in

Global biogeography of marine dispersal potential

  • 1.

    Benton, T. G. & Bowler, D. E. in Dispersal Ecology and Evolution (ed. Clobert, J.) 251–265 (Oxford Univ. Press, 2012).

  • 2.

    Gundersen, G., Johannesen, E., Andreassen, H. P. & Ims, R. A. Source–sink dynamics: how sinks affect demography of sources. Ecol. Lett. 4, 14–21 (2001).

    Google Scholar 

  • 3.

    Amarasekare, P. The role of density-dependent dispersal in source–sink dynamics. J. Theor. Biol. 226, 159–168 (2004).

    PubMed  Google Scholar 

  • 4.

    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Google Scholar 

  • 5.

    Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Google Scholar 

  • 6.

    Levin, S., Muller-Landau, H., Ran, N. & Chave, J. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34, 575–604 (2003).

    Google Scholar 

  • 7.

    Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).

    Google Scholar 

  • 8.

    Jeffery, C. H. & Emlet, R. B. Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the Tertiary of southern Australia. Evolution (N Y) 57, 1031–1048 (2003).

    Google Scholar 

  • 9.

    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).

    CAS  PubMed  Google Scholar 

  • 10.

    Botsford, Hastings & Gaines Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol. Lett. 4, 144–150 (2001).

    Google Scholar 

  • 11.

    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proc. Natl Acad. Sci. USA 107, 18286–18293 (2010).

    CAS  PubMed  Google Scholar 

  • 12.

    Haag, C. R., Saastamoinen, M., Marden, J. H. & Hanski, I. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. Biol. Sci. 272, 2449–2456 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Muller‐Landau, H. C., Wright, S. J., Calderón, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008).

    Google Scholar 

  • 14.

    Uriarte, M. et al. Disentangling the drivers of reduced long‐distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92, 924–937 (2011).

    PubMed  Google Scholar 

  • 15.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Naturalist. 101, 233–249 (1967).

    Google Scholar 

  • 16.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    PubMed  Google Scholar 

  • 17.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    PubMed  Google Scholar 

  • 18.

    Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471 (2018).

    CAS  PubMed  Google Scholar 

  • 19.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

    PubMed  Google Scholar 

  • 20.

    Brown, J. H. Why marine islands are farther apart in the Tropics. Am. Nat. 183, 842–846 (2014).

    PubMed  Google Scholar 

  • 21.

    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl Acad. Sci. USA 104, 1266–1271 (2007).

    Google Scholar 

  • 22.

    Kelly, R. P. & Eernisse, D. J. Southern hospitality: a latitudinal gradient in gene flow in the marine environment. Evolution (N Y) 61, 700–707 (2007).

    CAS  Google Scholar 

  • 23.

    Marshall, D. J. & Álvarez-Noriega, M. Projecting marine developmental diversity and connectivity in future oceans. Phil. Trans. R. Soc. B (in the press).

  • 24.

    Powell, M. G. The latitudinal diversity gradient of brachiopods over the past 530 million years. J. Geol. 117, 585–594 (2009).

    Google Scholar 

  • 25.

    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    PubMed  Google Scholar 

  • 26.

    Yasuhara, M. et al. Cenozoic dynamics of shallow‐marine biodiversity in the Western Pacific. J. Biogeogr. 44, 567–578 (2017).

    Google Scholar 

  • 27.

    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    Google Scholar 

  • 28.

    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, S159–S169 (2003).

    Google Scholar 

  • 29.

    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    PubMed  Google Scholar 

  • 30.

    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).

    Google Scholar 

  • 31.

    Thorson, G. Rerproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).

    CAS  PubMed  Google Scholar 

  • 32.

    Pearse, J. in Reproduction, Larval Biology and Recruitment of the Deep-Sea Benthos (eds Young, C. & Eckelbarger, K.) 26–44 (Columbia Univ. Press, 1994).

  • 33.

    Marshall, D. J., Krug, P. J., Kupriyanova, E. K., Byrne, M. & Emlet, R. B. The biogeography of marine invertebrate life histories. Annu. Rev. Ecol. Evol. Syst. 43, 97–114 (2012).

    Google Scholar 

  • 34.

    Ewers-Saucedo, C. & Pappalardo, P. Testing adaptive hypotheses on the evolution of larval life history in acorn and stalked barnacles. Ecol. Evol. 9, 11434–11447 (2019).

  • 35.

    Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. Adv. Mar. Biol. 53, 1–60 (2008).

    Google Scholar 

  • 36.

    Barneche, D. R., Burgess, S. C. & Marshall, D. J. Global environmental drivers of marine fish egg size. Glob. Ecol. Biogeogr. 27, 890–898 (2018).

    Google Scholar 

  • 37.

    Marshall, D. J. & Keough, M. J. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Mar. Ecol. Prog. Ser. 255, 145–153 (2003).

    Google Scholar 

  • 38.

    Kohn, A. J. & Perron, F. E. Life History and Biogeography: Patterns in Conus (AbeBooks, 1994).

  • 39.

    Levitan, R. M. Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. Am. Nat. 156, 175–192 (2000).

    PubMed  Google Scholar 

  • 40.

    Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).

    Google Scholar 

  • 41.

    Byers, J. E. & Pringle, J. M. Going against the flow: retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 313, 27–41 (2006).

    Google Scholar 

  • 42.

    Pappalardo, P., Pringle, J. M., Wares, J. P. & Byers, J. E. The location, strength, and mechanisms behind marine biogeographic boundaries of the east coast of North America. Ecography (Cop.) 38, 722–731 (2015).

    Google Scholar 

  • 43.

    Halanych, K. M. & Mahon, A. R. Challenging dogma concerning biogeographic patterns of Antarctica and the Southern Ocean. Annu. Rev. Ecol. Evol. Syst. 49, 355–378 (2018).

    Google Scholar 

  • 44.

    Mercier, A., Sewell, M. A. & Hamel, J.-F. Pelagic propagule duration and developmental mode: reassessment of a fading link. Glob. Ecol. Biogeogr. 22, 517–530 (2013).

    Google Scholar 

  • 45.

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    PubMed  Google Scholar 

  • 46.

    Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).

    PubMed  Google Scholar 

  • 47.

    Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).

    PubMed  Google Scholar 

  • 48.

    Saeedi, H., Dennis, T. E. & Costello, M. J. Bimodal latitudinal species richness and high endemicity of razor clams (Mollusca). J. Biogeogr. 44, 592–604 (2017).

    Google Scholar 

  • 49.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    CAS  PubMed  Google Scholar 

  • 50.

    Chiu, W.-T. R. et al. Marine latitudinal diversity gradients, niche conservatism and out of the tropics and Arctic: climatic sensitivity of small organisms. J. Biogeogr. 47, 817–828 (2020).

    Google Scholar 

  • 51.

    Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).

    PubMed  Google Scholar 

  • 52.

    Pechenik, J. A. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).

    Google Scholar 

  • 53.

    Pringle, J. M., Byers, J. E., Pappalardo, P., Wares, J. P. & Marshall, D. Circulation constrains the evolution of larval development modes and life histories in the coastal ocean. Ecology 95, 1022–1032 (2014).

    PubMed  Google Scholar 

  • 54.

    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).

    Google Scholar 

  • 55.

    Gillooly, J. F. & Dodson, S. I. The relationship of neonate mass and incubation temperature to embryonic development time in a range of animal taxa. J. Zool. 251, 369–375 (2000).

    Google Scholar 

  • 56.

    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc. Biol. Sci. 275, 1803–1809 (2008).

    PubMed Central  Google Scholar 

  • 57.

    Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).

    Google Scholar 

  • 58.

    Nanninga, G. B. & Manica, A. Larval swimming capacities affect genetic differentiation and range size in demersal marine fishes. Mar. Ecol. Prog. Ser. 589, 1–12 (2018).

    Google Scholar 

  • 59.

    Burgess, S. C. et al. Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected‐area design. Ecol. Appl. 24, 257–270 (2014).

    PubMed  Google Scholar 

  • 60.

    Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl Acad. Sci. USA 103, 6067–6072 (2006).

    CAS  PubMed  Google Scholar 

  • 61.

    Marshall, D. J. & Bolton, T. F. Effects of egg size on the development time of non-feeding larvae. Biol. Bull. 212, 6–11 (2007).

    PubMed  Google Scholar 

  • 62.

    Berrill, N. J. Studies in tunicate development. Part III. Differential retardation and acceleration. Phil. Trans. R. Soc. B 225, 255–326 (1935).

    Google Scholar 

  • 63.

    Queiroga, H. & Blanton, J. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Adv. Mar. Biol. 47, 107–214 (2004).

    Google Scholar 

  • 64.

    Kingsford, M. J. Linear oceanographic features: a focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).

    Google Scholar 

  • 65.

    Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, 71–89 (2003).

    Google Scholar 

  • 66.

    Cowen, R. K., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).

    CAS  PubMed  Google Scholar 

  • 67.

    Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F. & McWilliams, J. C. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc. Natl Acad. Sci. USA 113, 2976–2981 (2016).

    CAS  PubMed  Google Scholar 

  • 68.

    Becker, B. J., Levin, L. A., Fodrie, F. J. & McMillan, P. A. Complex larval connectivity patterns among marine invertebrate populations. Proc. Natl Acad. Sci. USA 104, 3267–3272 (2007).

    CAS  PubMed  Google Scholar 

  • 69.

    Jones, G. P., Milicich, M. J., Emslie, M. J. & Lunow, C. Self-recruitment in a coral reef fish population. Nature 402, 802–804 (1999).

    CAS  Google Scholar 

  • 70.

    Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. Local replenishment of coral reef fish populations in a marine reserve. Science 316, 742–744 (2007).

    CAS  PubMed  Google Scholar 

  • 71.

    Edmands, S. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol. Ecol. 10, 1743–1750 (2001).

    CAS  PubMed  Google Scholar 

  • 72.

    Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).

    PubMed  Google Scholar 

  • 73.

    Lellouche, J.-M. et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 14, 1093–1126 (2018).

    Google Scholar 

  • 74.

    Laurindo, L. C., Mariano, A. J. & Lumpkin, R. An improved near-surface velocity climatology for the global ocean from drifter observations. Deep Sea Res. Part I Oceanogr. Res. Pap. 124, 73–92 (2017).

    Google Scholar 

  • 75.

    Lopez, M. & Clarke, A. The wind-driven shelf and slope water-flow in terms of a local and a remote response. J. Phys. Oceanogr. 19, 1091–1101 (1989).

    Google Scholar 

  • 76.

    Csanady, G. T. The arrested topographic wave. J. Phys. Oceanogr. 8, 47–62 (1978).

    Google Scholar 

  • 77.

    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  • 78.

    Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    Google Scholar 

  • 79.

    Michonneau, F., Brown, J. W., Winter, D. J. & Fitzjohn, R. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Google Scholar 

  • 80.

    Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. B 326, 119–157 (1989).

    CAS  PubMed  Google Scholar 

  • 81.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  Google Scholar 

  • 82.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • 83.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 84.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 85.

    Gabry, J. & Goodrich, B. rstantools: Tools for Developing R Packages Interfacing with ‘Stan’. R package version 2.0.0 https://cran.r-project.org/web/packages/rstantools/index.html (2018).


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism