in

Serpentine alteration as source of high dissolved silicon and elevated δ30Si values to the marine Si cycle

  • 1.

    Frost, B. R. & Beard, J. S. On silica activity and serpentinization. J. Petrol. 48, 1351–1368 (2007).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Fryer, P. B. Recent studies of Serpentinite occurrences in the oceans: mantle-ocean interactions in the plate tectonic cycle. Chem. der Erde Geochem. 62, 257–302 (2002).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 33, 4–7 (2006).

    Article  CAS  Google Scholar 

  • 4.

    Früh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S. & Grobéty, B. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. 144, 119–136 (2004).

    Google Scholar 

  • 5.

    Deschamps, F., Godard, M., Guillot, S. & Hattori, K. Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96–127 (2013).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Cannat, M., Fontaine, F. & Escartín, J. Serpentinization at slow-spreading ridges: extent and associated hydrogen and methane fluxes, in diversity of hydrothermal systems on slow spreading ocean ridge. AGU Geophys. Monogr. Ridges 188, 241–264 (2010).

    CAS  Google Scholar 

  • 8.

    Fisher, A. T. & Wheat, C. G. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23, 74–87 (2010).

    Article  Google Scholar 

  • 9.

    Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L. & Conley, D. J. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425, 12–36 (2016).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Sutton, J. N. et al. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements. Front. Earth Sci. 5, 112 (2018).

  • 11.

    Basile-Doelsch, I., Meunier, J. D. & Parron, C. Another continental pool in the terrestrial silicon cycle. Nature 433, 399–402 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F. & Li, R. H. Silicon isotope study on rice plants from the Zhejiang province, China. Chem. Geol. 218, 41–50 (2005).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Cornelis, J.-T., Delvaux, B., André, L., Ranger, J. & Opfergelt, S. Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim. Cosmochim. Acta 74, 3913–3924 (2010).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Cockerton, H. E. et al. Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the Quaternary record. Quat. Sci. Rev. 66, 4–21 (2013).

    ADS  Article  Google Scholar 

  • 15.

    Reynolds, B. C., Frank, M. & Halliday, A. N. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet. Sci. Lett. 244, 431–443 (2006).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Grasse, P., Ehlert, C. & Frank, M. The influence of water mass mixing on the dissolved Si isotope composition in the Eastern Equatorial Pacific. Earth Planet. Sci. Lett. 380, 60–71 (2013).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Grasse, P., Closset, I., Jones, J. L., Geilert, S. & Brzezinski, M. A. Controls on Dissolved Silicon Isotopes along the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Global Biogeochem. Cycles 34, https://doi.org/10.1029/2020GB006538 (2020).

  • 18.

    Benton, L. D., Ryan, J. G. & Tera, F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett. 187, 273–282 (2001).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Boschi, C., Dini, A., Früh-Green, G. L. & Kelley, D. S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72, 1801–1823 (2008).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Vils, F., Tonarini, S., Kalt, A. & Seitz, H. M. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet. Sci. Lett. 286, 414–425 (2009).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Harvey, J., Savov, I. P., Agostini, S., Cliff, R. A. & Walshaw, R. Si-metasomatism in serpentinized peridotite: the effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochim. Cosmochim. Acta 126, 30–48 (2014).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Martin, C., Flores, K. E. & Harlow, G. E. Boron isotopic discrimination for subduction-related serpentinites. Geology 44, 899–902 (2016).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Tenthorey, E. & Hermann, J. Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology 32, 865–868 (2004).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Spivack, A., Palmer, M. R. & Edmond, J. M. The sedimentary cycle of the boron isotopes. Geochim. Cosmochim. Acta 51, 1939–1949 (1987).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J. & Martin, J. B. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim. Cosmochim. Acta 68, 4915–4933 (2004).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Hulme, S. M., Wheat, C. G., Fryer, P. & Mottl, M. J. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2009GC002674 (2010).

  • 28.

    Fryer, P., Wheat, C. G., Williams, T. & Expedition 366 Scientists, T. Mariana Convergent Margin and South Chamorro Seamount. Proceedings 648 of the International Ocean Discovery Program, 366: College Station, TX (International Ocean Discovery Program, 2018).

  • 29.

    Lee, K., Byrne, T.-K., Millero, R. H., Feely, F. J. & Liu, R. A. Y.-M. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Foster, G. L., Pogge Von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2010GC003201 (2010).

  • 31.

    Liu, Y. & Tossell, J. A. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochem. Cosmochim. Acta 69, 3995–4006 (2005).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Savage, P. S., Georg, R. B., Armytage, R. M. G., Williams, H. M. & Halliday, A. N. Silicon isotope homogeneity in the mantle. Earth Planet. Sci. Lett. 295, 139–146 (2010).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Geilert, S., Vroon, P. Z., Roerdink, D. L. & Cappellen, P. & van Bergen, M. J. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: inferences from flow-through experiments. Geochim. Cosmochim. Acta 142, 95–114 (2014).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Milliken, K. L., Lynch, F. L. & Seifert, K. E. Marine weathering of Serpentinites and Serpentinite Breccias, Sites 897 and 899, Iberia Abyssal Plain. In Proceedings of the Ocean Drilling Program (eds Whitmarsh, R. B., Sawyer, D. S., Klaus, A. & Masson, D. G.) Vol. 149, 529–540 (College Station, TX: Ocean Drill. Program, 1996).

  • 35.

    Parkhurst, D. L. & Appelo, C. A. J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. (U.S. Geological Survey Techniques and Methods, 2013).

  • 36.

    Oelze, M., von Blanckenburg, F., Bouchez, J., Hoellen, D. & Dietzel, M. The effect of Al on Si isotope fractionation investigated by silica precipitation experiments. Chem. Geol. 397, 94–105 (2015).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Geilert, S. et al. Silicon isotope fractionation during silica precipitation from hot-spring waters: evidence from the Geysir geothermal field, Iceland. Geochim. Cosmochim. Acta 164, 403–427 (2015).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Oelze, M., von Blanckenburg, F., Hoellen, D., Dietzel, M. & Bouchez, J. Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: Implications for weathering systems. Chem. Geol. 380, 161–171 (2014).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Ehlert, C. et al. Stable silicon isotope signatures of marine pore waters–Biogenic opal dissolution versus authigenic clay mineral formation. Geochim. Cosmochim. Acta 191, 102–117 (2016).

  • 40.

    Geilert, S. et al. Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis. Biogeosciences 17, 1745–1763 (2020).

    ADS  Article  Google Scholar 

  • 41.

    Ng, C. H. et al. Sediment efflux of silicon on the Greenland margin and implications for the marine silicon cycle. Earth Planet. Sci. Lett. 529, 115877 (2020).

    CAS  Article  Google Scholar 

  • 42.

    Opfergelt, S. et al. Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences, Guadeloupe. Chem. Geol. 326–327, 113–122 (2012).

    ADS  Article  CAS  Google Scholar 

  • 43.

    Opfergelt, S. et al. Silicon isotopes in allophane as a proxy for mineral formation in volcanic soils. Appl. Geochem. Geochem. 26, S115–S118 (2011).

    CAS  Article  Google Scholar 

  • 44.

    Zeebe, R. E. & Wolf-Gladrow, D. Stable isotope fractionation. CO2 Seawater Equilibrium, Kinetics, Isotopes 141–250 (2001).

  • 45.

    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 261–270 (2006).

    Article  CAS  Google Scholar 

  • 46.

    Klein, F., Marschall, H. R., Bowring, S. A., Humphris, S. E. & Horning, G. Mid-ocean ridge Serpentinite in the Puerto Rico Trench: from Seafloor Spreading to Subduction. J. Pet. 58, 1729–1754 (2017).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Snow, J. E. & Dick, H. J. B. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta 59, 4219–4235 (1995).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Paulick, H. et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 ° 20 ′ N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chem. Geol. 234, 179–210 (2006).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Caillaud, J., Proust, D. & Righi, D. Weathering sequences of rock-forming minerals in a Serpentinite: influence of microsystems on clay mineralogy. Clays Clay Min. 54, 87–100 (2006).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Morrow, C. A. et al. Expedition 366 Scientists, Mariana Convergent Margin and South Chamorro Seamount. Proceedings of the International Ocean Discovery Program, 366: College Station, TX (International Ocean Discovery Program, 2019).

  • 51.

    Coogan, L. A. & Gillis, K. M. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annu. Rev. Earth Planet. Sci. 46, 21–45 (2018).

    ADS  Article  CAS  Google Scholar 

  • 52.

    Wheat, C. G., Fisher, A. T., Mcmanus, J., Hulme, S. M. & Orcutt, B. N. Cool seafloor hydrothermal springs reveal global geochemical fluxes. Earth Planet. Sci. Lett. 476, 179–188 (2017).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Wheat, C. G. & McManus, J. The potential role of ridge-flank hydrothermal systems on oceanic germanium and silicon balances. Geochim. Cosmochim. Acta 69, 2021–2029 (2005).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Opfergelt, S. et al. Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from petlands. Geochim. Cosmochim. Acta 217, 273–291 (2017).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Yu, H.-M., Li, Y.-H., Gao, Y.-J., Huang, J. & Huang, F. Silicon isotopic compositions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle. Chem. Geol. 479, 1–9 (2018).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Alt, J. C. et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem. Geophys. Geosyst. 11 https://doi.org/10.1029/2010GC003144 (2010).

  • 57.

    Beucher, C. P., Brzezinski, M. A. & Jones, J. L. Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific. Geochim. Cosmochim. Acta 72, 3063–3073 (2008).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).

    ADS  Article  Google Scholar 

  • 59.

    Johnson, H. P., Hautala, S. L., Bjorklund, T. A. & Zarnetske, M. R. Quantifying the North Pacific silica plume. Geochem. Geophys. Geosyst. 7 https://doi.org/10.1029/2005GC001065 (2006).

  • 60.

    Gieskes, J. M., Gamo, T. & Brumsack, H. Chemical methods for interstitial water analysis aboard JOIDES Resolution. Ocean Drilling Program Technology Note 15. Texas A&M University (1991).

  • 61.

    van den Boorn, S. H. J. M. et al. Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. J. Anal. Spectrom. 21, 734 (2006).

    Article  CAS  Google Scholar 

  • 62.

    Georg, R. B., Reynolds, B. C., Frank, M. & Halliday, A. N. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).

    ADS  CAS  Article  Google Scholar 

  • 63.

    van den Boorn, S. H. J. M., Vroon, P. Z. & van Bergen, M. J. Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements. J. Anal. Spectrom. 24, 1111 (2009).

    Article  CAS  Google Scholar 

  • 64.

    Hughes, H. J. et al. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS. J. Anal. Spectrom. 26, 1892 (2011).

    CAS  Article  Google Scholar 

  • 65.

    Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K. & André, L. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. Spectrom. 18, 213–218 (2003).

    CAS  Article  Google Scholar 

  • 66.

    Oelze, M., Schuessler, J. A. & von Blanckenburg, F. Mass bias stabilization by Mg doping for Si stable isotope analysis by MC-ICP-MS. J. Anal. Spectrom. 31, 2094–2100 (2016).

    CAS  Article  Google Scholar 

  • 67.

    Albarède, F. et al. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim. Cosmochim. Acta 68, 2725–2744 (2004).

    ADS  Article  CAS  Google Scholar 

  • 68.

    Grasse, P. et al. GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. J. Anal. Spectrom. 32, 562–578 (2017).

    CAS  Article  Google Scholar 

  • 69.

    Gaillardet, J., Lemarchand, D., Göpel, C. & Manhès, G. Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostand. Newsl. 25, 67–75 (2001).

    CAS  Article  Google Scholar 

  • 70.

    Jurikova, H. et al. Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction. Geochem. Cosmochin. Acta 248, 370–386 (2019).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Vogl, J. & Rosner, M. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial. Mater. Geostand. Geoanal. Res. 36, 161–175 (2012).

    CAS  Article  Google Scholar 

  • 72.

    Howarth, R. J. & McArthur, J. M. Strontium isotope stratigraphy. in A Geological Time Scale, with Look-up Table Version 4 (eds Gradstein, F. M. & Ogg, J. G.) 96–105 (Cambridge University Press, Cambridge, 2004).


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe