in

Iron and manganese migration in “soil–plant” system in Scots pine stands in conditions of contamination by the steel plant’s emissions

  • 1.

    Fedorkov, A. Effect of heavy metal pollution of forest soil on radial growth of Scots pine. For. Pathol. 37(2), 136–142. https://doi.org/10.1111/j.1439-0329.2007.00499.x (2007).

    Article  Google Scholar 

  • 2.

    Kocourek, R. & Bystřičan, A. Fine root and mycorrhizal biomass in Norway spruce (Picea abies/L./Karsten) forest stands under different pollution stress. Agric. Ecosyst. Environ. 28(1–4), 235–242. https://doi.org/10.1016/0167-8809(90)90046-g (1990).

    CAS  Article  Google Scholar 

  • 3.

    Kahle, H. Response of roots of trees to heavy metals. Environ. Exp. Bot. 33(1), 99–119. https://doi.org/10.1016/0098-8472(93)90059-o (1993).

    Article  Google Scholar 

  • 4.

    Helmisaari, H., Makkonen, K., Olsson, M., Viksna, A. & Mälkönen, E. Fine-root growth, mortality and heavy metal concentrations in limed and fertilized Pinus silvestris (L.) stands in the vicinity of a Cu-Ni smelter in SW Finland. Plant Soil 209(2), 193–200. https://doi.org/10.1023/A:1004595531203 (1999).

    CAS  Article  Google Scholar 

  • 5.

    Veselkin, D. V. Distribution of fine roots of coniferous trees over the soil profile under conditions of pollution by emissions from a copper-smelting plant. Russ. J. Ecol. 33(4), 231–234. https://doi.org/10.1023/A:1016208118629 (2002).

    CAS  Article  Google Scholar 

  • 6.

    Liss, V. B., Blaschke, H. & Schütt, P. Vergleichende Feinwurzeluntersuchungen an gesunden und erkrankten Altfichten auf zwei Standorten in Bayernein Beitrag zur Waldsterbensforschung. For. Pathol. 14(2), 90–102. https://doi.org/10.1111/j.1439-0329.1984.tb00157.x (1984).

    Article  Google Scholar 

  • 7.

    Mhatre, G. N. Bioindicators and biomonitoring of heavy metals. J Environ.. Biol. 12, 201–209 (1991).

    CAS  Google Scholar 

  • 8.

    Persson, H. & Majdi, H. Effects of acid deposition on tree roots in Swedish forest stands. Water Air Soil Pollut. 85(3), 1287–1292. https://doi.org/10.1007/bf00477159 (1995).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Zaitsev, G. A., Kulagin, A. Y. & Bagautdinov, F. Y. Specific features of root system structure in Pinus sylvestris L. and Larix sukaczewii Dyl. under conditions of the Ufa industrial center. Russ. J. Ecol. 32, 281–283. https://doi.org/10.1023/A:1011322923862 (2001).

    Article  Google Scholar 

  • 10.

    Kulagin, A. Y. & Zaitsev, G. A. The root system of Larix sukaczewii Dyl. in the polluted environment of the Ufa industrial center. Russ. J. Ecol. 34, 438–440. https://doi.org/10.1023/A:1027324803817 (2003).

    Article  Google Scholar 

  • 11.

    Zaitsev, G. A. & Kulagin, A. Y. Root system formation in Scotch pine (Pinus sylvestris L.) under conditions of technogenesis (Ufa industrial center). Russ. J. Ecol. 36(2), 127–130. https://doi.org/10.1007/s11184-005-0022-1 (2005).

    Article  Google Scholar 

  • 12.

    Eldhuset, T. D., Lange, H. & de Wit, H. A. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand. Sci. Total Environ. 369(1–3), 344–356. https://doi.org/10.1016/j.scitotenv.2006.05.011 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Giniyatullin, R. K., Kulagin, A. A., Zaitsev, G. A. & Baktybaeva, Z. B. Sanitary and protective Larix sukaczewii Dyl. stand in the pollution conditions of the Sterlitamak industrial center status and peculiarities of accumulation of heavy metal. Hygiene Sanit. 97(9), 819–824. https://doi.org/10.18821/0016-9900-2018-97-9-819-824 (2018) (in Russian).

    Article  Google Scholar 

  • 14.

    Vircikova, E. & Macala, J. Air-pollutant emissions and imissions from metallurgical industry. In Mineral Processing and the Environment NATO ASI Series (Series 2: Environment) Vol. 43 (eds Gallios, G. P. & Matis, K. A.) 85–110 (Springer, Dordrecht, 1998). https://doi.org/10.1007/978-94-017-2284-1_5.

    Google Scholar 

  • 15.

    Röllin, H. B. & Nogueira, C. M. C. A. Manganese: environmental pollution and health effects. In Encyclopedia of Environmental Health 2nd edn (ed. Nriagu, J.) 229–242 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/b978-0-12-409548-9.11530-1.

    Google Scholar 

  • 16.

    Kappler, A. & Straub, K. L. Geomicrobiological cycling of iron. Rev. Mineral. Geochem. 59(1), 85–108. https://doi.org/10.2138/rmg.2005.59.5 (2005).

    CAS  Article  Google Scholar 

  • 17.

    Vodyanitskii, Y. N. Mineralogy and geochemistry of manganese: A review of publications. Eurasian Soil Sci. 42(10), 1170–1178. https://doi.org/10.1134/s1064229309100123 (2009).

    ADS  Article  Google Scholar 

  • 18.

    Domellöf, M., Thorsdottir, I. & Thorstensen, K. Health effects of different dietary iron intakes: a systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr. Res. 57(1), 21667. https://doi.org/10.3402/fnr.v57i0.21667 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Adebiyi, A. P., Adebiyi, A. O., Ogawa, T. & Muramoto, K. Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. Int. J. Food Sci. Technol. 43(1), 35–43. https://doi.org/10.1111/j.1365-2621.2006.01379.x (2008).

    CAS  Article  Google Scholar 

  • 20.

    Ankudey, E.G., Woode, M.Y. Assessment and characterization of peroxidase activity in locally grown bean varieties from Ghana. Int J Sci Res Publ. 4(6), (2014). https://www.ijsrp.org/research-paper-0614/ijsrp-p3062.pdf Accessed 17 January 2020

  • 21.

    Hudnell, H. K. Effects from environmental Mn exposures: A review of the evidence from non-occupational exposure studies. Neurotoxicology. 20(2–3), 379–398 (1999).

    CAS  PubMed  Google Scholar 

  • 22.

    Aschner, J. L. & Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 26(4–5), 353–362. https://doi.org/10.1016/j.mam.2005.07.003 (2005).

    CAS  Article  Google Scholar 

  • 23.

    Lytle, C., Smith, B. & Mckinnon, C. Manganese accumulation along Utah roadways: a possible indication of motor vehicle exhaust pollution. Sci. Total Environ. 162(2–3), 105–109. https://doi.org/10.1016/0048-9697(95)04438-7 (1995).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Siskevich, Y. I., Nikonenko, V. A., Dolgikh, O. V., Akhtyrtsev, A. B. & Sushkov, D. V. Soils of the Lipetsk Region (Pozitiv L, Lipetsk, 2018) (in Russian).

    Google Scholar 

  • 25.

    Borisochkina, T.I., Frid, A.S. Heavy metals in the soils of the Lipetsk technogenic biogeochemical province. In: Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems. VI International Symposium. VVM publishing Lld, Saint Petersburg. pp. 62–63. (2018)

  • 26.

    Rybalsky, N.G., Gorbatovsky, V.V., Yakovlev, A.S. Natural resources and the environment of the constituent entities of the Russian Federation. Central District: Lipetsk Region. Moscow. (2004). (in Russian).

  • 27.

    Report “The state and environmental protection of the Lipetsk region in 2018”. Administration of Lipetsk region, Lipetsk. (2019). (in Russian)

  • 28.

    Böhm, W. Methods of Studying Root Systems. Ecological Studies 188 (Springer, Berlin, 1979). https://doi.org/10.1007/978-3-642-67282-8.

    Google Scholar 

  • 29.

    Rosário-de-Oliveira, M. et al. Auger sampling, ingrowth cores and pinboard methods. In Root Methods (eds Smit, A. L., Bengough, A. G. et al.) 175–210 (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-662-04188-8_6.

    Google Scholar 

  • 30.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51(4), 335–380. https://doi.org/10.1071/bt02124 (2003).

    Article  Google Scholar 

  • 31.

    Bao, S. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agricultural Press, Beijin, 2000).

    Google Scholar 

  • 32.

    Pansu, M. & Gautheyrou, J. Handbook of soil analysis: mineralogical, organic and inorganic methods (Springer, Berlin, 2006).

    Google Scholar 

  • 33.

    Orlov, D. S. Soil Chemistry: A Textbook (Moscow State University, Moscow, 1985) (in Russian).

    Google Scholar 

  • 34.

    Foy, C. D., Fleming, A. L. & Schwartz, J. W. Differential resistance of weeping lovegrass genotypes to iron-related chlorosis. J. Plant Nutr. 3(1–4), 537–550. https://doi.org/10.1080/01904168109362859 (1981).

    CAS  Article  Google Scholar 

  • 35.

    Taylor, G. J. & Crowder, A. A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am. J. Bot. 70(8), 1254–1257. https://doi.org/10.1002/j.1537-2197.1983.tb12474.x (1983).

    CAS  Article  Google Scholar 

  • 36.

    Khan, N. et al. Chapter one—Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. In Advances in Agronomy Vol. 138 (ed. Sparks, D. L.) 1–96 (Academic Press, London, 2016). https://doi.org/10.1016/bs.agron.2016.04.002.

    Google Scholar 

  • 37.

    Pan, G., Liu, W., Zhang, H. & Liu, P. Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress. Ecotoxicol. Environ. Saf. 165, 654–661. https://doi.org/10.1016/j.ecoenv.2018.08.107 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Janhäll, S. Review on urban vegetation and particle air pollution—deposition and dispersion. Atmos. Environ. 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052 (2015).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Przybysz, A., Sæbø, A., Hanslin, H. M. & Gawroński, S. W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 481, 360–369. https://doi.org/10.1016/j.scitotenv.2014.02.072 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 40.

    Chen, L., Liu, C., Zhang, L., Zou, R. & Zhang, Z. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 7, 3206. https://doi.org/10.1038/s41598-017-03360-1 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Xu, X., Xia, J., Gao, Y. & Zheng, W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Gree. 48, 126559. https://doi.org/10.1016/j.ufug.2019.126559 (2020).

    Article  Google Scholar 

  • 42.

    Pelly, I. Z. Atomic absorption spectrometry. In Instrumental multi-element chemical analysis (ed. Alfassi, Z. B.) 251–301 (Springer, Dordrecht, 1998). https://doi.org/10.1007/978-94-011-4952-5_7.

    Google Scholar 

  • 43.

    Order of the Head of Lipetsk from 29.05.2007 No. 1183-R “On approval of the List of background indicators of the soils of the Lipetsk city”. https://base.garant.ru/33712835 Accessed 17 January 2020 (in Russian)

  • 44.

    Alloway, B. J., Thornton, I., Smart, G. A., Sherlock, J. C. & Quinn, M. J. Metal availability. Sci. Total Environ. 75, 41–69. https://doi.org/10.1016/0048-9697(88)90159-3 (1988).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Kumar, P. B. A. N., Dushenkov, V., Motto, H. & Raskin, I. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29(5), 1232–1238. https://doi.org/10.1021/es00005a014 (1995).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 46.

    Dinelli, E. & Lombini, A. Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations. Appl. Geochem. 11(1–2), 375–385. https://doi.org/10.1016/0883-2927(95)00071-2 (1996).

    CAS  Article  Google Scholar 

  • 47.

    Zu, Y. Q. et al. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Int. 31(5), 755–762. https://doi.org/10.1016/j.envint.2005.02.004 (2005).

    CAS  Article  Google Scholar 

  • 48.

    Koleli, N. et al. Heavy metal accumulation in serpentine flora of Mersin-Findikpinari (Turkey)—role of ethylenediamine tetraacetic acid in facilitating extraction of nickel. In Soil remediation and plants: prospects and challenges (eds Hakeem, K. R. et al.) 629–659 (Academic Press, Oxford, 2015). https://doi.org/10.1016/B978-0-12-799937-1.00022-X.

    Google Scholar 

  • 49.

    Brooks, R. R. Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology Mineral Exploration and Phytomining (CAB International, Wallingford, 1998).

    Google Scholar 

  • 50.

    Hope, B. K. A review of models for estimating terrestrial ecological receptor exposure to chemical contaminants. Chemosphere 30(12), 2267–2287. https://doi.org/10.1016/0045-6535(95)00100-M (1995).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Tome, F. V., Rodriguez, M. P. B. & Lozano, J. C. Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J. Environ. Radioact. 65(2), 161–175. https://doi.org/10.1016/S0265-931X(02)00094-2 (2003).

    Article  Google Scholar 

  • 52.

    Chojnacka, K., Chojnacki, A., Górecka, H. & Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 337, 175–182. https://doi.org/10.1016/j.scitotenv.2004.06.009 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 53.

    Samsuri, A. W., Tariq, F. S., Karam, D. S., Aris, A. Z. & Jamilu, G. The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass. Appl. Geochem. 108, 104366. https://doi.org/10.1016/j.apgeochem.2019.104366 (2019).

    CAS  Article  Google Scholar 

  • 54.

    Diaconu, M. et al. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. N Biotechnol. 56, 130–139. https://doi.org/10.1016/j.nbt.2020.01.003 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Giniyatullin, R. K., Kulagin, A. A., Zaitsev, G. A. & Baktybaeva, Z. B. Sanitary and protective Larix sukaczewii Dyl stand in the pollution conditions of the Sterlitamak industrial center: status and peculiarities of accumulation of heavy metal. Hygiene Sanit. 97(9), 819–824. https://doi.org/10.18821/0016-9900-2018-97-9-819-824 (2018) (in Russian with English summary).

    Article  Google Scholar 

  • 56.

    Motulsky, H. J. Prism 4 Statistics Guide Statistical analyses for laboratory and clinical researchers (GraphPad Software Inc., San Diego, 2003).

    Google Scholar 

  • 57.

    Mulder, E. G. & Gerretsen, F. C. Soil manganese in relation to plant growth. Adv. Agron. 4, 221–277. https://doi.org/10.1016/s0065-2113(08)60310-7 (1952).

    CAS  Article  Google Scholar 

  • 58.

    Ayeni, O., Kambizi, L., Laubscher, C., Fatoki, O. & Olatunji, O. Risk assessment of wetland under aluminium and iron toxicities: A review. Aquat. Ecosyst. Health Manag. 17(2), 122–128. https://doi.org/10.1080/14634988.2014.910569 (2014).

    CAS  Article  Google Scholar 

  • 59.

    Saaltink, R. M., Dekker, S. C., Eppinga, M. B., Griffioen, J. & Wassen, M. J. Plant-specific effects of iron-toxicity in wetlands. Plant Soil. 416(1–2), 83–96. https://doi.org/10.1007/s11104-017-3190-4 (2017).

    CAS  Article  Google Scholar 

  • 60.

    Jorgenson, K. D., Lee, P. F. & Kanavillil, N. Ecological relationships of wild rice, Zizania spp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (Zizania palustris). Botany 91(3), 189–201. https://doi.org/10.1139/cjb-2012-0198 (2013).

    CAS  Article  Google Scholar 

  • 61.

    Dibirova, A. P., Akhmedova, Z. N., Ramazanova, N. I. & Khizroeva, P. R. Manganese, zinc, boron, and iodine in soils of the northwestern part of the Dagestan foothills. Eurasian Soil Sci. 39, 1306–1311. https://doi.org/10.1134/S1064229306120040 (2006).

    ADS  Article  Google Scholar 

  • 62.

    Diaz-Maroto, I. J., Fernandez-Parajes, J. & Vila-Lameiro, P. Chemical properties and edaphic nutrients content in natural stands of Quercus pyrenaica Willd. in Galicia Spain. Eurasian Soil Sci. 40(5), 522–531. https://doi.org/10.1134/s1064229307050079 (2007).

    ADS  Article  Google Scholar 

  • 63.

    Zubkova, O. A. & Shihova, L. N. Modification of a content of mobile iron in the podzolic and sod-podzolic soils during growth season. Agricult. Sci. Euro-North-East 6(37), 30–33 (2013) (in Russian).

    Google Scholar 

  • 64.

    Davison, W. Transport of iron and manganese in relation to the shapes of their concentration-depth profiles. In Sediment/Freshwater Interaction. Proceedings of the Second International Symposium (ed. Sly, P. G.) 463–471 (Springer, Dordrecht, 1982). https://doi.org/10.1007/978-94-009-8009-9_44.

    Google Scholar 

  • 65.

    Lastra, O., Chueca, A., Lachica, M. & López Gorgé, J. Root uptake and partition of copper, iron, manganese, and zinc in Pinus radiata seedlings grown under different copper supplies. J. Plant Physiol. 132(1), 16–22. https://doi.org/10.1016/s0176-1617(88)80176-7 (1988).

    CAS  Article  Google Scholar 

  • 66.

    Barrick, K. A. & Noble, M. G. The iron and manganese status of seven upper montane tree species in Colorado, USA, following long-term waterlogging. J. Ecol. 81(3), 523–531. https://doi.org/10.2307/2261530 (1993).

    CAS  Article  Google Scholar 

  • 67.

    Moosavi, A. A. & Ronaghi, A. Influence of foliar and soil applications of iron and manganese on soybean dry matter yield and iron-manganese relationship in a Calcareous soil. Aust. J. Crop Sci. 5(12), 1550–1556 (2011).

    CAS  Google Scholar 

  • 68.

    Nriagu, J. O. & Pacyna, J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169), 134–139. https://doi.org/10.1038/333134a0 (1998).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming