in

Diverse interactions and ecosystem engineering can stabilize community assembly

  • 1.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Google Scholar 

  • 2.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS  PubMed  ADS  Google Scholar 

  • 3.

    Pascual, M. & Dunne, J. Ecological Networks: Linking Structure to Dynamics in Food Webs. (Oxford University Press, Oxford, UK, 2006).

    Google Scholar 

  • 4.

    Bascompte, J. & Jordano, P. Mutualistic Networks. (Princeton University Press, Princeton, NJ, 2013).

    Google Scholar 

  • 5.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS  PubMed  ADS  Google Scholar 

  • 6.

    Gross, T., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).

    CAS  PubMed  ADS  Google Scholar 

  • 7.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  PubMed  ADS  Google Scholar 

  • 8.

    Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).

    Google Scholar 

  • 9.

    Bascompte, J. & Stouffer, D. The assembly and disassembly of ecological networks. Philos. T. Roy. Soc. B 364, 1781 (2009).

    Google Scholar 

  • 10.

    Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton Univ Press, Princeton, USA, 2001).

    Google Scholar 

  • 11.

    Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    CAS  PubMed  ADS  Google Scholar 

  • 12.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Google Scholar 

  • 13.

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    CAS  PubMed  ADS  Google Scholar 

  • 14.

    O’Dwyer, J. P., Lake, J., Ostling, A., Savage, V. M. & Green, J. An integrative framework for stochastic, size-structured community assembly. Proc. Natl Acad. Sci. USA 106, 6170 (2009).

    PubMed  ADS  Google Scholar 

  • 15.

    Brown, J. H., Kelt, D. A. & Fox, B. J. Assembly rules and competition in desert rodents. Am. Nat. 160, 815–818 (2002).

    PubMed  Google Scholar 

  • 16.

    Piechnik, D. A., Lawler, S. P. & Martinez, N. D. Food-web assembly during a classic biogeographic study: species’ “trophic breadth” corresponds to colonization order. Oikos 117, 665–674 (2008).

    Google Scholar 

  • 17.

    Fahimipour, A. K. & Hein, A. M. The dynamics of assembling food webs. Ecol. Lett. 17, 606–613 (2014).

    PubMed  Google Scholar 

  • 18.

    Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).

    MathSciNet  CAS  PubMed  Google Scholar 

  • 19.

    Campbell, C., Yang, S., Albert, R. & Shea, K. A network model for plant-pollinator community assembly. Proc. Natl Acad. Sci. USA 108, 197–202 (2011).

    CAS  PubMed  ADS  Google Scholar 

  • 20.

    Hang-Kwang, L. & Pimm, S. L. The assembly of ecological communities: a minimalist approach. J. Anim. Ecol. 62, 749–765 (1993).

    Google Scholar 

  • 21.

    Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).

    Google Scholar 

  • 22.

    Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J. A. Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13, 1546–1559 (2010).

    PubMed  Google Scholar 

  • 23.

    Ramos-Jiliberto, R., Valdovinos, F. S., Moisset de Espanés, P. & Flores, J. D. Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).

    PubMed  Google Scholar 

  • 24.

    Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).

    PubMed  Google Scholar 

  • 25.

    Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Evol. 7, 103 (2019).

    Google Scholar 

  • 26.

    Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? the surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 1–9 (2017).

    Google Scholar 

  • 28.

    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    CAS  PubMed  ADS  Google Scholar 

  • 29.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Google Scholar 

  • 30.

    Olff, H. et al. Parallel ecological networks in ecosystems. Philos. T. Roy. Soc. B 364, 1755–1779 (2009).

    Google Scholar 

  • 31.

    Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W. & Laland, K. N. Niche construction theory: a practical guide for ecologists. Q. Rev. Biol. 88, 4–28 (2013).

    PubMed  Google Scholar 

  • 32.

    Leuthold, W. Recovery of woody vegetation in Tsavo National Park, Kenya, 1970-94. Afr. J. Ecol. 34, 101–112 (1996).

    Google Scholar 

  • 33.

    Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157-158, 99–107 (2012).

    Google Scholar 

  • 34.

    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).

    PubMed  Google Scholar 

  • 35.

    Reichman, O. & Seabloom, E. W. The role of pocket gophers as subterranean ecosystem engineers. Trends Ecol. Evol. 17, 44–49 (2002).

    Google Scholar 

  • 36.

    Hagenah, N. & Bennett, N. C. Mole rats act as ecosystem engineers within a biodiversity hotspot, the cape fynbos. J. Zool. 289, 19–26 (2013).

    Google Scholar 

  • 37.

    Moore, J. W. Animal ecosystem engineers in streams. BioScience 56, 237–246 (2006).

    Google Scholar 

  • 38.

    Meyer, S. T., Leal, I. R., Tabarelli, M. & Wirth, R. Ecosystem engineering by leaf-cutting ants: nests of atta cephalotes drastically alter forest structure and microclimate. Ecol. Entomol. 36, 14–24 (2011).

    Google Scholar 

  • 39.

    Hastings, A. et al. Ecosystem engineering in space and time. Ecol. Lett. 10, 153–164 (2007).

    PubMed  Google Scholar 

  • 40.

    Wright, J. P., Jones, C. G., Boeken, B. & Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 94, 815–824 (2006).

    Google Scholar 

  • 41.

    Jones, C. & Lawton, J. Linking Species & Ecosystems. (Springer, New York City, USA, 2012).

  • 42.

    Erwin, D. H. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 23, 304–310 (2008).

    PubMed  Google Scholar 

  • 43.

    Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).

    CAS  PubMed  ADS  Google Scholar 

  • 44.

    Loladze, I. & Elser, J. J. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol. Lett. 14, 244–250 (2011).

    PubMed  Google Scholar 

  • 45.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. T. Roy. Soc. B 365, 2093–2106 (2010).

    Google Scholar 

  • 46.

    Brose, U. et al. Climate change in size-structured ecosystems. Philos. T. Roy. Soc. B 367, 2903–2912 (2012).

    Google Scholar 

  • 47.

    Gibert, J. P. Temperature directly and indirectly influences food web structure. Sci. Rep.-UK 9, 5312 (2019).

    ADS  Google Scholar 

  • 48.

    Getz, W. M. Biomass transformation webs provide a unified approach to consumer-resource modelling. Ecol. Lett. 14, 113–124 (2011).

    PubMed  Google Scholar 

  • 49.

    Pillai, P., Gonzalez, A. & Loreau, M. Metacommunity theory explains the emergence of food web complexity. Proc. Natl Acad. Sci. USA 108, 19293–19298 (2011).

    CAS  PubMed  ADS  Google Scholar 

  • 50.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS  PubMed  ADS  Google Scholar 

  • 51.

    Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    PubMed  Google Scholar 

  • 52.

    Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).

    CAS  PubMed  Google Scholar 

  • 53.

    MacArthur, R. & Levins, R. Competition, habitat selection, and character displacement in a patchy environment. Proc. Natl Acad. Sci. USA 51, 1207 (1964).

    CAS  PubMed  ADS  Google Scholar 

  • 54.

    Dykhuizen, D. & Davies, M. An experimental model: bacterial specialists and generalists competing in chemostats. Ecology 61, 1213–1227 (1980).

    Google Scholar 

  • 55.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).

    Google Scholar 

  • 56.

    Costa, A. et al. Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  • 57.

    Brown, J. S., Kotler, B. P. & Valone, T. J. Foraging under predation-a comparison of energetic and predation costs in rodent communities of the negev and sonoran deserts. Aust. J. Zool. 42, 435–448 (1994).

    Google Scholar 

  • 58.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    CAS  PubMed  ADS  Google Scholar 

  • 59.

    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A monte carlo approach. Ecol. Model. 220, 370–382 (2009).

    Google Scholar 

  • 60.

    Williams, R. & Martinez, N. Limits to trophic levels and omnivory in complex food webs: Theory and data. Am. Nat. 163, 458–468 (2004).

    PubMed  Google Scholar 

  • 61.

    Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl Acad. Sci. USA 103, 11211–11216 (2006).

    CAS  PubMed  ADS  Google Scholar 

  • 62.

    Turney, S. & Buddle, C. M. Pyramids of species richness: the determinants and distribution of species diversity across trophic levels. Oikos 125, 1224–1232 (2016).

    CAS  Google Scholar 

  • 63.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    CAS  PubMed  ADS  Google Scholar 

  • 64.

    Guimarães Jr., P. R., Rico-Gray, V., Furtado dos Reis, S. & Thompson, J. N. Asymmetries in specialization in ant–plant mutualistic networks. Proc. Roy. Soc. B 273, 2041 (2006).

    Google Scholar 

  • 65.

    Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).

    Google Scholar 

  • 66.

    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497–1253497 (2014).

    PubMed  Google Scholar 

  • 67.

    Valdovinos, F. S. Mutualistic networks: moving closer to a predictive theory. Ecol. Lett. 22, 1517–1534 (2019).

    PubMed  Google Scholar 

  • 68.

    Krishna, A., Guimarães Jr., P. R., Jordano, P. & Bascompte, J. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117, 1609–1618 (2008).

    Google Scholar 

  • 69.

    Guimarães Jr., P. R., Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 18, 586 (2017).

    Google Scholar 

  • 70.

    Stouffer, D. B. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    CAS  PubMed  ADS  Google Scholar 

  • 71.

    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).

    CAS  PubMed  ADS  Google Scholar 

  • 72.

    Pires, M. M., Prado, P. I. & Guimarães Jr., P. R. Do food web models reproduce the structure of mutualistic networks? PLoS ONE 6, e27280 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • 73.

    Massol, F. et al. Linking community and ecosystem dynamics through spatial ecology. Ecol. Lett. 14, 313–323 (2011).

    PubMed  Google Scholar 

  • 74.

    Yeakel, J. D., Guimarães Jr., P. R., Bocherens, H. & Koch, P. L. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc. Roy. Soc. B 280, 20130239 (2013).

    Google Scholar 

  • 75.

    Bond, W. J., Lawton, J. H. & May, R. M. Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos. Trans. Roy. Soc. B 344, 83–90 (1994).

    Google Scholar 

  • 76.

    Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Ann. Rev. Ecol. Evol. Sys. 43, 183–203 (2012).

    Google Scholar 

  • 77.

    Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, J., Paulo, R., Raimundo, R. L. G. & Rico-Gray, V. Long-term temporal variation in the organization of an ant-plant network. Ann. Bot. -Lond. 111, 1285–1293 (2013).

    Google Scholar 

  • 78.

    Vieira, M. C. & Almeida Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    PubMed  Google Scholar 

  • 79.

    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant-pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    PubMed  Google Scholar 

  • 80.

    Laland, K. N. et al. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc. Roy. Soc. B 282, 20151019 (2015).

    Google Scholar 

  • 81.

    Gupta, M., Prasad, N., Dey, S., Joshi, A. & Vidya, T. Niche construction in evolutionary theory: the construction of an academic niche? J. Gen. 96, 491–504 (2017).

    Google Scholar 

  • 82.

    Feldman, M. W., Odling-Smee, J. & Laland, K. N. Why Gupta et al.’s critique of niche construction theory is off target. J. Gen. 96, 505–508 (2017).

    Google Scholar 

  • 83.

    Cuddington, K. Invasive engineers. Ecol. Model. 178, 335–347 (2004).

    Google Scholar 

  • 84.

    Wright, J. P. & Jones, C. G. Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85, 2071–2081 (2004).

    Google Scholar 

  • 85.

    Kylafis, G. & Loreau, M. Ecological and evolutionary consequences of niche construction for its agent. Ecol. Lett. 11, 1072–1081 (2008).

    PubMed  Google Scholar 

  • 86.

    Krakauer, D. C., Page, K. M. & Erwin, D. H. Diversity, dilemmas, and monopolies of niche construction. Am. Nat. 173, 26–40 (2009).

    PubMed  Google Scholar 

  • 87.

    Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl Acad. Sci. USA 96, 10242–10247 (1999).

    CAS  PubMed  ADS  Google Scholar 

  • 88.

    Kallus, Y., Miller, J. H. & Libby, E. Paradoxes in leaky microbial trade. Nat. Commun. 8, 1361 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  • 89.

    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Comm. 9, 2970 (2018).

    ADS  Google Scholar 

  • 90.

    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    PubMed  Google Scholar 

  • 91.

    Gutérrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. BioScience 56, 227–236 (2006).

    Google Scholar 

  • 92.

    Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).

    Google Scholar 

  • 93.

    Shipway, J. R. et al. A rock-boring and rock-ingesting freshwater bivalve (shipworm) from the Philippines. Proc. Roy. Soc. B 286, 20190434 (2019).

    CAS  Google Scholar 

  • 94.

    Lawton, J. H. What do species do in ecosystems? Oikos 71, 367–374 (1994).

    Google Scholar 

  • 95.

    Odling-Smee, F., Laland, K. & Feldman, M. Niche Construction: The Neglected Process in Evolution. (Princeton University Press, Princeton, NJ, 2013).

    Google Scholar 

  • 96.

    Kidwell, S. M. Taphonomic feedback in Miocene assemblages: testing the role of dead hardparts in benthic communities. Palaios 1, 239–255 (1986).

    ADS  Google Scholar 

  • 97.

    Polz, M. F., Alm, E. J. & Hanage, W. P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170–175 (2013).

    PubMed Central  Google Scholar 

  • 98.

    Corlett, R. T. The anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).

    PubMed  Google Scholar 

  • 99.

    Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    CAS  Google Scholar 

  • 100.

    Cantor, M. et al. Nestedness across biological scales. PLoS ONE 12, e0171691 (2017).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming