in

Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity

  • 1.

    Vellend, M. et al. Plant biodiversity change across scales during the Anthropocene. Annu. Rev. Plant Biol. 68, 563–586 (2017).

    CAS  PubMed  Google Scholar 

  • 2.

    Díaz, S., et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf Advance Unedited Version (2019).

  • 3.

    Cusack, D. F. et al. Global change effects on humid tropical forests: evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Rev. Geophys. 54, 523–610 (2016).

    ADS  Google Scholar 

  • 4.

    Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).

    PubMed  Google Scholar 

  • 5.

    Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    PubMed  Google Scholar 

  • 6.

    González-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).

    ADS  Google Scholar 

  • 7.

    Quesada, C. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).

    ADS  Google Scholar 

  • 8.

    Meir, P. & Penningto, R. T. Seasonally Dry Tropical Forests. 279–299 (Springer, 2011).

  • 9.

    Wiens, J. J. The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Q. Rev. Biol. 86, 75–96 (2011).

    PubMed  Google Scholar 

  • 10.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS  Google Scholar 

  • 11.

    Dı́az, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Google Scholar 

  • 12.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  • 13.

    Ruiz-Benito, P. et al. Functional diversity underlies demographic responses to environmental variation in European forests. Glob. Ecol. Biogeogr. 26, 128–141 (2017).

    Google Scholar 

  • 14.

    Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 12, 023001 (2017).

    ADS  Google Scholar 

  • 15.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Voskamp, A., Baker, D. J., Stephens, P. A., Valdes, P. J. & Willis, S. G. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr. 44, 709–721 (2017).

    Google Scholar 

  • 17.

    Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Ecol. Manag. 373, 44–55 (2016).

    Google Scholar 

  • 18.

    Ellison, D. et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  • 19.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Gomes, V. H., Vieira, I. C., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).

    ADS  Google Scholar 

  • 22.

    Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    ADS  Google Scholar 

  • 23.

    Fan, Z., Zhang, S., Hao, G., Ferry Slik, J. & Cao, K. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J. Ecol. 100, 732–741 (2012).

    Google Scholar 

  • 24.

    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    PubMed  Google Scholar 

  • 26.

    Phillips, R. P. et al. A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. Ecol. Manag. 380, 309–320 (2016).

    Google Scholar 

  • 27.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed  Google Scholar 

  • 28.

    Simpson, E. H. Measurement of diversity. Nature 163.4148, 688 (1949).

    MATH  Google Scholar 

  • 29.

    Magurran, A. E. Measuring Biological Diversity (John Wiley & Sons, 2013).

  • 30.

    Webb, C. O. & Donoghue, M. J. Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181–183 (2005).

  • 31.

    Kruschke, J. K. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 142, 573 (2013).

  • 32.

    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2014).

  • 33.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    ADS  Google Scholar 

  • 34.

    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Google Scholar 

  • 35.

    Hutchison, C., Gravel, D., Guichard, F. & Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 8, 15443 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Flynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).

    PubMed  Google Scholar 

  • 37.

    Staab, M. et al. Tree phylogenetic diversity promotes host-parasitoid interactions. Proc. Biol. Sci. 283 https://doi.org/10.1098/rspb.2016.0275 (2016).

  • 38.

    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Will, R. E., Wilson, S. M., Zou, C. B. & Hennessey, T. C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol. 200, 366–374 (2013).

    PubMed  Google Scholar 

  • 40.

    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean,‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).

    PubMed  Google Scholar 

  • 41.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    John, R. et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl Acad. Sci. USA 104, 864–869 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Detto, M., Wright, S. J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat. Commun. 9, 913 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Chiang, J. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).

    ADS  PubMed  Google Scholar 

  • 47.

    Maley, J. The African rain forest–main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proc. R. Soc. Edinb. Sect. B: Biol. Sci. 104, 31–73 (1996).

    Google Scholar 

  • 48.

    Hall, J. & Swaine, M. Classification and ecology of closed-canopy forest in Ghana. J. Ecol. 64, 913–951 (1976).

    Google Scholar 

  • 49.

    Münzbergová, Z. & Šurinová, M. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback. Ecosphere 6, 1–16 (2015).

    Google Scholar 

  • 50.

    Figueiredo, F. O. et al. Beyond climate control on species range: the importance of soil data to predict distribution of Amazonian plant species. J. Biogeogr. 45, 190–200 (2018).

    Google Scholar 

  • 51.

    Zuquim, G., Costa, F. R., Tuomisto, H., Moulatlet, G. M. & Figueiredo, F. O. The importance of soils in predicting the future of plant habitat suitability in a tropical forest. Plant Soil, 1–20 (2019).

  • 52.

    Metali, F., Salim, K. A., Tennakoon, K. & Burslem, D. F. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytol. 205, 280–292 (2015).

    CAS  PubMed  Google Scholar 

  • 53.

    Swaine, M. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. J. Ecol. 84, 419–428 (1996).

    Google Scholar 

  • 54.

    Toledo, M. et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 100, 253–263 (2012).

    Google Scholar 

  • 55.

    Esquivel-Muelbert, A. et al. Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Sci. Rep. 7, 8334 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Asefi-Najafabady, S. & Saatchi, S. Response of African humid tropical forests to recent rainfall anomalies. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120306 (2013).

    Google Scholar 

  • 57.

    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).

    Google Scholar 

  • 58.

    Russell, J., Talbot, M. R. & Haskell, B. J. Mid-holocene climate change in Lake Bosumtwi, Ghana. Quatern. Res. 60, 133–141 (2003).

    ADS  Google Scholar 

  • 59.

    Sowunmi, M. A. Droughts, Food and Culture. 95–104 (Springer, 2002).

  • 60.

    Deklerck, V. et al. Rate of forest recovery after fire exclusion on anthropogenic savannas in the Democratic Republic of Congo. Biol. Conserv. 233, 118–130 (2019).

    Google Scholar 

  • 61.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 62.

    Owusu, K. & Waylen, P. Trends in spatio-temporal variability in annual rainfall in Ghana (1951–2000). Weather 64, 115–120 (2009).

    ADS  Google Scholar 

  • 63.

    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).

    Google Scholar 

  • 65.

    Swaine, M., Hall, J. & Alexander, I. Tree population dynamics at Kade, Ghana (1968-1982). J. Trop. Ecol. 3, 331–345 (1987).

    Google Scholar 

  • 66.

    Hawthorne, W. Ecological profiles of Ghanaian forest trees. Trop. For. Pap. (1995).

  • 67.

    Moore, S. et al. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Glob. Change Biol. 24, e496–e510 (2018).

    Google Scholar 

  • 68.

    Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change. 3, 18 (2020).

    Google Scholar 

  • 69.

    van der Plas, F., Van Klink, R., Manning, P., Olff, H. & Fischer, M. Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol. 8, 1072–1080 (2017).

    Google Scholar 

  • 70.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Google Scholar 

  • 71.

    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evolution 7, 1451–1456 (2016).

    Google Scholar 

  • 72.

    Wikstrom, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proc. Biol. Sci. 268, 2211–2220 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).

    CAS  PubMed  Google Scholar 

  • 74.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 75.

    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed  Google Scholar 

  • 76.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). https://www.R-project.org/. 3.4.1 (2019).

  • 77.

    Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).

    Google Scholar 

  • 78.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Google Scholar 

  • 79.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • 80.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 81.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 82.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    ADS  Google Scholar 

  • 83.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  • 84.

    Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).

    CAS  PubMed  Google Scholar 

  • 85.

    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    MathSciNet  MATH  Google Scholar 

  • 86.

    Makowski, D., Ben-Shachar, M. & Lüdecke, D. BayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    ADS  Google Scholar 

  • 87.

    Makowski, D., Ben-Shachar, M. S., Chen, S. & Lüdecke, D. Indices of effect existence and significance in the Bayesian framework. Front. Psychol. 10, 2767 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    Kruschke, J. K. & Meredith, M. BEST: Bayesian Estimation Supersedes the t-Test. R Package Version 0.5.0. https://CRAN.R-project.org/package=BEST. R 0.5.0 (2017).

  • 89.

    Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R Package Version 2 (2018).

  • 90.

    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    MathSciNet  MATH  Google Scholar 


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming