in

Long-term imaging of the photosensitive, reef-building coral Acropora muricata using light-sheet illumination

  • 1.

    Gladfelter, E. H. Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1, 45–51 (1982).

    ADS  Google Scholar 

  • 2.

    Muscatine, L., Tambutte, E. & Allemand, D. Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16, 205–213 (1997).

    Google Scholar 

  • 3.

    Martin, D. & Le Tissier, A. The growth and formation of branch tips of Pocillopora damicornis (Linnaeus). J. Exp. Mar. Bio. Ecol. 124, 115–131 (1988).

    Google Scholar 

  • 4.

    Cuif, J.-P. & Dauphin, Y. The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J. Struct. Biol. 150, 319–331 (2005).

    PubMed  Google Scholar 

  • 5.

    Caldwell, J. M., Ushijima, B., Couch, C. S. & Gates, R. D. Intra-colony disease progression induces fragmentation of coral fluorescent pigments. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  • 6.

    Kenkel, C. D., Traylor, M. R., Wiedenmann, J., Salih, A. & Matz, M. V. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proc. R. Soc. B Biol. Sci. 278, 2691–2697 (2011).

    CAS  Google Scholar 

  • 7.

    Mullen, A. D. et al. Underwater microscopy for in situ studies of benthic ecosystems. Nat. Commun. 7, 12093 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Venn, A. A. et al. Imaging intracellular pH in a reef coral and symbiotic anemone. Proc. Natl. Acad. Sci. USA 106, 16574–16579 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Ohno, Y. et al. Calcification process dynamics in coral primary polyps as observed using a calcein incubation method. Biochem. Biophys. Reports 9, 289–294 (2017).

    Google Scholar 

  • 11.

    Neder, M. et al. Mineral formation in the primary polyps of pocilloporoid corals. Acta Biomater. 96, 631–645 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Craggs, J. et al. Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecol. Evol. 7, 11066–11078 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    D’Angelo, C. & Wiedenmann, J. An experimental mesocosm for long-term studies of reef corals. J. Mar. Biol. Assoc. United Kingdom 92, 769–775 (2012).

    Google Scholar 

  • 14.

    Leewis, R. J. & Janse, M. (eds). Advances in coral husbandry in public aquariums. Public aquarium husbandry series. (Arnhem, The Netherlands: Burgers’ Zoo, 2008).

  • 15.

    Weis, V., Davy, S., Hoegh-Guldberg, O., Rodriguez-Lanetty, M. & Pringle, J. Cell biology in model systems as the key to understanding corals. Trends Ecol. Evol. 23, 369–376 (2008).

    PubMed  Google Scholar 

  • 16.

    Venn, A., Tambutté, E., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6, e20013 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Gutiérrez-Heredia, L., Flood, P. M. & Reynaud, E. G. Light Sheet Fluorescence Microscopy: beyond the flatlands. in Current Microscopy Contributions to Advances in Science and Technology Microscopy, 838–847 (2012).

  • 19.

    Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–9 (2013).

    CAS  PubMed  Google Scholar 

  • 20.

    Linné, C. von. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. (Lugduni: Apud J. B. Delamolliere, 1758).

  • 21.

    Renema, W. et al. Are coral reefs victims of their own past success? Sci. Adv. 2, e1500850 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Sweatman, H., Delean, S. & Syms, C. Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30, 521–531 (2011).

    ADS  Google Scholar 

  • 23.

    Mass, T. et al. Aragonite Precipitation by ‘Proto-Polyps’ in Coral Cell Cultures. PLoS One 7, e35049 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Siedentopf, H. & Zsigmondy, R. Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315, 1–39 (1902).

    Google Scholar 

  • 25.

    Masters, B. Richard Zsigmondy and Henry Siedentopf’s Ultramicroscope. In Superresolution Optical Microscopy 165–172 (Springer, 2020).

  • 26.

    Cahan, D. The Zeiss Werke and the ultramicroscope: the creation of a scientific instrument in context. in Scientific Credibility and Technical Standards in 19th and early 20th Century Germany and Britain (ed. Buchwald, J.) 67–115 (Kluwer Academic Publishers, 1996).

  • 27.

    Gibbs-Flournoy, E. A., Bromberg, P. A., Hofer, T. P. J., Samet, J. M. & Zucker, R. M. Darkfield-Confocal Microscopy detection of nanoscale particle internalization by human lung cells. Part. Fibre Toxicol. 8, 2 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Garren, M. & Azam, F. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J. 6, 1159–1165 (2012).

    CAS  PubMed  Google Scholar 

  • 29.

    Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. USA 111, 13391–13396 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Gladfelter, E. H. Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth. Coral Reefs 26, 883–892 (2007).

    ADS  Google Scholar 

  • 31.

    Gladfelter, E. H. Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate accretion. Coral Reefs 2, 91–100 (1983).

    ADS  Google Scholar 

  • 32.

    Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    CAS  PubMed  Google Scholar 

  • 33.

    Reynaud, E. G., Krzic, U., Greger, K. & Stelzer, E. H. K. Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. 2, 266–275 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. USA 107, 16016–22 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Nielsen, D. A., Petrou, K. & Gates, R. D. Coral bleaching from a single cell perspective. ISME J. 12, 1558–1567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Venn, A. A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. USA 110, 1634–9 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Swain, T. D., Schellinger, J. L., Strimaitis, A. M. & Reuter, K. E. Evolution of anthozoan polyp retraction mechanisms: Convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15, 1–19 (2015).

    Google Scholar 

  • 38.

    Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).

    CAS  PubMed  Google Scholar 

  • 39.

    Levy, O., Dubinsky, Z., Achituv, Y. & Erez, J. Diurnal polyp expansion behavior in stony corals may enhance carbon availability for symbionts photosynthesis. J. Exp. Mar. Bio. Ecol. 333, 1–11 (2006).

    CAS  Google Scholar 

  • 40.

    Sebens, K. P. & DeRiemer, K. Diel cycles of expansion and contraction in coral reef anthozoans. Mar. Biol. 43, 247–256 (1977).

    Google Scholar 

  • 41.

    Crossland, C. J. & Barnes, D. J. Gas-exchange studies with the staghorn coral Acropora acuminata and its zooxanthellae. Mar. Biol. 40, 185–194 (1977).

    CAS  Google Scholar 

  • 42.

    Brown, B. E., Letissier, M. D. A. & Dunne, R. P. Tissue retraction in the scleractinian coral Coeloseris mayeri, its effect upon coral pigmentation, and preliminary implications for heat balance. Mar. Ecol. Prog. Ser. 105, 209–218 (1994).

    ADS  Google Scholar 

  • 43.

    Salih, A., Larkum, A., Cox, G., Kuhl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Horridge, G. A. The Co-Ordination of the Protective Retraction of Coral Polyps. Philos. Trans. R. Soc. B Biol. Sci. 240, 495–528 (1957).

    ADS  Google Scholar 

  • 45.

    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).

    ADS  Google Scholar 

  • 46.

    Levy, O. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).

    CAS  PubMed  Google Scholar 

  • 47.

    Mayer, J. et al. OPTiSPIM: integrating optical projection tomography in light sheet microscopy extends specimen characterization to nonfluorescent contrasts. Opt. Lett. 39, 1053–6 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Bassi, A., Schmid, B. & Huisken, J. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. Development 142, 1016–20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Reynaud-Vaganay, S., Gattuso, J. P., Cuif, J. P., Jaubert, J. & Juillet-Leclerc, A. A novel culture technique for scleractinian corals: application to investigate changes in skeletal d18O as a function of temperature. Mar. Ecol. Prog. Ser. 180, 121–130 (1999).

    ADS  CAS  Google Scholar 

  • 50.

    Shafir, S., Rijn, J. V. A. N. & Rinkevich, B. Nubbing of coral colonies: A novel approach for the development of inland broodstocks. Aquarium Sci. Conserv. 3, 183–190 (2001).

    Google Scholar 

  • 51.

    Shafir, S., Van Rijn, J. & Rinkevich, B. The use of coral nubbins in coral reef ecotoxicology testing. Biomol. Eng. 20, 401–406 (2003).

    CAS  PubMed  Google Scholar 

  • 52.

    Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. In Current protocols in molecular biology, Unit 14.20, (2010).

  • 53.

    Stuurman, N. & Swedlow, J. R. Software tools, data structures, and interfaces for microscope imaging. Cold Spring Harb. Protoc. 2012, 50–61 (2012).

    PubMed  Google Scholar 

  • 54.

    Schindelin, J. et al. Fiji: an open source platform for biological image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  • 55.

    Obara, B., Alghamdi, R., Jabeen, A., Fernández, N. & South, K. Quantified, three-dimensional, object-based colocalisation for characterising cellular phenotypes. In Focus on Microscopy 1 (2013).

  • 56.

    Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    CAS  PubMed  Google Scholar 

  • 57.

    Goedhart, J. PlotsOfDifferences – a web app for the quantitative comparison of unpaired data. bioRxiv 578575, https://doi.org/10.1101/578575 (2019).

  • 58.

    Nuzzo, R. L. Randomization Test: An Alternative Analysis for the Difference of Two Means. PM&R 9, 306–310 (2017).

    Google Scholar 

  • 59.

    Hooton, J. W. L. Randomization tests: statistics for experimenters. Comput. Methods Programs Biomed. 35, 43–51 (1991).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    IdeaStream 2020 goes virtual

    Correlation analysis of land surface temperature and topographic elements in Hangzhou, China