in

Lethal and sub-lethal effects of low-temperature exposures on Halyomorpha halys (Hemiptera: Pentatomidae) adults before and after overwintering

[adace-ad id="91168"]
  • 1.

    Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    PubMed  Google Scholar 

  • 2.

    Saunders, D. S. Insect Clocks 3rd edn. (Elsevier Science, Amsterdam, 2002).

    Google Scholar 

  • 3.

    Tougeron, K. Diapause research in insects: historical review and recent work perspectives. Entomol. Exp. Appl. 167, 27–36 (2019).

    Google Scholar 

  • 4.

    Saulich, A. H. & Musolin, D. L. Four seasons: diversity of seasonal adaptations and ecological mechanisms controlling seasonal development in true bugs (Heteroptera) in the temperate climate. Proc. Biol. Inst. St. Petersburg State Univ. 53, 25–106 (2007).

    Google Scholar 

  • 5.

    Niva, C. C. & Takeda, M. Effects of photoperiod, temperature and melatonin on nymphal development, polyphenism and reproduction in Halyomorpha halys (Heteroptera: Pentatomidae). Zool. Sci. 20, 963–970 (2003).

    CAS  PubMed  Google Scholar 

  • 6.

    Nielsen, A. L., Chen, S. & Fleischer, S. J. Coupling developmental physiology, photoperiod, and temperature to model phenology and dynamics of an invasive heteropteran, Halyomorpha halys. Front. Physiol. 7, 165. https://doi.org/10.3389/fphys.2016.00165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Inkley, D. B. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 47, 125–130 (2012).

    Google Scholar 

  • 8.

    Lee, D.-H. et al. Characterization of overwintering sites of the invasive brown marmorated stinkbug in natural landscapes using human surveyors and detector canines. PLoS ONE 9(4), e91575. https://doi.org/10.1371/journal.pone.0091575 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Cambridge, J., Payenski, A. & Hamilton, G. C. The distribution of overwintering brown marmorated stink bugs (Hemiptera: Pentatomidae) in college dormitories. Fla. Entomol. 98, 1257–1259 (2015).

    Google Scholar 

  • 10.

    Leskey, T. C. & Nielsen, A. L. Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).

    CAS  PubMed  Google Scholar 

  • 11.

    Duthie, C. Risk analysis of Halyomorpha halys (brown marmorated stinkbug) on all pathways. Ministry for primary industries. (Accessed 31 August 2019); https://mpi.govt.nz/dmsdocument/2909-halyomorpha-halys-brown-marmorated-stink-bug-riskanalysis-november-2012 (2012).

  • 12.

    Vandervoet, T. F., Bellamy, D. E., Anderson, D. & MacLellan, R. Trapping for early detection of the brown marmorated stink bug, Halyomorpha halys, New Zealand. N. Z. Plant. Protect. S.E. 72, 36–43 (2019).

    Google Scholar 

  • 13.

    Leskey, T. C. et al. Pest status of the brown marmorated stink bug, Halyomorpha halys in the USA. Outlooks Pest Manag. 23, 218–226 (2012).

    Google Scholar 

  • 14.

    Kamminga, K., Herbert, D. A., Toews, M. D., Malone, S. & Kuhar, T. Halyomorpha halys (Hemiptera: Pentatomidae) feeding injury on cotton bolls. J. Cotton Sci. 18, 68–74 (2014).

    Google Scholar 

  • 15.

    Rice, K. B. et al. Biology, ecology, and management of brown marmorated stink bug (Hemiptera: Pentatomidae). J. Integr. Pest Manag. 5(3), 1–13 (2014).

    Google Scholar 

  • 16.

    Dobson, R. C., Rogers, M., Moore, J. L. C. & Bessin, R. T. Exclusion of the brown marmorated stink bug from organically grown peppers using barrier screens. HortTechnology 26, 191–198 (2016).

    Google Scholar 

  • 17.

    Acebes-Doria, A. L., Leskey, T. C. & Bergh, J. C. Injury to apples and peaches at harvest from feeding by Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) nymphs early and late in the season. Crop Prot. 89, 58–65 (2018).

    Google Scholar 

  • 18.

    Hamilton, G. C. et al. Halyomorpha halys (Stål). In Invasive Stink Bugs and Related Species (Pentatomoidea)—Biology, Higher Systematics, Semiochemistry, and Management (ed. McPherson, J. E.) 243–292 (CRC Press, Boca Raton, 2018).

    Google Scholar 

  • 19.

    Moore, L. et al. Characterizing damage potential of the brown marmorated stink bug (Hemiptera: Pentatomidae) in cherry orchards. Entomol. Gen. 39, 271–283 (2019).

    Google Scholar 

  • 20.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. P. Roy. Soc. B-Biol. Sci. 267, 739–745 (2000).

    CAS  Google Scholar 

  • 21.

    Sinclair, B. J., Coello-Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).

    PubMed  Google Scholar 

  • 22.

    Halbritter, D. A., Teets, N. M., Williams, C. M. & Daniels, J. C. Differences in winter cold hardiness reflect the geographic range disjunction of Neophasia menapia and Neophasia terlooii (Lepidoptera: Pieridae). J. Insect Physiol. 107, 204–211 (2018).

    CAS  PubMed  Google Scholar 

  • 23.

    Kistner, E. J. Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environ. Entomol. 46, 1212–1224 (2017).

    PubMed  Google Scholar 

  • 24.

    Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).

    Google Scholar 

  • 25.

    Lee, R. E. A primer on insect cold-tolerance. In Low Temperature Biology of Insects (eds Denlinger, D. L. et al.) 3–34 (Cambridge University Press, New York, 2010).

    Google Scholar 

  • 26.

    Cira, T. M. et al. Cold tolerance of Halyomorpha halys (Hemiptera: Pentatomidae) across geographic and temporal scales. Environ. Entomol. 45, 484–491 (2016).

    PubMed  Google Scholar 

  • 27.

    Asahina, E. Frost resistance in insects. Adv. Insect Physiol. 6, 1–49 (1970).

    Google Scholar 

  • 28.

    Storey, K. B. & Storey, J. M. Freeze tolerance: constraining forces, adaptive mechanisms. Can. J. Zool. 66, 1122–1127 (1987).

    Google Scholar 

  • 29.

    Danks, H. V. Dehydration in dormant insects. J. Insect Physiol. 46, 837–852 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Musolin, D. L. Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob. Change Biol. 13, 1565–1585 (2007).

    ADS  Google Scholar 

  • 31.

    Saulich, A. Kh. & Musolin, D. L. Diapause in the seasonal cycle of stink bugs from the temperate zone. Entomol. Rev. 92, 1–26 (2012).

    Google Scholar 

  • 32.

    Takeda, K., Musolin, D. L. & Fujisaki, K. Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions. Physiol. Entomol. 35, 343–353 (2010).

    Google Scholar 

  • 33.

    Lowenstein, D. M. & Walton, V. M. Halyomorpha halys (Hemiptera: Pentatomidae) winter survival, feeding activity, and reproduction rates based on episodic cold shock and winter temperature regimes. J. Econ. Entomol. 111, 1210–1218 (2018).

    PubMed  Google Scholar 

  • 34.

    Cira, T. M., Koch, R. L., Burkness, E. C., Hutchison, W. D. & Venette, R. C. Effects of diapause on Halyomorpha halys (Hemiptera: Pentatomidae) cold tolerance. Environ. Entomol. 47, 997–1004 (2018).

    PubMed  Google Scholar 

  • 35.

    Skillman, V. P. Nutrient profile and nursery feeding damage of Halyomorpha halys. MSc Thesis, Oregon State University (2017).

  • 36.

    Ciancio, J. Overwintering biology of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). MSc Thesis, The University of Western Ontario, Electronic Thesis and Dissertation Repository, 5813. (Accessed 31 August 2019); https://ir.lib.uwo.ca/etd/5813 (2018).

  • 37.

    Sinclair, B. J. & Marshall, K. E. The many roles of fats in overwintering insects. J. Exp. Biol. 221, 161836. https://doi.org/10.1242/jeb.161836 (2018).

    Article  Google Scholar 

  • 38.

    Skillman, V. P., Wiman, N. G. & Lee, J. C. Nutrient declines in overwintering Halyomorpha halys populations. Entomol. Exp. Appl. 166, 778–789 (2018).

    CAS  Google Scholar 

  • 39.

    Leather, S. R., Walters, K. F. A. & Bale, J. S. The Ecology of Insect Overwintering (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  • 40.

    Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).

    CAS  PubMed  Google Scholar 

  • 41.

    Lee, R. E., Chen, C. P. J. & Denlinger, D. L. A rapid cold-hardening process in insects. Science 238, 1415–1417 (1987).

    ADS  PubMed  Google Scholar 

  • 42.

    Ju, R. T., Xiao, Y. Y. & Li, B. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae). J. Insect Physiol. 57, 1577–1582 (2011).

    CAS  PubMed  Google Scholar 

  • 43.

    Andreadis, S. S. & Athanassiou, C. G. A review of insect cold hardiness and its potential in stored product insect control. Crop Prot. 91, 93–99 (2017).

    Google Scholar 

  • 44.

    Badeck, F. W. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309 (2004).

    Google Scholar 

  • 45.

    Wilby, R. L. & Perry, G. L. W. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geog. 30, 73–98 (2006).

    Google Scholar 

  • 46.

    Kiritani, K. The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Glob. Change Biol. 13, 1586–1595 (2007).

    ADS  Google Scholar 

  • 47.

    Musolin, D. L., Tougou, D. & Fujisaki, K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Change Biol. 16, 73–87 (2010).

    ADS  Google Scholar 

  • 48.

    Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).

    PubMed  Google Scholar 

  • 49.

    Rigby, J. R. & Porporato, A. Spring frost risk in a changing climate. Geophys. Res. Lett. 35, L12703. https://doi.org/10.1029/2008GL033955 (2008).

    ADS  Article  Google Scholar 

  • 50.

    Crozier, L. & Dwyer, G. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat. 167, 853–866 (2006).

    PubMed  Google Scholar 

  • 51.

    Inouye, D. W. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 3, 457–463 (2000).

    Google Scholar 

  • 52.

    Lee, D.-H., Short, B. D., Joseph, S. V., Bergh, J. C. & Leskey, T. C. Review of the biology, ecology, and management of Halyomorpha halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea. Environ. Entomol. 42, 627–641 (2013).

    PubMed  Google Scholar 

  • 53.

    Lee, D.-H. & Leskey, T. C. Flight behavior of foraging and overwintering brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Bull. Entomol. Res. 105, 566–573 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Bergh, J. C., Morrison, W. R. III., Joseph, S. V. & Leskey, T. C. Characterizing spring emergence of adult Halyomorpha halys using experimental overwintering shelters and commercial pheromone traps. Entomol. Exp. Appl. 162, 336–345 (2017).

    Google Scholar 

  • 55.

    Skillman, V. P., Wiman, N. G. & Lee, J. C. Monitoring nutrient status of brown marmorated stink bug adults and nymphs on summer holly. Insects 9, 120. https://doi.org/10.3390/insects9030120 (2018).

    Article  PubMed Central  Google Scholar 

  • 56.

    Lee, R. E. Principles of insect low temperature tolerance. In Insects at Low Temperature (eds Lee, R. E. et al.) 17–46 (Chapman and Hall, New York, 1991).

    Google Scholar 

  • 57.

    Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23, 133–140 (2009).

    Google Scholar 

  • 58.

    Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).

    PubMed  Google Scholar 

  • 59.

    Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 7, e32758. https://doi.org/10.1371/journal.pone.0032758 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Kasule, F. K. Repetitive mating and female fitness in Dysdercus cardinalis (Hemiptera: Pyrrhocoridae). Zool. J. Linnean Soc. 88, 191–199 (1986).

    Google Scholar 

  • 61.

    De Loof, A. Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the ‘“trade-off”’ concept. J. Insect Physiol. 57, 1–11 (2011).

    PubMed  Google Scholar 

  • 62.

    Nielsen, A. L. et al. Phenology of brown marmorated stink bug described using female reproductive development. Ecol. Evol. 7, 6680–6690. https://doi.org/10.1002/ece3.3125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    SAS Institute. PROC user’s manual, 6th edn. SAS Institute, Cary, NC. (Accessed 31 August 2019); https://support.sas.com/documentation/cdl/en/indbug/68442/PDF/default/indbug.pdf (2016).

  • 64.

    Robertson, J. L., Savin, N. E., Preisler, H. K. & Russell, R. M. Bioassays with Arthropods 2nd edn. (CRC Press, Boca Raton, 2007).

    Google Scholar 

  • 65.

    Funayama, K. Importance of apple fruits as food for the brown-marmorated stink bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae). Appl. Entomol. Zool. 39, 617–623 (2004).

    Google Scholar 

  • 66.

    Scaccini, D., Duso, C. & Pozzebon, A. Lethal effects of high temperatures on brown marmorated stink bug adults before and after overwintering. Insects 10, 355. https://doi.org/10.3390/insects10100355 (2019).

    Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research

    Light intensity regulates flower visitation in Neotropical nocturnal bees