in

Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna

  • 1.

    Sunderland, E. M., Li, M. & Bullard, K. Decadal changes in the edible supply of seafood and methylmercury exposure in the United States. Environ. Health Perspect. 126, 017006 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 5969–5977 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Fitzgerald, W. F., Lamborg, C. H. & Hammerschmidt, C. R. Marine biogeochemical cycling of mercury. Chem. Rev. 107, 641–662 (2007).

    CAS  PubMed  Google Scholar 

  • 5.

    Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Lamborg, C. H., Hammerschmidt Chad, R. & Bowman Katlin, L. An examination of the role of particles in oceanic mercury cycling. Philos. T. R. Soc. A 374, 20150297 (2016).

    ADS  Google Scholar 

  • 7.

    Zhang, Y., Jaeglé, L. & Thompson, L. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model. Global Biogeochem. Cycles 28, 2014GB004814 (2014).

    Google Scholar 

  • 8.

    Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 4037–4052 (2011).

    ADS  CAS  Google Scholar 

  • 9.

    Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A. & Landing, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 23, GB2010 (2009).

    ADS  Google Scholar 

  • 10.

    Hammerschmidt, C. R. & Bowman, K. L. Vertical methylmercury distribution in the subtropical North Pacific Ocean. Mar. Chem. 132–133, 77–82 (2012).

    Google Scholar 

  • 11.

    Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H. & Swarr, G. Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections. Deep Sea Res. PT. II 116, 251–261 (2015).

    CAS  Google Scholar 

  • 12.

    Munson, K. M., Lamborg, C. H., Swarr, G. J. & Saito, M. A. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Global Biogeochem. Cycles 29, 656–676 (2015).

    ADS  CAS  Google Scholar 

  • 13.

    Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., Swarr, G. J. & Agather, A. M. Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16). Mar. Chem. 186, 156–166 (2016).

    CAS  Google Scholar 

  • 14.

    Cossa, D., Averty, B. & Pirrone, N. The origin of methylmercury in open Mediterranean waters. Limnol. Oceanogr. 54, 837–844 (2009).

    ADS  CAS  Google Scholar 

  • 15.

    Choy, C. A., Popp, B. N., Kaneko, J. J. & Drazen, J. C. The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl Acad. Sci. USA 106, 13865–13869 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Blum, J. D., Popp, B. N., Drazen, J. C., Anela Choy, C. & Johnson, M. W. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6, 879–884 (2013).

    ADS  CAS  Google Scholar 

  • 17.

    Lehnherr, I., Louis, V. L. S., Hintelmann, H. & Kirk, J. L. Methylation of inorganic mercury in polar marine waters. Nat. Geosci. 4, 298–302 (2011).

    ADS  CAS  Google Scholar 

  • 18.

    Heimbürger, L.-E. et al. Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochim. Cosmochim. Acta 74, 5549–5559 (2010).

    ADS  Google Scholar 

  • 19.

    Monperrus, M. et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar. Chem. 107, 49–63 (2007).

    CAS  Google Scholar 

  • 20.

    Munson, K. M., Lamborg, C. H., Boiteau, R. M. & Saito, M. A. Dynamic mercury methylation and demethylation in oligotrophic marine water. Biogeosciences 15, 6451–6460 (2018).

    ADS  CAS  Google Scholar 

  • 21.

    Mason, R. P. & Sullivan, K. A. The distribution and speciation of mercury in the South and equatorial Atlantic. Deep Sea Res. PT. II 46, 937–956 (1999).

    ADS  CAS  Google Scholar 

  • 22.

    Black, F. J., Poulin, B. A. & Flegal, A. R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim. Cosmochim. Acta 84, 492–507 (2012).

    ADS  CAS  Google Scholar 

  • 23.

    Kim, H. et al. Methylmercury mass budgets and distribution characteristics in the western Pacific Ocean. Environ. Sci. Technol. 51, 1186–1194 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochem. Cycles 34, e2019GB006348 (2020).

    ADS  CAS  Google Scholar 

  • 25.

    Sun, R. et al. Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling. Geochim. Cosmochim. Acta 246, 156–173 (2019).

    ADS  CAS  Google Scholar 

  • 26.

    Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in Earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249–269 (2014).

    ADS  CAS  Google Scholar 

  • 27.

    Sun, G. et al. Mass-dependent and -independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br. Environ. Sci. Technol. 50, 9232–9241 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Chen, J., Hintelmann, H., Feng, X. & Dimock, B. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta 90, 33–46 (2012).

    ADS  CAS  Google Scholar 

  • 29.

    Kwon, S. Y. et al. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ. Sci. Technol. 46, 7527–7534 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Kwon, S. Y., Blum, J. D., Chirby, M. A. & Chesney, E. J. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem. 32, 2322–2330 (2013).

    CAS  PubMed  Google Scholar 

  • 31.

    Madigan, D. J. et al. Mercury stable isotopes reveal influence of foraging depth on mercury concentrations and growth in Pacific bluefin tuna. Environ. Sci. Technol. 52, 6256–6264 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Motta, L. C. et al. Mercury cycling in the North Pacific Subtropical Gyre as revealed by mercury stable isotope ratios. Global Biogeochem. Cycles 33, 777–794 (2019).

    ADS  CAS  Google Scholar 

  • 33.

    Bidleman, T. F. et al. Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the Deep Arctic Ocean. Environ. Sci. Technol. 47, 5553–5561 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Yan, H., Li, Q., Yuan, Z., Jin, S. & Jing, M. Research progress of mercury bioaccumulation in the aquatic food chain, china: a review. Bull. Environ. Contam. Toxicol. 102, 612–620 (2019).

    CAS  PubMed  Google Scholar 

  • 35.

    Meng, M. et al. Mercury isotope variations within the marine food web of Chinese Bohai Sea: implications for mercury sources and biogeochemical cycling. J. Hazard. Mater. 384, 121379 (2020).

    PubMed  Google Scholar 

  • 36.

    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).

    PubMed  Google Scholar 

  • 37.

    Gerringer, M. E. On the success of the hadal snailfishes. Integ. Organ. Biol. 1, 1–18 (2019).

    Google Scholar 

  • 38.

    Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Bergquist, B. A. & Blum, J. D. Mass-dependent and -independent fractionation of hg isotopes by photoreduction in aquatic systems. Science 318, 417–420 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 40.

    Zheng, W. & Hintelmann, H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochim. Cosmochim. Acta 73, 6704–6715 (2009).

    ADS  CAS  Google Scholar 

  • 41.

    Senn, D. B. et al. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environ. Sci. Technol. 44, 1630–1637 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Kritee, K., Barkay, T. & Blum, J. D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim. Cosmochim. Acta 73, 1285–1296 (2009).

    ADS  CAS  Google Scholar 

  • 43.

    Masbou, J. et al. Hg-stable isotope variations in marine top predators of the Western Arctic Ocean. ACS Earth Space Chem. 2, 479–490 (2018).

    CAS  Google Scholar 

  • 44.

    Nolde, N., Drobne, D., Horvat, M. & Jereb, V. Reduction and methylation of mercury in the terrestrial isopod Porcellio scaber (Crustacea) and its environment. Environ. Toxicol. Chem. 24, 1697–1704 (2005).

    CAS  PubMed  Google Scholar 

  • 45.

    Li, H. et al. Intestinal methylation and demethylation of mercury. Bull. Environ. Contam. Toxicol. 102, 597–604 (2019).

    CAS  PubMed  Google Scholar 

  • 46.

    Gehrke, G. E., Blum, J. D. & Meyers, P. A. The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim. Cosmochim. Acta 73, 1651–1665 (2009).

    ADS  CAS  Google Scholar 

  • 47.

    Ogrinc, N., Hintelmann, H., Kotnik, J., Horvat, M. & Pirrone, N. Sources of mercury in deep-sea sediments of the Mediterranean Sea as revealed by mercury stable isotopes. Sci. Rep. 9, 11626 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Štrok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. C. R. Geosci. 347, 368–376 (2015).

    Google Scholar 

  • 49.

    Štrok, M., Hintelmann, H. & Dimock, B. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples. Anal. Chim. Acta 851, 57–63 (2014).

    PubMed  Google Scholar 

  • 50.

    Sherman, L. S. et al. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet. Sci. Lett. 279, 86–96 (2009).

    ADS  CAS  Google Scholar 

  • 51.

    Rodríguez-González, P. et al. Species-specific stable isotope fractionation of mercury during hg(ii) methylation by an anaerobic bacteria (desulfobulbus propionicus) under dark conditions. Environ. Sci. Technol. 43, 9183–9188 (2009).

    ADS  PubMed  Google Scholar 

  • 52.

    Janssen, S. E., Schaefer, J. K., Barkay, T. & Reinfelder, J. R. Fractionation of mercury stable isotopes during microbial methylmercury production by iron- and sulfate-reducing bacteria. Environ. Sci. Technol. 50, 8077–8083 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Perrot, V. et al. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Environ. Sci. Technol. 49, 1365–1373 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Archer, D. E. & Blum, J. D. A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences 15, 6297–6313 (2018).

    ADS  CAS  Google Scholar 

  • 55.

    Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).

    ADS  Google Scholar 

  • 56.

    Wang, N. et al. Penetration of bomb 14C into the deepest ocean trench. Geophys. Res. Lett. 46, 5413–5419 (2019).

    ADS  CAS  Google Scholar 

  • 57.

    Parks, J. M. et al. The genetic basis for bacterial mercury methylation. Science 339, 1332–1335 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Hsu-Kim, H., Kucharzyk, K. H., Zhang, T. & Deshusses, M. A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ. Sci. Technol. 47, 2441–2456 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 59.

    Nunoura, T. et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl Acad. Sci. USA 112, E1230–E1236 (2015).

    CAS  PubMed  Google Scholar 

  • 60.

    Bowman, K. L. et al. Distribution of mercury-cycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnol. Oceanogr. 65, S310–S320 (2020).

    ADS  CAS  Google Scholar 

  • 61.

    Amos, H. M. et al. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 49, 4036–4047 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 62.

    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochem. Cycles 30, 560–575 (2016).

    ADS  CAS  Google Scholar 

  • 64.

    Jonsson, S., Mazrui, N. M. & Mason, R. P. Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces. Sci. Rep. 6, 27958 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Sun, R., Enrico, M., Heimbürger, L.-E., Scott, C. & Sonke, J. E. A double-stage tube furnace—acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis. Anal. Bioanal. Chem. 405, 6771–6781 (2013).

    CAS  PubMed  Google Scholar 

  • 66.

    Blum, J. D. & Bergquist, B. A. Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 388, 353–359 (2007).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Increasing dependence of lowland populations on mountain water resources

    Innovations in environmental training for the mining industry