in

SARS-CoV-2 failure to infect or replicate in mosquitoes: an extreme challenge

  • 1.

    World Health Organization. Coronavirus disease (COVID-19) advice for the public: Myth busters 2020 [cited 2020 2020/05/22]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters.

  • 2.

    Chandrashekar, A., Liu, J., Martinot, A. J., McMahan, K., Mercado, N, B,, Peter, L. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science (2020).

  • 3.

    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Turell, M. J., Dohm, D. J., Geden, C. J., Hogsette, J. A. & Linthicum, K. J. Potential for stable flies and house flies (Diptera: Muscidae) to transmit Rift Valley fever virus. J. Am. Mosq. Control Assoc. 26(4), 445–448 (2010).

    PubMed  Article  Google Scholar 

  • 5.

    Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic transmission of West Nile virus. Proc. Natl. Acad. Sci. USA. 102(25), 8871–8874 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    McGee, C. E., Schneider, B. S., Girard, Y. A., Vanlandingham, D. L. & Higgs, S. Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species. Am. J. Trop. Med .Hyg. 76(3), 424–430 (2007).

    PubMed  Article  Google Scholar 

  • 7.

    Reisen, W. K., Fang, Y. & Martinez, V. Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic?. J. Med. Entomol. 44(2), 299–302 (2007).

    PubMed  Article  Google Scholar 

  • 8.

    Rosen, L. The use of Toxorhynchites mosquitoes to detect and propagate dengue and other arboviruses. Am. J. Trop. Med. Hyg. 30(1), 177–183 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Rosen, L. & Gubler, D. The use of mosquitoes to detect and propagate dengue viruses. Am. J. Trop. Med. Hyg. 23(6), 1153–1160 (1974).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Peloquin, J. J., Thomas, T. A. & Higgs, S. Pink bollworm larvae infection with a double subgenomic Sindbis (dsSIN) virus to express genes of interest. J. Cotton Sci. 5(2), 114–120 (2001).

    CAS  Google Scholar 

  • 11.

    Lewis, D. L. et al. Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses. Curr. Biol. 9(22), 1279–1287 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Vaughan, J. A., Trpis, M. & Turell, M. J. Brugia malayi microfilariae (Nematoda: Filaridae) enhance the infectivity of Venezuelan equine encephalitis virus to Aedes mosquitoes (Diptera: Culicidae). J. Med. Entomol. 36(6), 758–763 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Centers for Disease Control and Prevention. International Catalog of Arboviruses. In: Prevention CfDCa, editor. Atlanta, GA: Center for Disease Control and Prevention; 1985.

  • 14.

    Traavik, T., Mehl, R. & Kjeldsberg, E. “Runde” virus, a coronavirus-like agent associated with seabirds and ticks. Arch. Virol. 55(1–2), 25–38 (1977).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Calibeo-Hayes, D. et al. Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus). Avian Dis. 47(1), 149–153 (2003).

    PubMed  Article  Google Scholar 

  • 16.

    Fauver, J. R. et al. The use of xenosurveillance to detect human bacteria, parasites, and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg. 97(2), 324–329 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Higgs, S. et al. Growth characteristics of ChimeriVax-Den vaccine viruses in Aedes aegypti and Aedes albopictus from Thailand. Am. J. Trop. Med. Hyg. 75(5), 986–993 (2006).

    PubMed  Article  Google Scholar 

  • 18.

    Wendell, M. D., Wilson, T. G., Higgs, S. & Black, W. C. Chemical and gamma-ray mutagenesis of the white gene in Aedes aegypti. Insect Mol. Biol. 9(2), 119–125 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Park, S. L., Huang, Y. S., Higgs, S. & Vanlandingham, D. L. Application of a nonpaper based matrix to preserve chikungunya virus infectivity at ambient temperature. Vector Borne Zoo. Dis. 18(5), 278–281 (2018).

    Article  Google Scholar 

  • 20.

    Huang, Y. J. et al. Culex species mosquitoes and Zika virus. Vector Borne Zoo. Dis. 16(10), 673–676 (2016).

    Article  Google Scholar 

  • 21.

    Huang, Y. S. et al. Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals. PLoS ONE 12(8), e0182386 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Ayers, V. B. et al. Culex tarsalis is a competent vector species for Cache Valley virus. Parasit. Vectors. 11(1), 519 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Ayers, V. B. et al. Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes. Parasit. Vectors. 12(1), 384 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3(12), e201 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Nuckols, J. T. et al. Evaluation of simultaneous transmission of chikungunya virus and dengue virus type 2 in infected Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 52(3), 447–451 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Cook, C. L. et al. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl. Trop. Dis. 12(8), e0006732 (2018).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    Putting wind dispersal in context