in

Rib cage anatomy in Homo erectus suggests a recent evolutionary origin of modern human body shape

  • 1.

    Walker, A. & Leakey, R. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R.) 95–160 (Harvard Univ. Press, 1993).

  • 2.

    Ruff, C. & Walker, A. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R.) 234–265 (Harvard Univ. Press, 1993).

  • 3.

    Jellema, L. M., Latimer, B. & Walker, A. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R.) 294–325 (Harvard Univ. Press, 1993).

  • 4.

    Holliday, T. W. Body size, body shape, and the circumscription of the genus Homo. Curr. Anthropol. 53, S330–S345 (2012).

    Google Scholar 

  • 5.

    Antón, S. C., Leonard, W. R. & Robertson, M. L. An ecomorphological model of the initial hominid dispersal from Africa. J. Hum. Evol. 43, 773–785 (2002).

    PubMed  Google Scholar 

  • 6.

    Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).

    CAS  PubMed  Google Scholar 

  • 7.

    Pontzer, H. Economy and endurance in human evolution. Curr. Biol. 27, R613–R621 (2017).

    CAS  PubMed  Google Scholar 

  • 8.

    Carrier, D. R. et al. The energetic paradox of human running and hominid evolution [and Comments and Reply]. Curr. Anthropol. 25, 483–495 (1984).

    Google Scholar 

  • 9.

    Lordkipanidze, D. et al. Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449, 305–310 (2007).

    CAS  PubMed  Google Scholar 

  • 10.

    Braun, D. R. et al. Oldowan behavior and raw material transport: perspectives from the Kanjera Formation. J. Archaeol. Sci. 35, 2329–2345 (2008).

    Google Scholar 

  • 11.

    Arsuaga, J. L. et al. A complete human pelvis from the middle Pleistocene of Spain. Nature 399, 255–258 (1999).

    CAS  PubMed  Google Scholar 

  • 12.

    Simpson, S. W. et al. A female Homo erectus pelvis from Gona, Ethiopia. Science 322, 1089–1092 (2008).

    CAS  PubMed  Google Scholar 

  • 13.

    Rosenberg, K. R., Zuné, L. & Ruff, C. B. Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. Proc. Natl Acad. Sci. USA 103, 3552–3556 (2006).

    CAS  PubMed  Google Scholar 

  • 14.

    Bonmatí, A. et al. Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc. Natl Acad. Sci. USA 107, 18386–18391 (2010).

    PubMed  Google Scholar 

  • 15.

    Arsuaga, J. L. et al. Postcranial morphology of the Middle Pleistocene humans from Sima de los Huesos, Spain. Proc. Natl Acad. Sci. USA 112, 11524–11529 (2015).

    CAS  PubMed  Google Scholar 

  • 16.

    Franciscus, R. G. & Churchill, S. E. The costal skeleton of Shanidar 3 and a reappraisal of Neandertal thoracic morphology. J. Hum. Evol. 42, 303–356 (2002).

    PubMed  Google Scholar 

  • 17.

    Gómez-Olivencia, A., Eaves-Johnson, K. L., Franciscus, R. G., Carretero, J. M. & Arsuaga, J. L. Kebara 2: new insights regarding the most complete Neandertal thorax. J. Hum. Evol. 57, 75–90 (2009).

    PubMed  Google Scholar 

  • 18.

    Gómez-Olivencia, A. et al. 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nat. Comm. 9, 4387 (2018).

    Google Scholar 

  • 19.

    Ohman, J. C. et al. Stature at death of KNM-WT 15000. J. Hum. Evol. 17, 129–142 (2002).

    Google Scholar 

  • 20.

    Graves, R. R., Lupo, A. C., McCarthy, R. C., Wescott, D. J. & Cunningham, D. L. Just how strapping was KNM-WT 15000? J. Hum. Evol. 59, 542–554 (2010).

    PubMed  Google Scholar 

  • 21.

    Ruff, C. B. & Burgess, M. L. How much more would KNM-WT 15000 have grown? J. Hum. Evol. 80, 74–82 (2015).

    PubMed  Google Scholar 

  • 22.

    Antón, S., Potts, R. & Aiello, L. Human evolution. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).

    PubMed  Google Scholar 

  • 23.

    Torres-Tamayo, N. et al. The torso integration hypothesis revisited in Homo sapiens: contributions to the understanding of hominin body shape evolution. Am. J. Phys. Anthropol. 167, 777–790 (2018).

    PubMed  Google Scholar 

  • 24.

    Williams, S. A. et al. The vertebrae and ribs of Homo naledi. J. Hum. Evol. 104, 136–154 (2017).

    PubMed  Google Scholar 

  • 25.

    Latimer, B., Lovejoy, C. O., Spurlock, L. & Haile-Selassie, Y. in The Postcranial Anatomy of Australopithecus afarensis: New Insights from KSD-VP-1/1 (eds Haile-Selassie, Y. & Su, D. F.) 143–153 (Springer, 2016).

  • 26.

    Schmid, P. et al. Mosaic morphology in the thorax of Australopithecus sediba. Science 340, 1234598 (2013).

    PubMed  Google Scholar 

  • 27.

    Bastir, M. et al. 3D geometric morphometrics of thorax variation and allometry in Hominoidea. J. Hum. Evol. 113, 10–23 (2017).

    PubMed  Google Scholar 

  • 28.

    De Troyer, A., Kirkwood, P. A. & Wilson, T. A. Respiratory action of the intercostal muscles. Phys. Rev. 85, 717–756 (2005).

    Google Scholar 

  • 29.

    García-Martínez, D. et al. Over 100 years of Krapina: new insights into the Neanderthal thorax from the study of rib cross-sectional morphology. J. Hum. Evol. 122, 124–132 (2018).

    PubMed  Google Scholar 

  • 30.

    Openshaw, P., Edwards, S. & Helms, P. Changes in rib cage geometry during childhood. Thorax 39, 624–627 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    LoMauro, A. & Aliverti, A. Sex differences in respiratory function. Breathe 14, 131–140 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Bastir, M. et al. In vivo 3D analysis of thoracic kinematics: changes in size and shape during breathing and their implications for respiratory function in recent humans and fossil hominins. Anat. Rec. 300, 255–264 (2017).

    Google Scholar 

  • 33.

    Callison, W. É., Holowka, N. B. & Lieberman, D. E. Thoracic adaptations for ventilation during locomotion in humans and other mammals. J. Exp. Biol. 222, jeb189357 (2019).

    PubMed  Google Scholar 

  • 34.

    Latimer, B. & Ward, C. V. in The Nariokotome Homo erectus Skeleton (eds Walker, A. & Leakey, R.) 266–293 (Harvard Univ. Press, 1993).

  • 35.

    Haeusler, M., Schiess, R. & Boeni, T. New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton. J. Hum. Evol. 61, 575–582 (2011).

    PubMed  Google Scholar 

  • 36.

    Bastir, M. et al. Differential growth and development of the upper and lower human thorax. PLoS ONE 8, e75128 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Haeusler, M. et al. Morphology, pathology, and the vertebral posture of the La Chapelle-aux-Saints Neandertal. Proc. Natl Acad. Sci. USA 116, 4923–4927 (2019).

    CAS  PubMed  Google Scholar 

  • 38.

    Schiess, R. & Haeusler, M. No skeletal dysplasia in the Nariokotome boy KNM-WT 15000 (Homo erectus)—a reassessment of congenital pathologies of the vertebral column. Am. J. Phys. Anthropol. 150, 365–374 (2013).

    PubMed  Google Scholar 

  • 39.

    Warrener, A. G., Lewton, K. L., Pontzer, H. & Lieberman, D. E. A wider pelvis does not increase locomotor cost in humans, with implications for the evolution of childbirth. PLoS ONE 10, e0118903 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Beyer, B. et al. In vivo thorax 3D modelling from costovertebral joint complex kinematics. Clin. Biomech. 29, 434–438 (2014).

    Google Scholar 

  • 41.

    Beyer, B. et al. Effect of anatomical landmark perturbation on mean helical axis parameters of in vivo upper costovertebral joints. J. Biomech. 48, 534–538 (2015).

    PubMed  Google Scholar 

  • 42.

    De Troyer, A., Kelly, S., Macklem, P. T. & Zin, W. A. Mechanics of intercostal space and actions of external and internal intercostal muscles. J. Clin. Invest. 75, 850–857 (1985).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Wilson, T. A. & De Troyer, A. The two mechanisms of intercostal muscle action on the lung. J. Appl Physiol. 96, 483–488 (2004).

    PubMed  Google Scholar 

  • 44.

    Gehr, P. et al. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir. Physiol. 44, 61–86 (1981).

    CAS  PubMed  Google Scholar 

  • 45.

    Stahl, W. R. Scaling of respiratory variables in mammals. J. Appl. Physiol. 22, 453–460 (1967).

    CAS  PubMed  Google Scholar 

  • 46.

    Jones, R. L. & Nzekwu, M. M. U. The effects of body mass index on lung volumes. Chest 130, 827–833 (2006).

    PubMed  Google Scholar 

  • 47.

    Ruff, C. Body size and body shape in early hominins – implications of the Gona Pelvis. J. Hum. Evol. 58, 166–178 (2010).

    PubMed  Google Scholar 

  • 48.

    Ruff, C. B., Burgess, M. L., Squyres, N., Junno, J. A. & Trinkaus, E. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).

    PubMed  Google Scholar 

  • 49.

    Raichlen, D. A., Armstrong, H. & Lieberman, D. E. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandertals. J. Hum. Evol. 60, 299–308 (2011).

    PubMed  Google Scholar 

  • 50.

    Schmidt-Nielsen, K. Desert Animals: Physiological Problems of Heat and Water (Clarendon Press, 1964)

  • 51.

    Hora, M., Pontzer, H., Wall-Scheffler, C. M. & Sládek, V. Dehydration and persistence hunting in Homo erectus. J. Hum. Evol. 138, 102682 (2020).

    PubMed  Google Scholar 

  • 52.

    Stewart, J. R. et al. Palaeoecological and genetic evidence for Neanderthal power locomotion as an adaptation to a woodland environment. Quat. Sci. Rev. 217, 310–315 (2019).

    Google Scholar 

  • 53.

    Ahmetov, I. I., Egorova, E. S., Gabdrakhmanova, L. J. & Fedotovskaya, O. N. Genes and athletic performance: an update. Genet. Sports 61, 41–54 (2016).

    Google Scholar 

  • 54.

    García-Martínez, D. et al. Ribcage measurements indicate greater lung capacity in Neanderthals and Lower Pleistocene hominins compared to modern humans. Commun. Biol. 1, 117 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Churchill, S. E. in Neanderthals Revisited (eds Harvati, K. & Harrison, T.) 113–156 (Springer Verlag, 2006).

  • 56.

    Churchill, S. E. Thin on the Ground: Neandertal Biology, Archeology and Ecology (Wiley Blackwell, 2014).

  • 57.

    Lieberman, D. E., Bramble, D. M., Raichlen, D. A. & Shea, J. J. in The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 77–92 (Springer, 2009).

  • 58.

    García-Martínez, D., Riesco, A. & Bastir, M. in Geometric Morphometrics Trends in Biology, Paleobiology and Archaeology (eds Carme Rissech, L. L. et al.) 93–97 (Seminari d’Estudis i Recerques Preshistoriques, Universitat de Barcelona, Societat Catalana d’Arqueologia, 2018).

  • 59.

    Mitteroecker, P. & Gunz, P. Advances in geometric morphometrics. J. Evol. Biol. 36, 235–247 (2009).

    Google Scholar 

  • 60.

    Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).

    Google Scholar 

  • 61.

    García-Martínez, D. et al. 3D growth changes in ribs during late ontogeny in hominids and its importance for the thorax of KNM-WT 15000: a preliminary approach. Proc. Eur. Soc. Study Hum. Evol. 6, 72 (2017).

    Google Scholar 

  • 62.

    Bastir, M., García-Martínez, D., Spoor, F. & Williams, S. A. Thoracic vertebral morphology of KNM-WT 15000. Proc. Eur. Soc. Study Hum. Evol. 8, 11 (2018).

    Google Scholar 

  • 63.

    Bastir, M. et al. Workflows in a virtual morphology lab: 3D scanning, measuring, and printing. J. Anthropol. Sci. 97, 1–28 (2019).

    Google Scholar 

  • 64.

    Mallison, H. The digital Plateosaurus II: an assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Paleontol. Pol. 55, 433–458 (2010).

    Google Scholar 

  • 65.

    Been, E., Gómez-Olivencia, A., Kramer, P. A. & Barash, A. in Human Paleontology and Prehistory (eds Marom, A. & Hovers, E.) 239–251 (Springer Verlag, 2017).

  • 66.

    Bastir, M. et al. in The Human Spine (eds Been, E., Gómez-Olivencia, A. & Kramer, P.) 361–386 (Springer Verlag, 2019).

  • 67.

    Fletcher, J., Stringer, M., Briggs, C., Davies, T. & Woodley, S. CT morphometry of adult thoracic intervertebral discs. Eur. Spine J. 24, 2321–2329 (2015).

    PubMed  Google Scholar 

  • 68.

    Goh, S., Price, R. I., Leedman, P. J. & Singer, K. P. The relative influence of vertebral body and intervertebral disc shape on thoracic kyphosis. Clin. Biomech. 14, 439–448 (1999).

    CAS  Google Scholar 

  • 69.

    Schiess, R., Boeni, T., Rühli, F. & Haeusler, M. Revisiting scoliosis in the KNM-WT 15000 Homo erectus skeleton. J. Hum. Evol. 67, 48–59 (2014).

    PubMed  Google Scholar 

  • 70.

    Goodyear, M. D. E., Krleza-Jeric, K. & Lemmens, T. The Declaration of Helsinki. BMJ 335, 624–625 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Sokal, R. R. & Rohlf, F. J. Biometry 3rd edn (W. H. Freeman and Company, 1998).

  • 72.

    Hackx, M. et al. Effect of total lung capacity, gender and height on CT airway measurements. Br. J. Radiol. 90, 20160898 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Stocks, J. & Quanjer, P. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur. Resp. J. 8, 492–506 (1995).

    CAS  Google Scholar 

  • 74.

    Nagesh, K. R. & Pradeep Kumar, G. Estimation of stature from vertebral column length in South Indians. Leg. Med. 8, 269–272 (2006).

    CAS  Google Scholar 

  • 75.

    Sverzellati, N. et al. Computed tomography measurement of rib cage morphometry in emphysema. PLoS ONE 8, e68546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Cassart, M., Gevenois, P. A. & Estenne, M. Rib cage dimensions in hyperinflated patients with severe chronic obstructive pulmonary disease. Am. J. Respir. 154, 800–805 (1996).

    CAS  Google Scholar 

  • 77.

    García-Martínez, D. et al. 3D analysis of sexual dimorphism in ribcage kinematics of modern humans. Am. J. Phys. Anthropol. 169, 348–355 (2019).

    PubMed  Google Scholar 

  • 78.

    Beyer, B., Van Sint Jan, S., Chèze, L., Sholukha, V. & Feipel, V. Relationship between costovertebral joint kinematics and lung volume in supine humans. Respir. Physiol. Neurobiol. 232, 57–65 (2016).

    PubMed  Google Scholar 

  • 79.

    Chapman, T. et al. How different are the Kebara 2 ribs to modern humans? J. Anthropol. Sci. 95, 183–201 (2017).

    PubMed  Google Scholar 

  • 80.

    Van Sint, J. S. et al. Une plate-forme technologique liée à la paralysie cérébrale. Le projet ICT4Rehab. Med Sci. (Paris) 29, 529–536 (2013).

    Google Scholar 

  • 81.

    Hammer, Ø. PAST: Palaeontological Statistics, version 3.25 https://folk.uio.no/ohammer/past/past3manual.pdf (2019).

  • 82.

    Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism