in

Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival

  • 1.

    Choi J, Kim SH. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.

    CAS  PubMed  Google Scholar 

  • 2.

    Hawksworth DL, Lucking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 2017;5:FUNK-0052-2016.

  • 3.

    Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Div. 2019;97:1–136.

    Google Scholar 

  • 4.

    Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, et al. Fungal Planet description sheets: 214-280. Persoonia. 2014;32:184–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31:21–32.

    CAS  PubMed  Google Scholar 

  • 6.

    de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18:28.

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics. 2019;20:485.

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Pringle A, Taylor J. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.

    CAS  PubMed  Google Scholar 

  • 9.

    Gilchrist MA, Sulsky DL, Pringle A. Identifying fitness and optimal life-history strategies for an asexual filamentous fungus. Evolution. 2006;60:970–9.

    PubMed  Google Scholar 

  • 10.

    Golan JJ, Pringle A. Long-distance dispersal of fungi. Microbiol Spectr. 2017;5:FUNK-0047-2016.

  • 11.

    Wyatt TT, Wosten HA, Dijksterhuis J. Fungal spores for dispersion in space and time. Adv Appl Microbiol. 2013;85:43–91.

    PubMed  Google Scholar 

  • 12.

    Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio. 2013;4.

  • 13.

    Norros V, Karhu E, Norden J, Vahatalo AV, Ovaskainen O. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol Evol. 2015;5:3312–26.

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Roper M, Seminara A, Bandi MM, Cobb A, Dillard HR, Pringle A. Dispersal of fungal spores on a cooperatively generated wind. Proc Natl Acad Sci USA. 2010;107:17474–9.

    CAS  PubMed  Google Scholar 

  • 15.

    Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117–21.

    CAS  PubMed  Google Scholar 

  • 16.

    Wösten HA. Hydrophobins: multipurpose proteins. Annu Rev Microbiol. 2001;55:625–46.

    PubMed  Google Scholar 

  • 17.

    Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latge JP. Hydrophobins–unique fungal proteins. PLoS Pathog. 2012;8:e1002700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Aimanianda V, Latge JP. Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence. 2010;1:185–7.

    PubMed  Google Scholar 

  • 19.

    Zhang S, Xia YX, Kim B, Keyhani NO. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol. 2011;80:811–26.

    CAS  PubMed  Google Scholar 

  • 20.

    Whiteford JR, Spanu PD. The hydrophobin HCf-1 of Cladosporium fulvum is required for efficient water-mediated dispersal of conidia. Fungal Genet Biol. 2001;32:159–68.

    CAS  PubMed  Google Scholar 

  • 21.

    Guzman-Guzman P, Aleman-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet. 2017;18:16.

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Lugones LG, de Jong JF, de Vries OM, Jalving R, Dijksterhuis J, Wosten HA. The SC15 protein of Schizophyllum commune mediates formation of aerial hyphae and attachment in the absence of the SC3 hydrophobin. Mol Microbiol. 2004;53:707–16.

    CAS  PubMed  Google Scholar 

  • 23.

    Beckerman JL, Ebbole DJ. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe. 1996;9:450–6.

    CAS  Google Scholar 

  • 24.

    Rineau F, Lmalem H, Ahren D, Shah F, Johansson T, Coninx L, et al. Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes. Mycorrhiza. 2017;27:383–96.

    CAS  PubMed  Google Scholar 

  • 25.

    Scherrer S, Haisch A, Honegger R. Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. N Phytologist. 2002;154:175–84.

    CAS  Google Scholar 

  • 26.

    Bailey MJ, Askolin S, Horhammer N, Tenkanen M, Linder M, Penttila M, et al. Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei. Appl Microbiol Biotechnol. 2002;58:721–7.

    CAS  PubMed  Google Scholar 

  • 27.

    Fuchs U, Czymmek KJ, Sweigard JA. Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol. 2004;41:852–64.

    CAS  PubMed  Google Scholar 

  • 28.

    Winefield RD, Hilario E, Beever RE, Haverkamp RG, Templeton MD. Hydrophobin genes and their expression in conidial and aconidial Neurospora species. Fungal Genet Biol. 2007;44:250–7.

    CAS  PubMed  Google Scholar 

  • 29.

    Sevim A, Donzelli BG, Wu D, Demirbag Z, Gibson DM, Turgeon BG. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet. 2012;58:79–92.

    CAS  PubMed  Google Scholar 

  • 30.

    Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS. Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol. 2008;8:4.

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, et al. Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol. 2011;72:339–51.

    CAS  PubMed  Google Scholar 

  • 32.

    Kim JY, Kwon HW, Lee DH, Ko HK, Kim SH. Isolation and characterization of airborne mushroom damaging Trichoderma spp. from indoor air of cultivation houses used for Oak wood mushroom production using sawdust media. Plant Pathol J. 2019;35:674–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Rao CY, Riggs MA, Chew GL, Muilenberg ML, Thorne PS, Van Sickle D, et al. Characterization of airborne molds, endotoxins, and glucans in homes in New Orleans after Hurricanes Katrina and Rita. Appl Environ Microbiol. 2007;73:1630–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Jaklitsch WM. European species of Hypocrea Part I. The green-spored species. Stud Mycol. 2009;63:1–91.

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Jaklitsch WM. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers. 2011;48:1–250.

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. 2015;107:558–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Atriztan-Hernandez K, Moreno-Pedraza A, Winkler R, Markow T, Herrera-Estrella A. Trichoderma atroviride from predator to prey: role of the mitogen-activated protein kinase tmk3 in fungal chemical defense against fungivory by Drosophila melanogaster larvae. Appl Environ Microbiol. 2019;85:e01825–18.

  • 38.

    Yamaguchi K, Tsurumi Y, Suzuki R, Chuaseeharonnachai C, Sri-Indrasutdhi V, Boonyuen N, et al. Trichoderma matsushimae and T. aeroaquaticum: two aero-aquatic species with Pseudaegerita-like propagules. Mycologia. 2012;104:1109–20.

    PubMed  Google Scholar 

  • 39.

    Druzhinina IS, Kubicek CP, Komon-Zelazowska M, Mulaw TB, Bissett J. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolut Biol. 2010;10:94.

  • 40.

    Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang DQ, Miao YZ, et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. Plos Genetics. 2018;14:e1007322.

  • 41.

    Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, et al. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol. 2011;48:418–29.

    CAS  PubMed  Google Scholar 

  • 42.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, et al. The neutral metallopeptidase NMP1 of Trichoderma guizhouense is required for mycotrophy and self-defence. Environ Microbiol. 2016;18:580–97.

    CAS  PubMed  Google Scholar 

  • 44.

    Zhang J, Miao Y, Rahimi MJ, Zhu H, Steindorff A, Schiessler S, et al. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ Microbiol. 2019;21:2644–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B. A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol. 2012;93:1601–8.

    CAS  PubMed  Google Scholar 

  • 46.

    Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, et al. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol. 2012;84:1150–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113.

    Google Scholar 

  • 48.

    Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Gao FL, Chen CJ, Arab DA, Du ZG, He YH, Ho SYW. EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol. 2019;9:3891–8.

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.

    CAS  PubMed  Google Scholar 

  • 53.

    Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol. 2006;72:2126–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Smith AR. Color gamut transform pairs. ACM SIGGRAPH. Comput Graph. 1978;12:12–19.

    CAS  Google Scholar 

  • 55.

    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds). Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer, Cham, 2015, pp. 234–41.

  • 56.

    Harrison JG, Lowe R. Wind dispersal of conidia of Botrytis spp. pathogenic to Vicia faba. Plant Pathol. 1987;36:5–15.

    Google Scholar 

  • 57.

    Nagarajan S, Singh DV. Long-distance dispersion rust pathogens. Annu Rev Phytopathol. 1990;28:139–53.

  • 58.

    Przylucka A, Akcapinar GB, Bonazza K, Mello-de-Sousa TM, Mach-Aigner AR, Lobanov V, et al. Comparative physiochemical analysis of hydrophobins produced in Escherichia coli and Pichia pastoris. Colloids Surf B Biointerfaces. 2017;159:913–23.

    CAS  PubMed  Google Scholar 

  • 59.

    Webb B, Sali A. Comparative protein structure modeling using. Modeller. 2016;54:5.6.1–5.6.37.

    Google Scholar 

  • 60.

    Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Espino-Rammer L, Ribitsch D, Przylucka A, Marold A, Greimel KJ, Herrero Acero E, et al. Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol. 2013;79:4230–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Grunbacher A, Throm T, Seidel C, Gutt B, Rohrig J, Strunk T, et al. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS ONE. 2014;9:e94546.

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Whiteford JR, Lacroix H, Talbot NJ, Spanu PD. Stage-specific cellular localisation of two hydrophobins during plant infection by the pathogenic fungus Cladosporium fulvum. Fungal Genet Biol. 2004;41:624–34.

    CAS  PubMed  Google Scholar 

  • 65.

    Stuefer JF, Van Hulzen JB, During HJ. A genotypic trade-off between the number and size of clonal offspring in the stoloniferous herb Potentilla reptans. J Evol Biol. 2002;15:880–4.

    Google Scholar 

  • 66.

    Wolf JB, Brodie Iii ED, Cheverud JM, Moore AJ, Wade MJ. Evolutionary consequences of indirect genetic effects. Trends Ecol Evol. 1998;13:64–69.

    CAS  PubMed  Google Scholar 

  • 67.

    Goldman N, Yang Z. Introduction. Statistical and computational challenges in molecular phylogenetics and evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363:3889–92.

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Yang ZH (ed). Computational molecular evolution, 1st edn. Oxford University Press: New York, USA, 2006.

  • 69.

    Chaverri P, Samuels GJ. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol. 2004;48:1–116. 

  • 70.

    Li QR, Tan P, Jiang YL, Hyde KD, Mckenzie EHC, Bahkali AH, et al. A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycol Prog. 2013;12:167–72.

    Google Scholar 

  • 71.

    Gagny B, Rossignol M, Silar P. Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: Relationship between cytosolic translation and longevity in filamentous fungi. Fungal Genet Biol. 1997;22:191–8.

    CAS  PubMed  Google Scholar 

  • 72.

    Geydan TD, Debets AJ, Verkley GJ, van Diepeningen AD. Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol. 2012;21:2816–28.

    PubMed  Google Scholar 

  • 73.

    Prokhorov VP, Bodyagin VV. The ecology of aero-aquatic hyphomycetes. Moscow Univ Biol Sci Bull. 2007;62:15

    Google Scholar 

  • 74.

    Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, et al. Fungal biodiversity in aquatic habitats. Biodivers Conserv. 2007;16:49–67.

    Google Scholar 

  • 75.

    Voglmayr H. Two new aero-aquatic species of the hyphomycete genus Helicodendron from Austria. Plant Syst Evol. 1997;205:185–93.

    Google Scholar 

  • 76.

    Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Fisher MC, Koenig GL, White TJ, Taylor JW. Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. J Clin Microbiol. 2000;38:807–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Huang JP, Leavitt SD, Lumbsch HT. Testing the impact of effective population size on speciation rates – a negative correlation or lack thereof in lichenized fungi. Sci Rep. 2018;8:5729.

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Taylor JW. Evolutionary perspectives on human fungal pathogens. Cold Spring Harb Perspect Med. 2014;5.

  • 80.

    Johannesson H, Vidal P, Guarro J, Herr RA, Cole GT, Taylor JW. Positive directional selection in the proline-rich antigen (PRA) gene among the human pathogenic fungi Coccidioides immitis, C. posadasii and their closest relatives. Mol Biol Evol. 2004;21:1134–45.

    CAS  PubMed  Google Scholar 

  • 81.

    Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA. 2002;99:9278–83.

    CAS  PubMed  Google Scholar 

  • 82.

    Rieseberg LH, Widmer A, Arntz AM, Burke JM. Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci USA. 2002;99:12242–5.

    CAS  PubMed  Google Scholar 

  • 83.

    Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eisikowitch D. Are flowers morphologically adapted to take advantage of electrostatic forces in pollination? N Phytologist. 2001;152:301–6.

    Google Scholar 

  • 84.

    Liu Y, Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot Cell. 2006;5:1184–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    McCormick A, Loeffler J, Ebel F. Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol. 2010;12:1535–43.


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism