in

Disproportionate increase in freshwater methane emissions induced by experimental warming

  • 1.

    Nisbet, E. G., Dlugokencky, E. J. & Bousquet, P. Methane on the rise—again. Science 343, 493–495 (2014).

    CAS  Google Scholar 

  • 2.

    Balcombe, P., Speirs, J. F., Brandon, N. P. & Hawkes, A. D. Methane emissions: choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 20, 1323–1339 (2018).

    CAS  Google Scholar 

  • 3.

    Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    CAS  Google Scholar 

  • 4.

    Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    Google Scholar 

  • 5.

    Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    Google Scholar 

  • 6.

    Gudasz, C. et al. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466, 478–481 (2010).

    CAS  Google Scholar 

  • 7.

    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS  Google Scholar 

  • 8.

    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Google Scholar 

  • 9.

    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  Google Scholar 

  • 10.

    Shelley, F., Abdullahi, F., Grey, J. & Trimmer, M. Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshw. Biol. 60, 150–160 (2015).

    CAS  Google Scholar 

  • 11.

    Mohanty, S. R., Bodelier, P. L. E. & Conrad, R. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62, 24–31 (2007).

    CAS  Google Scholar 

  • 12.

    Høj, L., Olsen, R. A. & Torsvik, V. L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J. 2, 37–48 (2008).

    Google Scholar 

  • 13.

    Hall, E. K. et al. Understanding how microbiomes influence the systems they inhabit. Nat. Microbiol. 3, 977–982 (2018).

    CAS  Google Scholar 

  • 14.

    Ho, A., Lüke, C. & Frenzel, P. Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning. ISME J. 5, 750–758 (2011).

    CAS  Google Scholar 

  • 15.

    Rocca, J. D. et al. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 9, 1693–1699 (2015).

    Google Scholar 

  • 16.

    Trimmer, M. et al. Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME J. 9, 2304–2314 (2015).

    CAS  Google Scholar 

  • 17.

    Fey, A. & Conrad, R. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Environ. Microbiol. 66, 4790–4797 (2000).

    CAS  Google Scholar 

  • 18.

    Ho, A. & Frenzel, P. Heat stress and methane-oxidizing bacteria: effects on activity and population dynamics. Soil Biol. Biochem. 50, 22–25 (2012).

    CAS  Google Scholar 

  • 19.

    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).

    CAS  Google Scholar 

  • 20.

    Yvon-Durocher, G., Hulatt, C. J., Woodward, G. & Trimmer, M. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nat. Clim. Change 7, 209–213 (2017).

    CAS  Google Scholar 

  • 21.

    Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).

    Google Scholar 

  • 22.

    Davidson, T. A. et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nat. Clim. Change 8, 156–160 (2018).

    CAS  Google Scholar 

  • 23.

    McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

    CAS  Google Scholar 

  • 24.

    Conrad, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202 (1999).

    CAS  Google Scholar 

  • 25.

    Wilson, R. M. et al. Hydrogenation of organic matter as a terminal electron sink sustains high CO2:CH4 production ratios during anaerobic decomposition. Org. Geochem. 112, 22–32 (2017).

    CAS  Google Scholar 

  • 26.

    Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014).

    CAS  Google Scholar 

  • 27.

    Glissmann, K., Chin, K. J., Casper, P. & Conrad, R. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb. Ecol. 48, 389–399 (2004).

    CAS  Google Scholar 

  • 28.

    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).

    CAS  Google Scholar 

  • 29.

    Conrad, R., Klose, M. & Noll, M. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ. Microbiol. 11, 1844–1853 (2009).

    CAS  Google Scholar 

  • 30.

    Metje, M. & Frenzel, P. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ. Microbiol. 9, 954–964 (2007).

    CAS  Google Scholar 

  • 31.

    Nozhevnikova, A. N. et al. Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries. FEMS Microbiol. Ecol. 62, 336–344 (2007).

    CAS  Google Scholar 

  • 32.

    Wen, X. et al. Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front. Microbiol. 8, 1339 (2017).

    Google Scholar 

  • 33.

    Conrad, R. et al. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments. Biogeosciences 8, 795–814 (2011).

    CAS  Google Scholar 

  • 34.

    Kotsyurbenko, O. R. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol. Ecol. 53, 3–13 (2005).

    CAS  Google Scholar 

  • 35.

    Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. & Trimmer, M. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Change Biol. 17, 1225–1234 (2011).

    Google Scholar 

  • 36.

    Reim, A., Lüke, C., Krause, S., Pratscher, J. & Frenzel, P. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J. 6, 2128–2139 (2012).

    CAS  Google Scholar 

  • 37.

    Yver Kwok, C. E. et al. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant. Atmos. Meas. Tech. 8, 2853–2867 (2015).

    Google Scholar 

  • 38.

    Sanders, I. A. et al. Emission of methane from chalk streams has potential implications for agricultural practices. Freshw. Biol. 52, 1176–1186 (2007).

    CAS  Google Scholar 

  • 39.

    Neubacher, E. C., Parker, R. E. & Trimmer, M. Short-term hypoxia alters the balance of the nitrogen cycle in coastal sediments. Limnol. Oceanogr. 56, 651–665 (2011).

    CAS  Google Scholar 

  • 40.

    R: a language and environment for statistical computing v.3.2.5 (R Core Team, 2014).

  • 41.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. {lmerTest} package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • 42.

    Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package v.1.4.7 (2019); https://cran.r-project.org/package=emmeans

  • 43.

    Nicholls, J. C. & Trimmer, M. Widespread occurrence of the anammox reaction in estuarine sediments. Aquat. Microb. Ecol. 55, 105–113 (2009).

    Google Scholar 

  • 44.

    Lever, M. A. & Teske, A. P. Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Appl. Environ. Microbiol. 81, 1426–1441 (2015).

    Google Scholar 

  • 45.

    Horz, H. P., Rich, V., Avrahami, S. & Bohannan, B. J. M. Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl. Environ. Microbiol. 71, 2642–2652 (2005).

    CAS  Google Scholar 

  • 46.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Google Scholar 

  • 47.

    King, T., Butcher, S. & Zalewski, L. Apocrita—High Performance Computing Cluster for Queen Mary University of London (Queen Mary University of London, 2017); https://doi.org/10.5281/ZENODO.438045

  • 48.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  Google Scholar 

  • 49.

    Pester, M., Friedrich, M. W., Schink, B. & Brune, A. pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl. Environ. Microbiol. 70, 3138–3142 (2004).

    CAS  Google Scholar 

  • 50.

    Oakley, B. B., Carbonero, F., Dowd, S. E., Hawkins, R. J. & Purdy, K. J. Contrasting patterns of niche partitioning between two anaerobic terminal oxidizers of organic matter. ISME J. 6, 905–914 (2012).

    CAS  Google Scholar 

  • 51.

    Wilkins, D., Lu, X. Y., Shen, Z., Chen, J. & Lee, P. K. H. Pyrosequencing of mcrA and archaeal 16s rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl. Environ. Microbiol. 81, 604–613 (2015).

    Google Scholar 

  • 52.

    Yang, S., Wen, X. & Liebner, S. pmoA Gene Reference Database (Fasta-Formatted Sequences and Taxonomy) (GFZ Data Services, 2016).

  • 53.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  Google Scholar 

  • 54.

    Anderson, M. J. in Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).

  • 55.

    Oksanen, J. et al. vegan: community ecology package. R package v.2.5-6 (2018); https://cran.r-project.org/package=vegan

  • 56.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic