in

Recent accelerated diversification in rosids occurred outside the tropics

  • 1.

    Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. Lond. B 286, 20190099 (2019).

    Google Scholar 

  • 2.

    Sauquet, H. & Magallón, S. Key questions and challenges in angiosperm macroevolution. N. Phytol. 219, 1170–1187 (2018).

    Google Scholar 

  • 3.

    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    PubMed  Google Scholar 

  • 4.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Wang, W. et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. N. Phytol. 195, 470–478 (2012).

    Google Scholar 

  • 6.

    Cantalapiedra, J. L. et al. Dietary innovations spurred the diversification of ruminants during the Caenozoic. Proc. Biol. Sci. B 281, 20132746 (2014).

    Google Scholar 

  • 7.

    Claramunt, S. & Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Pires, M. M., Rankin, B. D., Silvestro, D. & Quental, T. B. Diversification dynamics of mammalian clades during the K–Pg mass extinction. Biol. Lett. 14, 20180458 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019).

    CAS  PubMed  Google Scholar 

  • 11.

    Huang, X. C., German, D. A. & Koch, M. A. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 125, 29–47 (2020).

    PubMed  Google Scholar 

  • 12.

    Vieites, D. R., Min, M.-S. & Wake, D. B. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Natl Acad. Sci. USA 104, 19903–19907 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Igea, J. & Tanentzap, A. J. Angiosperm speciation cools down in the tropics. Ecol. Lett. 23, 692–700 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Cardillo, M., Orme, C. D. L. & Owens, I. P. F. Testing for latitudinal bias in diversification rates: An example using new world birds. Ecology 86, 2278–2287 (2005).

    Google Scholar 

  • 16.

    Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006).

    PubMed  Google Scholar 

  • 17.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    PubMed  Google Scholar 

  • 19.

    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).

    PubMed  Google Scholar 

  • 22.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Govaert, R. How many species of seed plants are there? Taxon 50, 1085–1090 (2001).

    Google Scholar 

  • 24.

    Byng, J. W., Christenhusz, M., Fay, M. F. & Chase, M. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. Linn. Soc. 181, 1–20 (2016).

    Google Scholar 

  • 25.

    Wang, H. C. et al. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Natl Acad. Sci. USA 106, 3853–3858 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A meta-calibrated timetree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).

    Google Scholar 

  • 27.

    Soltis, P. S., Soltis, D. E., Chase, M. W., Endress, P. K. & Crane, P. R. in The Tree of Life (eds Cracraft, J. & Donoghue, M.) 154–167 (Oxford & New York, 2004).

  • 28.

    Boyce, C. K., Lee, J. E., Field., T. S., Brodribb, T. J. & Zwieniecki, M. A. Angiosperms helped put the rain in the rainforests: The impact of plant physiological evolution on tropical biodiversity. Ann. Missouri Bot. Gard. 97, 527–540 (2010).

    Google Scholar 

  • 29.

    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).

    PubMed  Google Scholar 

  • 30.

    Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Feldberg, K. et al. Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Sci. Rep. 4, 5974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Schneider, H., Schuettpelz, E., Pryer, K. M. & Cranfill, R. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Magallón, S., Crane, P. R. & Herendeen, P. S. Phylogenetic pattern, diversity, and diversification of eudicots. Ann. Mo. Bot. Gard. 86, 297–372 (1999).

    Google Scholar 

  • 35.

    Stevens, P. F. Angiosperm phylogeny website. Version 14. http://www.mobot.org/MOBOT/research/APweb/. Accessed 1 January 2018 (2017).

  • 36.

    Folk, R. A. et al. Challenges of comprehensive taxon sampling in comparative biology: Wrestling with rosids. Am. J. Bot. 105, 433–445 (2018).

    PubMed  Google Scholar 

  • 37.

    Töpel, M., Antonelli, A., Yesson, C. & Eriksen, B. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLoS ONE 7, e50358 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Xiang, X. G. et al. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect. Plant. Ecol. 16, 101–110 (2014).

    Google Scholar 

  • 39.

    Sun, M. et al. Phylogeny of the Rosidae: a dense taxon sampling analysis. J. Syst. Evol. 54, 363–391 (2016).

    Google Scholar 

  • 40.

    Zhao, L. et al. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol. Phylogenet. Evol. 105, 166–176 (2016).

    PubMed  Google Scholar 

  • 41.

    Sun, M. et al. Exploring the phylogeny of rosids with a five-locus supermatrix from GenBank. Preprint at https://www.biorxiv.org/content/10.1101/694950v1 (2019).

  • 42.

    Beaulieu, J. M. & O’Meara, B. C. Can we build it? Yes we can, but should we use it? Assessing the quality and value of a very large phylogeny of campanulid angiosperms. Am. J. Bot. 105, 417–432 (2018).

    PubMed  Google Scholar 

  • 43.

    Owens, H. L. et al. The latitudinal diversity gradient in New World swallowtail butterflies is caused by contrasting patterns of out-of-and into-the-tropics dispersal. Glob. Ecol. Biogeogr. 26, 1447–1458 (2017).

    Google Scholar 

  • 44.

    Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 1.3.0. https://CRAN.R-project.org/package=rgbif (2019).

  • 45.

    Michonneau, F. & Collins, M. ridigbio: Interface to the iDigBio data API. R package version 0.3.5. https://CRAN.R-project.org/package=ridigbio (2017).

  • 46.

    Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

    PubMed  Google Scholar 

  • 47.

    Pyron, R. A. & Burbrink, F. T. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends Ecol. Evol. 28, 729–736 (2013).

    PubMed  Google Scholar 

  • 48.

    Revell, J. L. Comparing the rates of speciation and extinction between phylogenetic trees. Ecol. Evol. 8, 5303–5312 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting traitdependent diversification. Syst. Biol. 65, 181–193 (2016).

    PubMed  Google Scholar 

  • 51.

    Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).

    Google Scholar 

  • 52.

    Revell, J. L. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • 53.

    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    PubMed  Google Scholar 

  • 54.

    Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    PubMed  Google Scholar 

  • 55.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed  Google Scholar 

  • 56.

    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    PubMed  Google Scholar 

  • 57.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    ADS  MathSciNet  MATH  Google Scholar 

  • 58.

    Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).

    PubMed  Google Scholar 

  • 59.

    Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

  • 60.

    Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).

    Google Scholar 

  • 61.

    Pound, M. J., Haywood, A. M., Salzmann, U. & Riding, J. B. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci. Rev. 112, 1–22 (2012).

    ADS  Google Scholar 

  • 62.

    Wang, Q. G. et al. Niche conservatism and elevated diversification shape species diversity in drylands: evidence from Zygophyllaceae. Proc. R. Soc. Lond. B 285, 20181742 (2018).

    Google Scholar 

  • 63.

    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).

    CAS  PubMed  Google Scholar 

  • 64.

    Gamisch, A. Notes on the statistical power of the Binary State Speciation and Extinction (BiSSE) model. Evol. Bioinformatics 12, 165–174 (2016).

    Google Scholar 

  • 65.

    Grundler, M. C. & Rabosky, D. L. Macroevolutionary analysis of discrete traits with rate heterogeneity. Preprint at https://www.biorxiv.org/content/10.1101/2020.01.07.897777v1.full (2020).

  • 66.

    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Buzas, M. A., Collins, L. S. & Culver, S. J. Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proc. Natl Acad. Sci. USA 99, 7841–7843 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 68.

    Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Nürk, N. M., Uribe-Convers, S., Gehrke, B., Tank, D. C. & Blattner, F. R. Oligocene niche shift, Miocene diversification–Cold tolerance and accelerated speciation rates in the St. John’s Worts (Hypericum, Hypericaceae). BMC Evol. Biol. 15, 80 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444–E3451 (2017).

    CAS  PubMed  Google Scholar 

  • 71.

    Lu, L. M. et al. Evolutionary history of the angiosperm flora of China. Nature 554, 234–238 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 72.

    Dunn, R. R. et al. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol. Lett. 12, 324–333 (2009).

    PubMed  Google Scholar 

  • 73.

    Jablonski, D. Extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. USA 105(Suppl 1), 11528–11535 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 74.

    Schluter, D. Speciation, ecological opportunity, and latitude (American Society of Naturalists Address). Am. Nat. 187, 1–18 (2016).

    PubMed  Google Scholar 

  • 75.

    Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 76.

    Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. N. Phytol. 218, 1697–1709 (2018).

    Google Scholar 

  • 77.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS  PubMed  Google Scholar 

  • 78.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 79.

    Ricklef, R. E. & Renner, S. S. Species richness within families of flowering plants. Evolution 48, 1619–1636 (1994).

    Google Scholar 

  • 80.

    Preston, J. C. & Sandve, S. R. Adaptation to seasonality and the winter freeze. Front. Plant Sci. 4, 167 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 81.

    Pender, J. E. et al. How sensitive are climatic niche inferences to distribution data sampling? A comparison of biota of North America Program (BONAP) and Global Biodiversity Information Facility (GBIF) datasets. Ecol. Informatics 54, 100991 (2019).

    Google Scholar 

  • 82.

    Rabosky, D. L. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207–3216 (2015).

    PubMed  Google Scholar 

  • 83.

    Sun, M. et al. Estimating rates and patterns of diversification with incomplete sampling: A case study in the rosids. Am. J. Bot. 107, 1–15 (2020).

    Google Scholar 

  • 84.

    Smith, S. A., Beaulieu, J. M. & Donoghue, M. J. Mega-phylogeny approach for comparative biology: An alternative to supertree and supermatrix approaches. BMC Evol. Biol. 9, 37 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 85.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Pattengale, N. D. et al. (eds) ISBRA Vol. 6053, 128–139 (Springer, 2010).

  • 87.

    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 689–2690 (2012).

    Google Scholar 

  • 88.

    Barnes, R. dggridR: discrete global grids for R. R package version 0.1.12. https://github.com/r-barnes/dggridR/ (2017).

  • 89.

    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 06, 102–106 (2006).

    ADS  Google Scholar 

  • 90.

    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).

    PubMed  Google Scholar 

  • 91.

    Mullen, S. P., Savage, W. K., Wahlberg, N. & Willmott, K. R. Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proc. R. Soc. Lond. B 278, 1777–1785 (2011).

    Google Scholar 

  • 92.

    Rabosky, D. L. Ecological limits on clade diversification in higher taxa. Am. Nat. 173, 662–674 (2009).

    PubMed  Google Scholar 

  • 93.

    Pennell, M. W. et al. Geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    CAS  PubMed  Google Scholar 

  • 94.

    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    PubMed  Google Scholar 

  • 95.

    P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).

  • 96.

    Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Google Scholar 

  • 97.

    Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–803 (1988).

    MathSciNet  MATH  Google Scholar 

  • 98.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 99.

    Sun, M. & Folk, R. A. Code and data for rosid_NCOMMS-19-37964. Zenodo. https://doi.org/10.5281/zenodo.3843441 (2020).


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming