in

Effects of vegetation restoration and environmental factors on understory vascular plants in a typical karst ecosystem in southern China

  • 1.

    Gilliam, F. S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57, 845–858 (2007).

    Google Scholar 

  • 2.

    Cervellini, M. et al. Relationships between understory specialist species and local management practices in coppiced forests—evidence from the Italian Apennines. For. Ecol. Manag. 385, 35–45 (2017).

    Google Scholar 

  • 3.

    Hamelin, C., Gagnon, D. & Truax, B. Exotic invasive shrub glossy buckthorn reduces restoration potential for native forest herbs. Sustainability 9, 1–13 (2017).

    Google Scholar 

  • 4.

    Lü, X. T., Yin, J. X. & Tang, J. W. Diversity and composition of understory vegetation in the tropical seasonal rain forest of Xishuangbanna, SW China. Rev. Biol. Trop. 59, 455–463 (2011).

    PubMed  Google Scholar 

  • 5.

    Yazdanshenas, H., Kalagar, M. & Toularoud, M. M. Understory plant species diversity of Asalem’s forests, northern Iran. For. Res. Eng. Int. J. 3, 56–62 (2019).

    Google Scholar 

  • 6.

    Li, Y. L., Wang, S. L. & Yan, S. K. Short-term effects of understory vegetation removal on nutrient cycling in litter layer of Chinese fir plantation. Chin. J. Appl. Ecol. 22, 2560–2566 (2011) (in Chinese with English abstract).

    Google Scholar 

  • 7.

    Yang, Y. et al. Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests. Acta Ecol. Sin. 36, 8102–8110 (2016) (in Chinese with English abstract).

    Google Scholar 

  • 8.

    Berkowitz, A. R., Canham, C. D. & Kelly, V. R. Competition vs. facilitation of tree seedling growth and survival in early successional communities. Ecology 76, 1156–1168 (1995).

    Google Scholar 

  • 9.

    Padilla, F. M. & Pugnaire, F. I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 4, 196–202 (2006).

    Google Scholar 

  • 10.

    Feng, Q. H. et al. Effects of density adjustment on ground cover and soil hydrological function of Picea asperata plantation in the subalpine region of western Sichuan Province, China. J. Nanjing For. Univ. Nat. Sci. Ed. 42, 98–104 (2018) (in Chinese with English abstract).

    Google Scholar 

  • 11.

    Rasingam, L. & Parthasarathy, N. Diversity of understory plants in undisturbed and disturbed tropical lowland forests of Little Andaman Island, India. Biodiv. Cons. 18, 1045–1065 (2009).

    Google Scholar 

  • 12.

    Boonstra, R., Krebs, C. J. & Cowcill, K. Responses of key understory plants in the boreal forests of western North America to natural versus anthropogenic nitrogen levels. For. Ecol. Manag. 401, 45–54 (2017).

    Google Scholar 

  • 13.

    Ou, Z. Y., Su, Z. Y., Ye, Y. C., Zhu, J. Y. & Liu, S. S. Ground vegetation as indicators of topsoil chemical properties in Dongguan, South China. Acta Ecol. Sin. 29, 984–992 (2009) (in Chinese with English abstract).

    CAS  Google Scholar 

  • 14.

    Su, Z. Y., Ke, X. D. & Zhang, S. J. Vascular plants as indicators of organic carbon gradient in subtropical forested soil. Pol. J. Environ. Stud. 21, 1393–1398 (2012).

    CAS  Google Scholar 

  • 15.

    Dolan, B. & Kilgore, J. Forest regeneration following emerald ash borer (Agrilus planipennis Fairemaire) enhances mesophication in eastern hardwood forests. Forests 9, 353–366 (2018).

    Google Scholar 

  • 16.

    Zhang, J. W., Young, D. H., Oliver, W. W. & Fiddler, G. Effect of overstorey trees on understorey vegetation in California (USA) ponderosa pine plantations. Forest. Int. J. Forest Res. 89, 91–99 (2016).

    Google Scholar 

  • 17.

    Curzon, M., Baker, S., Kern, C., Palik, B. J. & D’Amato, A. W. Influence of mature overstory trees on adjacent 12-year regeneration and the woody understory: Aggregated retention versus intact forest. Forests 8, 31. https://doi.org/10.3390/f8020031 (2017).

    Article  Google Scholar 

  • 18.

    Ádám, R., Ódor, P. & Bölöni, J. The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests. Commun. Ecol. 14, 101–109 (2013).

    Google Scholar 

  • 19.

    Navroud, B. B., Vajari, K. A., Pilehvar, B. & Kooch, Y. Interactions between tree and herb layers vegetation along a gradient of tree composition in Hyrcanian forests. Russ. J. Ecol. 46, 483–486 (2015).

    Google Scholar 

  • 20.

    Mestre, L. et al. The influence of canopy-layer composition on understory plant diversity in southern temperate forests. For. Ecosyst. 4, 6. https://doi.org/10.1186/s40663-017-0093-z (2017).

    Article  Google Scholar 

  • 21.

    Yu, M. & Sun, O. J. Effects of forest patch type and site on herb-layer vegetation in a temperate forest ecosystem. Forest Ecology and Managemen t300, 14–20 (2013).

  • 22.

    Huo, H., Feng, Q. & Su, Y. H. The influences of canopy species and topographic variables on understory species diversity and composition in coniferous forests. Sci. World J. https://doi.org/10.1155/2014/252489 (2014).

    Article  Google Scholar 

  • 23.

    Hicks, D. J. & Taylor, M. S. Effects of Aesculus glabra canopy on understory community structure and environment in a temperate deciduous forest. Castanea 80, 8–19 (2015).

    Google Scholar 

  • 24.

    Riegel, G. M., Miller, R. F. & Krueger, W. C. Competition for resources between understory vegetation and overstory Pinus ponderosa in northeastern Oregon. Ecol. Appl. 2, 71–85 (1992).

    PubMed  Google Scholar 

  • 25.

    Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).

    Google Scholar 

  • 26.

    Giesbrecht, I. J. W., Saunders, S. C., MacKinnon, A. & Lertzman, K. P. Overstory structure drives fine-scale coupling of understory light and vegetation in two temperate rainforest floodplains. Can. J. For. Res. 47, 1244–1256 (2017).

    Google Scholar 

  • 27.

    Mataji, A. et al. Understory vegetation as environmental factors indicator in forest ecosystems. Int. J. Environ. Sci. Tech. 7, 629–638 (2010).

    Google Scholar 

  • 28.

    McCalip, B. et al. Site factors influence on herbaceous understory diversity in east Texas Pinus palustris savannas. Int. J. Biol. 11, 1. https://doi.org/10.5539/ijb.v11n1p1 (2019).

    Article  Google Scholar 

  • 29.

    Bartels, S. F. & Chen, H. Y. H. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J. Veg. Sci. 24, 543–552 (2013).

    Google Scholar 

  • 30.

    Olivero, A. M. & Hix, D. M. Influence of aspect and stand age on ground flora of southeastern Ohio forest ecosystems. Plant Ecol. 139, 177–187 (1998).

    Google Scholar 

  • 31.

    Warren, R. J. Mechanisms driving understory evergreen herb distributions across slope aspects: As derived from landscape position. Plant Ecol. 198, 297–308 (2008).

    Google Scholar 

  • 32.

    Ou, Y. D., Su, Z. Y., Ke, X. D. & Li, Z. Vascular ground flora in relation to topography, canopy structure and gap light regimes in a subtropical broadleaved forest (South China). Pol. J. Ecol. 60, 463–476 (2012).

    Google Scholar 

  • 33.

    Wang, B. W., Zhang, G. H. & Duan, J. Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. Int. Soil Water Conserv. Res. 3, 291–304 (2015).

    Google Scholar 

  • 34.

    Costa, F. R. C., Magnusson, W. E. & Luizao, R. C. Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J. Ecol. 93, 863–878 (2005).

    CAS  Google Scholar 

  • 35.

    Gracia, M., Montané, F., Piqué, J. & Retana, J. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 242, 391–397 (2007).

    Google Scholar 

  • 36.

    Zeng, F. P. et al. Changes in vegetation after 22 years’ natural restoration in the karst disturbed area in Northwest Guangxi. Acta Ecol. Sin. 27, 5110–5119 (2007) (in Chinese with English abstract).

    Google Scholar 

  • 37.

    Song, T. Q. et al. Spatial pattern of forest communities and environmental interpretation in Mulun National Nature Reserve, karst cluster-peak depression region. Chin. J. Plant Ecol. 34, 298–308 (2010) (in Chinese with English abstract).

    Google Scholar 

  • 38.

    Liu, Y. G., Liu, C. C., Wei, Y. F., Liu, Y. G. & Guo, K. Species composition and community structure at different vegetation successional stages in Puding, Guizhou Province, China. Chin. J. Plant Ecol. 35, 1009–1018 (2011) (in Chinese with English abstract).

    Google Scholar 

  • 39.

    Wu, K. Y., Jiang, Z. C. & Luo, W. Q. Techniques of ecological restoration and evaluation of economic value of their results in Guohua demonstration area. Earth Environ. 35, 159–165 (2007) (in Chinese with English abstract).

    Google Scholar 

  • 40.

    Pang, S. L. et al. Edaphic characteristics of different regeneration patterns in karst mountainous areas of Guangxi. J. Cent. South Univ. For. Technol. 36, 60–66 (2016) (in Chinese with English abstract).

    Google Scholar 

  • 41.

    Ou, Z. Y. et al. Effect of soil fertility and topographic factors on woody plant communities in the karst mountains of Southwest Guangxi, China. Acta Ecol. Sin. 34, 3672–3681 (2014) (in Chinese with English abstract).

    Google Scholar 

  • 42.

    Ou, Z. Y., Zhu, J. Y., Peng, Y. H., He, Q. F. & Pang, S. L. Relationship between plant diversity and environmental factors of Excentrodendron hsienmu community in karst mountains in Pinguo County, Guangxi. Bull. Bot. Res. 34, 204–211 (2014) (in Chinese with English abstract).

    CAS  Google Scholar 

  • 43.

    Liu, Y., He, B. Y. & Kou, J. F. Landsat thermal remote sensing to investigate the present situation and variation characteristics of karst rocky desertification in Pingguo County of Guangxi, Southwest China. Sci. Soil Water Conserv. 15, 125–131 (2017) (in Chinese with English abstract).

    Google Scholar 

  • 44.

    Bao, S. D. The Agro-Chemical Analysis of Soil (China Agriculture Press, Beijing, 2000) (in Chinese)).

    Google Scholar 

  • 45.

    McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data (Version 5) (MjM Software Design, Oregon, 2006).

    Google Scholar 

  • 46.

    Ister, S. I. & Gokbulak, F. Effect of stand types on understory vegetation. J. Environ. Biol. 30, 595–600 (2009).

    PubMed  Google Scholar 

  • 47.

    Légaré, S., Bergeron, Y. & Paré, D. Influence of forest composition on understory cover in boreal mixedwood forests of western Quebec. Silva Fenn 36, 353–366 (2002).

    Google Scholar 

  • 48.

    Hameed, M. et al. Influence of plantation type on ground flora composition and diversity in Gatwala artificial forest plantation. Pak. J. Bot. 43, 1867–1872 (2011).

    Google Scholar 

  • 49.

    Sagar, R., Singh, A. & Singh, J. S. Differential effect of woody plant canopies on species composition and diversity of ground vegetation: A case study. Trop. Ecol. 49, 189–197 (2008).

    Google Scholar 

  • 50.

    Si, B., Yao, X. H. & Ben, H. D. Species composition and diversity in the process of natural succession of Karst vegetation in Central Guizhou: Case study of Puding Country in Guizhou. For. Res. 21, 669–674 (2008) (in Chinese with English abstract).

    Google Scholar 

  • 51.

    Bazzaz, F. A. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56, 485–488 (1975).

    Google Scholar 

  • 52.

    Augusto, L., Dupouey, J. L. & Ranger, J. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60, 823–831 (2003).

    Google Scholar 

  • 53.

    Widyatmoko, D. & Burgman, M. A. Influences of edaphic factors on the distribution and abundance of a rare palm (Cyrtostachys renda) in a peat swamp forest in eastern Sumatra, Indonesia. Aust. Ecol. 31, 964–974 (2006).

    Google Scholar 

  • 54.

    Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China. Chin. J. Plant Ecol. 35, 1038–1049 (2011) (in Chinese with English abstract).

    ADS  CAS  Google Scholar 

  • 55.

    Song, T. Q. et al. Community composition and biodiversity characteristics of forests in Karst cluster-peak-depression region. Biodivers. Sci. 18, 355–364 (2010) (in Chinese with English abstract).

    Google Scholar 

  • 56.

    Ou, Z. Y. et al. Coupling relationships between woody plants in Excentrodendron hsienmu community and related edaphic and topographic factors. Chin. J. Ecol. 32, 3182–3189 (2013) (in Chinese with English abstract).

    Google Scholar 

  • 57.

    Tan, Y. B. et al. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests. Biodivers. Sci. 27, 970–983 (2019) (in Chinese with English abstract).

    Google Scholar 


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies