in

Nitrous oxide emissions from permafrost-affected soils

  • 1.

    Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Google Scholar 

  • 2.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  • 3.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Google Scholar 

  • 4.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 47, 151–163 (1996).

    Google Scholar 

  • 5.

    Post, W. M., Emmanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).

    Google Scholar 

  • 6.

    Harris, S. A. et al. Glossary of Permafrost and Related Ground-ice Terms (National Research Council Canada, 1988).

  • 7.

    Kou, D. et al. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Sci. Total. Environ. 650, 1795–1804 (2019).

    Google Scholar 

  • 8.

    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).

    Google Scholar 

  • 9.

    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).

    Google Scholar 

  • 10.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 953–1028 (Cambridge Univ. Press, 2013).

  • 11.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Google Scholar 

  • 12.

    IPCC in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner H.-O. et al.) in press (IPCC, 2019).

  • 13.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Google Scholar 

  • 14.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  • 15.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  • 16.

    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 368, 20130122 (2013). An overview of the current state of knowledge, level of process understanding and new research advances related to soil N 2O fluxes.

    Google Scholar 

  • 17.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 423 (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  • 18.

    Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Google Scholar 

  • 19.

    Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017). Showed a direct release of N 2O from thawing permafrost peatland mesocosms for the first time.

    Google Scholar 

  • 20.

    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Google Scholar 

  • 21.

    Parmentier, F.-J., Sonnentag, O., Mauritz, M., Virkkala, A. M. & Schuur, E. A. G. Is the northern permafrost zone a source or a sink for carbon? Eos https://doi.org/10.1029/2019EO130507 (2019).

    Article  Google Scholar 

  • 22.

    Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).

    Google Scholar 

  • 23.

    Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Laundre, J. A. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72, 242–253 (1991).

    Google Scholar 

  • 24.

    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).

    Google Scholar 

  • 25.

    Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015). Observation of elevated N 2O concentrations in thermokarst erosion features.

    Google Scholar 

  • 26.

    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).

    Google Scholar 

  • 27.

    Tian, H. et al. The global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 1231–1251 (2018).

    Google Scholar 

  • 28.

    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Google Scholar 

  • 29.

    Stewart, K. J., Grogan, P., Coxson, D. S. & Siciliano, S. D. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biol. Biochem. 70, 96–112 (2014). A review of environmental controls on N cycling in the Arctic.

    Google Scholar 

  • 30.

    Hobara, S. et al. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct. Antarct. Alp. Res. 38, 363–372 (2006).

    Google Scholar 

  • 31.

    Diáková, K. et al. Variation in N2 fixation in subarctic tundra in relation to landscape position and nitrogen pools and fluxes. Arct. Antarct. Alp. Res. 48, 111–125 (2016).

    Google Scholar 

  • 32.

    Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Google Scholar 

  • 33.

    Beermann, F. et al. Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia. Permafr. Periglac. Process. 28, 605–618 (2017).

    Google Scholar 

  • 34.

    Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012). Showed high mineralization rates and biologically relevant release of mineral nitrogen from thawing permafrost peat.

    Google Scholar 

  • 35.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Google Scholar 

  • 36.

    Chen, D. et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 60, 3025–3035 (2015).

    Google Scholar 

  • 37.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  • 38.

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  • 39.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–319 (2016).

    Google Scholar 

  • 40.

    Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).

    Google Scholar 

  • 41.

    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).

    Google Scholar 

  • 42.

    Shaver, G. R. et al. Global change and the carbon balance of arctic ecosystems: carbon/nutrient interactions should act as major constraints on changes in global terrestrial carbon cycling. BioScience 42, 433–441 (1992).

    Google Scholar 

  • 43.

    Buckeridge, K. M., Zufelt, E., Chu, H. & Grogan, P. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330, 407–421 (2010).

    Google Scholar 

  • 44.

    Kicklighter, D. W., Melillo, J. M., Monier, E., Sokolov, A. P. & Zhuang, Q. Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nat. Commun. 10, 3024 (2019).

    Google Scholar 

  • 45.

    Wild, B. et al. Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environ. Res. Lett. 13, 034002 (2018).

    Google Scholar 

  • 46.

    Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Google Scholar 

  • 47.

    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).

    Google Scholar 

  • 48.

    Siciliano, S. D., Ma, W. K., Ferguson, S. & Farrell, R. E. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biol. Biochem. 41, 1104–1110 (2009).

    Google Scholar 

  • 49.

    Zhu, R. et al. Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositions. Rapid Commun. Mass Spectrom. 22, 3570–3578 (2008).

    Google Scholar 

  • 50.

    Chen, Y. et al. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant Soil 434, 453–466 (2019).

    Google Scholar 

  • 51.

    Ma, W. K. et al. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biol. Biochem. 39, 2001–2013 (2007).

    Google Scholar 

  • 52.

    Pérez, T. in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls (eds Flanagan, L. B., Ehleringer, J. R. & Pataki, D. E.) 69–84 (Elsevier, 2005).

  • 53.

    Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993).

    Google Scholar 

  • 54.

    Yang, G. et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw. Environ. Sci. Technol. 52, 9162–9169 (2018).

    Google Scholar 

  • 55.

    Palmer, K. & Horn, M. A. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl. Environ. Microbiol. 78, 5584–5596 (2012).

    Google Scholar 

  • 56.

    Regina, K., Nykänen, H., Silvola, J. & Martikainen, P. J. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35, 401–418 (1996).

    Google Scholar 

  • 57.

    Regina, K., Silvola, J. & Martikainen, P. J. Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Glob. Change Biol. 5, 183–189 (1999).

    Google Scholar 

  • 58.

    Marushchak, M. E. et al. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob. Change Biol. 17, 2601–2614 (2011).

    Google Scholar 

  • 59.

    Goldberg, S. D., Knorr, K. H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).

    Google Scholar 

  • 60.

    Gil, J., Pérez, T., Boering, K., Martikainen, P. J. & Biasi, C. Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques. Glob. Biogeochem. Cycles 31, 172–189 (2017). Identified mechanisms governing high emissions in Arctic N 2O hotspots using stable isotopes.

    Google Scholar 

  • 61.

    Stewart, K. J., Brummell, M. E., Coxson, D. S. & Siciliano, S. D. How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? Plant Soil 362, 215–229 (2013).

    Google Scholar 

  • 62.

    Müller, C., Stevens, R., Laughlin, R. & Jäger, H.-J. Microbial processes and the site of N2O production in a temperate grassland soil. Soil Biol. Biochem. 36, 453–461 (2004).

    Google Scholar 

  • 63.

    Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).

    Google Scholar 

  • 64.

    Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).

    Google Scholar 

  • 65.

    Stewart, K. J., Lamb, E. G., Coxson, D. S. & Siciliano, S. D. Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant Soil 344, 335–346 (2011).

    Google Scholar 

  • 66.

    Chapin, D. M. & Bledsoe, C. S. in Arctic Ecosystems in a Changing Climate (eds Chapin, F. S. et al.) 301–319 (Academic, 1992).

  • 67.

    Sullivan, B. W. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 111, 8101–8106 (2014).

    Google Scholar 

  • 68.

    Stewart, K. J., Coxson, D. & Grogan, P. Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct. Antarct. Alp. Res. 43, 267–278 (2011).

    Google Scholar 

  • 69.

    Zielke, M., Solheim, B., Spjelkavik, S. & Olsen, R. A. Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct. Antarct. Alp. Res. 37, 372–378 (2005).

    Google Scholar 

  • 70.

    Letendre, A.-C., Coxson, D. S. & Stewart, K. J. Restoration of ecosystem function by soil surface inoculation with biocrust in mesic and xeric alpine ecosystems. Ecol. Restor. 37, 101–112 (2019).

    Google Scholar 

  • 71.

    Convey, P. & Smith, R. I. L. in Plants and Climate Change. Tasks for Vegetation Science Vol. 41 (eds Rozema, J., Aerts, R. & Cornelissen, H.) 1–12 (Springer, 2005).

  • 72.

    Repo, M. E. et al. Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci. 2, 189–192 (2009). The first discovery of high N 2O emitting surfaces, barren permafrost peatlands, in the Russian Arctic.

    Google Scholar 

  • 73.

    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nat. Geosci. 3, 332–335 (2010). A mesocosms study showing high N 2O production potential in thawing permafrost after rewetting with nitrogen-rich meltwater.

    Google Scholar 

  • 74.

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Google Scholar 

  • 75.

    Seppälä, M. Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52, 141–148 (2003).

    Google Scholar 

  • 76.

    Brummell, M. E., Farrell, R. E. & Siciliano, S. D. Greenhouse gas soil production and surface fluxes at a high arctic polar oasis. Soil Biol. Biochem. 52, 1–12 (2012).

    Google Scholar 

  • 77.

    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).

    Google Scholar 

  • 78.

    Treat, C. C. et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Glob. Change Biol. 24, 5188–5204 (2018).

    Google Scholar 

  • 79.

    Lamb, E. G. et al. A High Arctic soil ecosystem resists long-term environmental manipulations. Glob. Change Biol. 17, 3187–3194 (2011).

    Google Scholar 

  • 80.

    Gregorich, E. G. et al. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley. Soil Biol. Biochem. 38, 3120–3129 (2006).

    Google Scholar 

  • 81.

    Cao, Y., Ke, X., Guo, X., Cao, G. & Du, Y. Nitrous oxide emission rates over 10 years in an alpine meadow on the Tibetan Plateau. Pol. J. Environ. Stud. 27, 1353–1358 (2018).

    Google Scholar 

  • 82.

    Dinsmore, K. J. et al. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences 14, 799–815 (2017).

    Google Scholar 

  • 83.

    Kato, T., Hirota, M., Tang, Y. & Wada, E. Spatial variability of CH4 and N2O fluxes in alpine ecosystems on the Qinghai–Tibetan Plateau. Atmos. Environ. 45, 5632–5639 (2011).

    Google Scholar 

  • 84.

    Jiang, C., Yu, G., Fang, H., Cao, G. & Li, Y. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 44, 2920–2926 (2010).

    Google Scholar 

  • 85.

    Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T. & Kiese, R. A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob. Biogeochem. Cycles 21, GB3010 (2007).

    Google Scholar 

  • 86.

    Maljanen, M. et al. Greenhouse gas balances of managed peatlands in the Nordic countries–present knowledge and gaps. Biogeosciences 7, 2711–2738 (2010).

    Google Scholar 

  • 87.

    Maljanen, M. et al. Nitrous oxide production in boreal soils with variable organic matter content at low temperature-snow manipulation experiment. Biogeosciences 6, 2461–2473 (2009).

    Google Scholar 

  • 88.

    Potter, C. S., Matson, P. A., Vitousek, P. M. & Davidson, E. A. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res. Atmos. 101, 1361–1377 (1996).

    Google Scholar 

  • 89.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 465–570 (Cambridge Univ. Press, 2013).

  • 90.

    Kortelainen, P. et al. Lakes as nitrous oxide sources in the boreal landscape. Glob. Change Biol. 26, 1432–1445 (2020).

    Google Scholar 

  • 91.

    Priscu, J. C. The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Glob. Change Biol. 3, 301–315 (1997).

    Google Scholar 

  • 92.

    Kato, T., Toyoda, S., Yoshida, N., Tang, Y. & Wada, E. Isotopomer and isotopologue signatures of N2O produced in alpine ecosystems on the Qinghai–Tibetan Plateau. Rapid Commun. Mass Spectrom. 27, 1517–1526 (2013).

    Google Scholar 

  • 93.

    Du, Y. et al. Nitrous oxide emissions from two alpine meadows in the Qinghai–Tibetan Plateau. Plant Soil 311, 245–254 (2008).

    Google Scholar 

  • 94.

    Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nat. Geosci. 10, 279–283 (2017). Showed the important contribution of freeze–thaw cycles to annual N 2O emissions from (non-permafrost) croplands.

    Google Scholar 

  • 95.

    Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).

    Google Scholar 

  • 96.

    Mu, C. C. et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44, 8945–8952 (2017).

    Google Scholar 

  • 97.

    Paré, M. C. & Bedard-Haughn, A. Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols. Geoderma 189, 469–479 (2012).

    Google Scholar 

  • 98.

    Stewart, K. J., Brummell, M. E., Farrell, R. E. & Siciliano, S. D. N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biol. Biochem. 48, 69–77 (2012).

    Google Scholar 

  • 99.

    Brummell, M. E., Farrell, R. E., Hardy, S. P. & Siciliano, S. D. Greenhouse gas production and consumption in High Arctic deserts. Soil Biol. Biochem. 68, 158–165 (2014).

    Google Scholar 

  • 100.

    Bao, T. et al. Potential effects of ultraviolet radiation reduction on tundra nitrous oxide and methane fluxes in maritime Antarctica. Sci. Rep. 8, 3716 (2018).

    Google Scholar 

  • 101.

    Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions – a significant component of annual emissions across northern ecosystems. Glob. Change Biol. 24, 3331–3343 (2018).

    Google Scholar 

  • 102.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).

    Google Scholar 

  • 103.

    Du, Y., Guo, X., Cao, G. & Li, Y. Increased nitrous oxide emissions resulting from nitrogen addition and increased precipitation in an alpine meadow ecosystem. Pol. J. Environ. Stud. 25, 447–451 (2016).

    Google Scholar 

  • 104.

    Du, Y. et al. Simulation and prediction of nitrous oxide emission by the water and nitrogen management model on the Tibetan plateau. Biochem. Syst. Ecol. 65, 49–56 (2016).

    Google Scholar 

  • 105.

    Wang, H. et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Glob. Change Biol. 23, 815–829 (2017).

    Google Scholar 

  • 106.

    Chang, R., Wang, G., Yang, Y. & Chen, X. Experimental warming increased soil nitrogen sink in the Tibetan permafrost. J. Geophys. Res. Biogeosci. 122, 1870–1879 (2017).

    Google Scholar 

  • 107.

    Chen, X. et al. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ. 157, 111–124 (2017).

    Google Scholar 

  • 108.

    Morishita, T. et al. CH4 and N2O dynamics of a Larix gmelinii forest in a continuous permafrost region of central Siberia during the growing season. Polar Sci. 8, 156–165 (2014).

    Google Scholar 

  • 109.

    Takakai, F. et al. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. J. Geophys. Res. Biogeosci. 113, G02002 (2008).

    Google Scholar 

  • 110.

    Williams, M. W., Brooks, P. D. & Seastedt, T. Nitrogen and carbon soil dynamics in response to climate change in a high-elevation ecosystem in the Rocky Mountains, USA. Arct. Alp. Res. 30, 26–30 (1998).

    Google Scholar 

  • 111.

    Pei, Z.-Y., Ouyang, H., Zhou, C.-P. & Xu, X.-L. N2O exchange within a soil and atmosphere profile in alpine grasslands on the Qinghai-Xizang plateau. Acta Bot. Sin. Engl. Ed. 46, 20–28 (2004).

    Google Scholar 

  • 112.

    Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).

    Google Scholar 

  • 113.

    Zhang, T., Wang, G., Yang, Y., Mao, T. & Chen, X. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. Eur. J. Soil Biol. 71, 45–52 (2015).

    Google Scholar 

  • 114.

    Hénault, C., Grossel, A., Mary, B., Roussel, M. & Léonard, J. Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22, 426–433 (2012).

    Google Scholar 

  • 115.

    Pärn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018). A global field survey identifying the main drivers of N 2O emissions in (non-permafrost) soils.

    Google Scholar 

  • 116.

    Malone, E. T. et al. Decline in ecosystem δ13C and mid-successional nitrogen loss in a two-century postglacial chronosequence. Ecosystems 21, 1659–1675 (2018).

    Google Scholar 

  • 117.

    Gao, W. et al. Emissions of nitrous oxide from continuous permafrost region in the Daxing’an Mountains, Northeast China. Atmos. Environ. 198, 34–45 (2019).

    Google Scholar 

  • 118.

    Yan, Y. et al. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. 265, 45–53 (2018).

    Google Scholar 

  • 119.

    Lin, X. et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41, 718–725 (2009).

    Google Scholar 

  • 120.

    Li, Y. et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol. Biochem. 80, 306–314 (2015).

    Google Scholar 

  • 121.

    Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).

    Google Scholar 

  • 122.

    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740 (2015).

    Google Scholar 

  • 123.

    Buckeridge, K. M., Cen, Y.-P., Layzell, D. B. & Grogan, P. Soil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availability. Biogeochemistry 99, 127–141 (2010).

    Google Scholar 

  • 124.

    Kielland, K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75, 2373–2383 (1994).

    Google Scholar 

  • 125.

    Bardgett, R. D., van der Wal, R., Jónsdóttir, I. S., Quirk, H. & Dutton, S. Temporal variability in plant and soil nitrogen pools in a high-Arctic ecosystem. Soil Biol. Biochem. 39, 2129–2137 (2007).

    Google Scholar 

  • 126.

    Shurpali, N. J. et al. Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions. Sci. Rep. 6, 25739 (2016).

    Google Scholar 

  • 127.

    Köster, E. et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Sci. Total. Environ. 601, 895–905 (2017).

    Google Scholar 

  • 128.

    Chen, Q., Zhu, R., Wang, Q. & Xu, H. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the high Arctic. J. Environ. Sci. 26, 1403–1410 (2014).

    Google Scholar 

  • 129.

    Zhu, R., Chen, Q., Ding, W. & Xu, H. Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway. J. Geophys. Res. Biogeosci. 117, G04015 (2012).

    Google Scholar 

  • 130.

    Zhu, R., Ma, D. & Xu, H. Summertime N2O, CH4 and CO2 exchanges from a tundra marsh and an upland tundra in maritime Antarctica. Atmos. Environ. 83, 269–281 (2014).

    Google Scholar 

  • 131.

    Kelsey, K. C. et al. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake. Environ. Res. Lett. 13, 044032 (2018).

    Google Scholar 

  • 132.

    Sun, L., Zhu, R., Xie, Z. & Xing, G. Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmos. Environ. 36, 4977–4982 (2002).

    Google Scholar 

  • 133.

    Neff, J. C., Bowman, W. D., Holland, E. A., Fisk, M. C. & Schmidt, S. K. Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochemistry 27, 23–33 (1994).

    Google Scholar 

  • 134.

    Cui, Q. et al. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Sci. Total. Environ. 616–617, 427–434 (2018).

    Google Scholar 

  • 135.

    Li, F., Zhu, R., Bao, T., Wang, Q. & Xu, H. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra. Sci. Total. Environ. 572, 1150–1160 (2016).

    Google Scholar 

  • 136.

    Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).

    Google Scholar 

  • 137.

    Schaeffer, S. M., Sharp, E., Schimel, J. P. & Welker, J. M. Soil–plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob. Change Biol. 19, 3529–3539 (2013).

    Google Scholar 

  • 138.

    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    Google Scholar 

  • 139.

    Biasi, C. et al. Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant Soil 307, 191–205 (2008).

    Google Scholar 

  • 140.

    Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).

    Google Scholar 

  • 141.

    Helbig, M. et al. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Glob. Change Biol. 23, 2413–2427 (2017).

    Google Scholar 

  • 142.

    Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).

    Google Scholar 

  • 143.

    Lawrence, D. M., Koven, C., Swenson, S. C., Riley, W. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).

    Google Scholar 

  • 144.

    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).

    Google Scholar 

  • 145.

    Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).

    Google Scholar 

  • 146.

    Keuper, F. et al. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Glob. Change Biol. 23, 4257–4266 (2017).

    Google Scholar 

  • 147.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Google Scholar 

  • 148.

    Peng, J. et al. Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation. Glob. Biogeochem. Cycles 34, e2019GB006296 (2020).

    Google Scholar 

  • 149.

    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).

    Google Scholar 

  • 150.

    Chu, H. & Grogan, P. Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant Soil 329, 411–420 (2010).

    Google Scholar 

  • 151.

    Zhang, W. et al. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).

    Google Scholar 

  • 152.

    Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Google Scholar 

  • 153.

    Christensen, T. R., Michelsen, A. & Jonasson, S. Exchange of CH4 and N2O in a subarctic heath soil: effects of inorganic N and P and amino acid addition. Soil Biol. Biochem. 31, 637–641 (1999).

    Google Scholar 

  • 154.

    Liu, X., Zhang, Q., Li, S., Zhang, L. & Ren, J. Simulated NH4+-N deposition inhibits CH4 uptake and promotes N2O emission in the meadow Steppe of inner Mongolia, China. Pedosphere 27, 306–317 (2017).

    Google Scholar 

  • 155.

    Wang, P. et al. Sea animal activity controls CO2, CH4 and N2O emission hotspots on South Georgia, sub-Antarctica. Soil Biol. Biochem. 132, 174–186 (2019).

    Google Scholar 

  • 156.

    Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob. Change Biol. 24, 4251–4265 (2018).

    Google Scholar 

  • 157.

    Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2017).

    Google Scholar 

  • 158.

    Jiang, Y. et al. Modeling carbon–nutrient interactions during the early recovery of tundra after fire. Ecol. Appl. 25, 1640–1652 (2015).

    Google Scholar 

  • 159.

    Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).

    Google Scholar 

  • 160.

    Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172, 75–86 (2017).

    Google Scholar 

  • 161.

    Wilkerson, J. et al. Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method. Atmos. Chem. Phys. 19, 4257–4268 (2019). The first study reporting N 2O emissions at the landscape scale over Arctic Alaska using an airborne eddy covariance system.

    Google Scholar 

  • 162.

    Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 193, 299–316 (2019).

    Google Scholar 

  • 163.

    Zoltai, S. C. & Tarnocai, C. Perennially frozen peatlands in the western Arctic and Subarctic of Canada. Can. J. Earth Sci. 12, 28–43 (1975).

    Google Scholar 

  • 164.

    Schreiber, F., Wunderlin, P., Udert, K. M. & Wells, G. F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3, 372 (2012).

    Google Scholar 

  • 165.

    Voigt, C. et al. Nitrous oxide fluxes from permafrost regions. PANGAEA, https://doi.org/10.1594/PANGAEA.919217 (2020).


  • Source: Ecology - nature.com

    Increasing dependence of lowland populations on mountain water resources

    Innovations in environmental training for the mining industry