in

Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion

  • 1.

    Oppo, D. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).

    Google Scholar 

  • 2.

    Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316, 66–69 (2007).

    Google Scholar 

  • 3.

    Howe, J. N. W. et al. North Atlantic Deep Water production during the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).

    Google Scholar 

  • 4.

    Gebbie, G. How much did Glacial North Atlantic Water shoal? Paleoceanogr. Paleoclimatol. 29, 190–209 (2014).

    Google Scholar 

  • 5.

    Skinner, L., Fallon, S. J., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    Google Scholar 

  • 6.

    Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357–358, 289–297 (2012).

    Google Scholar 

  • 7.

    Burke, A. et al. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanogr. Paleoclimatol. 30, 1021–1039 (2015).

    Google Scholar 

  • 8.

    Robinson, L. F. & van de Flierdt, T. Southern Ocean evidence for reduced export of North Atlantic Deep Water during Heinrich event 1. Geology 37, 195–198 (2009).

    Google Scholar 

  • 9.

    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    Google Scholar 

  • 10.

    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Google Scholar 

  • 11.

    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Google Scholar 

  • 12.

    Yu, J. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nat. Geosci. 9, 319–324 (2016).

    Google Scholar 

  • 13.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

    Google Scholar 

  • 14.

    Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41, 667–670 (2013).

    Google Scholar 

  • 15.

    Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).

    Google Scholar 

  • 16.

    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Google Scholar 

  • 17.

    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).

    Google Scholar 

  • 18.

    Yu, J. et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 330, 1084–1087 (2010).

    Google Scholar 

  • 19.

    Marchitto, T. & Broeker, W. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, (2006).

  • 20.

    Yu, J. More efficient North Atlantic carbon pump during the Last Glacial Maximum. Nat. Commun. 10, 2170 (2019).

    Google Scholar 

  • 21.

    Chalk, T. B., Foster, G. L. & Wilson, P. A. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO32−] and pH records. Earth Planet. Sci. Lett. 510, 1–11 (2019).

    Google Scholar 

  • 22.

    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).

    Google Scholar 

  • 23.

    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion–δ13C systematics and application to glacial–interglacial North Atlantic Ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).

    Google Scholar 

  • 24.

    Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data-model comparison study. Paleoceanogr. Paleoclimatol. 31, 2–17 (2017).

    Google Scholar 

  • 25.

    Muglia, J., Skinner, L. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).

    Google Scholar 

  • 26.

    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).

    Google Scholar 

  • 27.

    Gottschalk, J. et al. Past carbonate preservation events in the deep southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanogr. Paleoclimatol. 33, 643–663 (2018).

    Google Scholar 

  • 28.

    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nat. Geosci. 8, 950–954 (2015).

    Google Scholar 

  • 29.

    Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).

    Google Scholar 

  • 30.

    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).

    Google Scholar 

  • 31.

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Google Scholar 

  • 32.

    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanogr. Paleoclimatol. 28, 539–561 (2013).

    Google Scholar 

  • 33.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Google Scholar 

  • 34.

    Matsumoto, K., Oba, T., Lynch-Stieglitz, J. & Yamamoto, H. Interior hydrography and circulation of the glacial Pacific Ocean. Q. Sci. Rev. 21, 1693–1704 (2002).

    Google Scholar 

  • 35.

    Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S. & Rennie, V. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum. Earth Planet. Sci. Lett. 447, 130–138 (2016).

    Google Scholar 

  • 36.

    Keigwin, L. D. North Pacific deep water formation during the latest glaciation. Nature 330, 362–364 (1987).

    Google Scholar 

  • 37.

    Anderson, D. M. & Archer, D. Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature 416, 70–73 (2002).

    Google Scholar 

  • 38.

    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleoclimatol. 29, 645–667 (2014).

    Google Scholar 

  • 39.

    Umling, N. E. & Thunell, R. C. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years. Q. Sci. Rev. 189, 43–56 (2018).

    Google Scholar 

  • 40.

    Doss, W. & Marchitto, T. M. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump. Earth Planet. Sci. Lett. 377, 43–54 (2013).

    Google Scholar 

  • 41.

    Kerr, J., Rickaby, R., Yu, J. M., Elderfield, H. & Sadekov, A. Y. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471, 42–53 (2017).

    Google Scholar 

  • 42.

    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Q. Sci. Rev. 15, 80–89 (2014).

    Google Scholar 

  • 43.

    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).

    Google Scholar 

  • 44.

    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).

    Google Scholar 

  • 45.

    Gottschalk, J. et al. Carbon isotope offsets between benthic foraminifer species of the genus Cibicides (Cibicidoides) in the glacial sub-Antarctic Atlantic. Paleoceanogr. Paleoclimatol. 31, 1583–1602 (2016).

    Google Scholar 

  • 46.

    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539 (2016).

    Google Scholar 

  • 47.

    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).

    Google Scholar 

  • 48.

    Jacobel, A. W., McManus, J. F., Anderson, R. F. & Winckler, G. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).

    Google Scholar 

  • 49.

    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Google Scholar 

  • 50.

    Schlitzer, R. Ocean Data View v.5.3.0 (Alfred Wegener Institute, 2006); https://odv.awi.de/

  • 51.

    Barker, S., Greaves, M. & Elderfield, H. A. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Google Scholar 

  • 52.

    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).

    Google Scholar 

  • 53.

    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).

    Google Scholar 

  • 54.

    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).

    Google Scholar 

  • 55.

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Google Scholar 

  • 56.

    Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Souther Ocean deep water: implications for glacial ocean circulation models. Paleoceanogr. Paleoclimatol. 8, 587–610 (1993).

    Google Scholar 

  • 57.

    Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).

    Google Scholar 

  • 58.

    Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Altantic Ocean. Paleoceanogr. Paleoclimatol. 20, PA1017 (2005).

    Google Scholar 

  • 59.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).

    Google Scholar 

  • 60.

    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs