • Google Scholar
  • 49.

    Tsai IJ, Bensasson D, Burt A, Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci. 2008;105:4957–62.

    • Google Scholar
  • 50.

    Streeter JG. Allantoin and allantoic acid in tissues and stem exudate from field-grown soybean plants. Plant Physiol. 1979;63:478–80.

    • Google Scholar
  • 51.

    Yurkov A. Yeasts in forest soils. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer International Publishing; 2017. p. 87–116.

  • 52.

    Castaño C, Lindahl BD, Alday JG, Hagenbo A, Martínez de Aragón J, Parladé J, et al. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 2018;220:1211–21.

    • Google Scholar
  • 53.

    Ketola T, Saarinen K. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures. J Evolut Biol. 2015;28:800–6.

    • Google Scholar
  • 54.

    Wigley K, Wakelin SA, Moot DJ, Hammond S, Ridgway HJ. Measurements of carbon utilization by single bacterial species in sterile soil: insights into Rhizobium spp. J Appl Microbiol. 2016;121:495–505.

    • Google Scholar
  • 55.

    McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol. 2003;24:117–32.

    • Google Scholar
  • 56.

    Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 2016;6:33696.

    • Google Scholar
  • 57.

    Meyer JR, Kassen R. The effects of competition and predation on diversification in a model adaptive radiation. Nature. 2007;446:432–5.

    • Google Scholar
  • 58.

    Pekkonen M, Ketola T, Laakso JT. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community. PLoS ONE. 2013;8:e76471.

    • Google Scholar
  • 59.

    Richards TA, Talbot NJ. Horizontal gene transfer in osmotrophs: playing with public goods. Nat Rev Microbiol. 2013;11:720–7.

    • Google Scholar
  • 60.

    Effmert U, Kalderás J, Warnke R, Piechulla B. Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol. 2012;38:665–703.

    • Google Scholar
  • 61.

    Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P. Volatile affairs in microbial interactions. ISME J. 2015;9:2329–35.

    • Google Scholar
  • 62.

    Mackie AE, Wheatley RE. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem. 1999;31:375–85.

    • Google Scholar
  • 63.

    Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007;24:814–42.

    • Google Scholar
  • 64.

    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–32.

    • Google Scholar
  • 65.

    Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol. 2017;26:1860–76.

    • Google Scholar
  • 66.

    Fox JW, Harder LD. Using a “time machine” to test for local adaptation of aquatic microbes to temporal and spatial environmental variation. Evolution. 2015;69:136–45.

    • Google Scholar

  • Source: Ecology - nature.com

    Biodiversity theory backed by island bird data

    Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum