in

Size-specific recolonization success by coral-dwelling damselfishes moderates resilience to habitat loss

  • 1.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  • 2.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Nee, S. & May, R. M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 1, 37–40 (1992).

    Article  Google Scholar 

  • 4.

    Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly: Movements between habitat patches. Oikos 292, 491–500 (2001).

    Article  Google Scholar 

  • 5.

    Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105–116 (2002).

    ADS  Article  Google Scholar 

  • 6.

    Wong, M. Y., Fauvelot, C., Planes, S. & Buston, P. M. Discrete and continuous reproductive tactics in a hermaphroditic society. Anim. Behav. 84, 897–906 (2012).

    Article  Google Scholar 

  • 7.

    Chase, T. J., Pratchett, M. S., Walker, S. P. & Hoogenboom, M. O. Small-scale environmental variation influences whether coral-dwelling fish promote or impede coral growth. Oecologia 176, 1009–1022 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Kuwamura, T., Yogo, Y. & Nakashima, Y. Population dynamics of goby Paragobiodon echinocephalus and host coral Stylophora pistillata. Mar. Ecol. Prog. Ser. 6, 17–23 (1994).

    ADS  Article  Google Scholar 

  • 9.

    Holbrook, S. J., Forrester, G. E. & Schmitt, R. J. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia 122, 109–120 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Boström-Einarsson, L., Bonin, M. C., Munday, P. L. & Jones, G. P. Strong intraspecific competition and habitat selectivity influence abundance of a coral-dwelling damselfish. J. Exp. Mar. Biol. Ecol. 448, 85–92 (2013).

    Article  Google Scholar 

  • 11.

    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).

    ADS  Article  Google Scholar 

  • 12.

    Wilson, S. K. et al. Habitat utilization by coral reef fish: Implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).

    PubMed  Article  Google Scholar 

  • 13.

    Emslie, M. J., Cheal, A. J. & Johns, K. A. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: A large-scale natural experiment. PLoS ONE 9, e105384. https://doi.org/10.1371/journal.pone.0105384 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Bellwood, D. R. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573 (2012).

    ADS  PubMed  Article  Google Scholar 

  • 15.

    Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168–2180 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Ortiz, J. C. et al. Impaired recovery of the Great Barrier Reef under cumulative stress. Sci. Adv. 4, eaar6127. https://doi.org/10.1126/sciadv.aar6127 (2018).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article  Google Scholar 

  • 18.

    Gilmour, J. P. et al. The state of Western Australia’s coral reefs. Coral Reefs 38, 651–667 (2019).

    ADS  Article  Google Scholar 

  • 19.

    Pisapia, C., Burn, D. & Pratchett, M. S. Changes in the population and community structure of corals during recent disturbances (February 2016–October 2017) on Maldivian coral reefs. Sci. Rep. 9, 8402. https://doi.org/10.1038/s41598-019-44809-9 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778. https://doi.org/10.1038/srep29778 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2017).

    ADS  Article  Google Scholar 

  • 24.

    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363. https://doi.org/10.1371/journal.pone.0047363 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Change Biol. 25, 2431–2445 (2019).

    Google Scholar 

  • 26.

    Chesher, R. H. Destruction of Pacific corals by sea star Acanthaster planci. Science 165, 280–283 (1969).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Pratchett, M. S., Schenk, T. J., Baine, M., Syms, C. & Baird, A. H. Selective coral mortality associated with outbreaks of Acanthaster planci L. in Bootless Bay, Papua New Guinea. Mar. Environ. Res. 67, 230–236 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Kayal, M., Lenihan, H. S., Pau, C., Penin, L. & Adjeroud, M. Associational refuges among corals mediate impacts of a crown-of-thorns starfish Acanthaster planci outbreak. Coral Reefs 30, 827–837 (2011).

    ADS  Article  Google Scholar 

  • 29.

    Pratchett, M. S., Caballes, C. F., Rivera-Posada, J. A. & Sweatman, H. P. A. Limits to understanding and managing outbreaks of crown-of-thorns stafish (Acanthaster spp.). Oceanogr. Mar. Biol. Ann. Rev. 52, 133–199 (2014).

    Google Scholar 

  • 30.

    Glynn, P. W. Some ecological consequences of coral-crustacean guard mutualisms in the Indian and Pacific Oceans. Symbiosis 4, 301–323 (1987).

    Google Scholar 

  • 31.

    Pratchett, M. S. Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Mar. Ecol. Prog. Ser. 214, 111–119 (2001).

    ADS  Article  Google Scholar 

  • 32.

    McKeon, C. S., Stier, A. C., McIlroy, S. E. & Bolker, B. M. Multiple defender effects: Synergistic coral defense by mutualist crustaceans. Oecologia 169, 1095–1103 (2012).

    ADS  PubMed  Article  Google Scholar 

  • 33.

    Weber, J. N. & Woodhead, P. M. Ecological studies of coral predator Acanthaster planci in South Pacific. Mar. Biol. 6, 12–17 (1970).

    Article  Google Scholar 

  • 34.

    Birkeland, C. & Lucas, J. S. Acanthaster planci: Major Management Problem of Coral Reefs (CRC Press, Boca Raton, 1990).

    Google Scholar 

  • 35.

    Lassig, B. R. Communication and coexistence in a coral community. Mar. Biol. 42, 85–92 (1977).

    Article  Google Scholar 

  • 36.

    Cowan, Z. L., Dworjanyn, S. A., Caballes, C. F. & Pratchett, M. S. Predation on crown-of-thorns starfish larvae by damselfishes. Coral Reefs 35, 1253–1262 (2016).

    ADS  Article  Google Scholar 

  • 37.

    Cowan, Z. L., Ling, S. D., Caballes, C. F., Dworjanyn, S. A. & Pratchett, M. S. Crown-of-thorns starfish larvae are vulnerable to predation even in the presence of alternative prey. Coral Reefs 39, 293–303 (2020).

    Article  Google Scholar 

  • 38.

    Bonin, M. C. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss. Coral Reefs 31, 287–297 (2012).

    ADS  Article  Google Scholar 

  • 39.

    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Global Change Biol. 12, 2220–2234 (2006).

    ADS  Article  Google Scholar 

  • 40.

    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes—Ecological and economic consequences. Oceanogr. Mar. Biol. Ann. Rev. 46, 257–302 (2008).

    Google Scholar 

  • 41.

    Pratchett, M. S., Thompson, C. A., Hoey, A. S., Cowman, P. F. & Wilson, S. K. Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In Coral Bleaching (eds. van Oppen, M. J. & Lough, J. M.) 265–293 (Springer, Berlin, 2018).

  • 42.

    Bernal, M. A. et al. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Sci. Adv. 6, eaay3423. https://doi.org/10.1126/sciadv.aay3423 (2020).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Magel, J. M., Dimoff, S. A. & Baum, J. K. Direct and indirect effects of climate change-amplified pulse heat stress events on coral reef fish communities. Ecol. Appl. https://doi.org/10.1002/eap.2124 (2020).

    Article  PubMed  Google Scholar 

  • 44.

    Booth, D. J. Opposing climate-change impacts on poleward-shifting coral-reef fishes. Coral Reefs 39, 577–581 (2020).

    Article  Google Scholar 

  • 45.

    Coker, D. J., Walker, S. P., Munday, P. L. & Pratchett, M. S. Social group entry rules may limit population resilience to patchy habitat disturbance. Mar. Ecol. Prog. Ser. 493, 237–242 (2013).

    ADS  Article  Google Scholar 

  • 46.

    Thompson, C. A., Matthews, S., Hoey, A. S. & Pratchett, M. S. Changes in sociality of butterflyfishes linked to population declines and coral loss. Coral Reefs 38, 527–537 (2019).

    ADS  Article  Google Scholar 

  • 47.

    Sano, M., Shimizu, M. & Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191–199 (1987).

    ADS  Article  Google Scholar 

  • 48.

    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Nat. Acad. Sci. USA 101, 8251–8253 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Feary, D. A., Almany, G. R., McCormick, M. I. & Jones, G. P. Habitat choice, recruitment and the response of coral reef fishes to coral degradation. Oecologia 153, 727–737 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 50.

    McCormick, M. I. Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc. R. Soc. B. 279, 3899–3904 (2012).

    PubMed  Article  Google Scholar 

  • 51.

    Coker, D. J., Pratchett, M. S. & Munday, P. L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 20, 1204–1210 (2009).

    Article  Google Scholar 

  • 52.

    Coker, D. J., Wilson, S. K. & Pratchett, M. S. of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).

    Article  Google Scholar 

  • 53.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Hobbs, J. P. & Allen, G. R. Habitat-use and specialisation among coral reef damselfishes. In Biology of Damselfishes (ed. Frederich, B. & Parmentier, E.) 84–121 (Taylor & Francis, London, 2016).

  • 54.

    Sale, P. F. Extremely limited home range in a coral reef fish, Dascyllus aruanus (Pisces, Pomacentridae). Copeia 1971, 324–327 (1971).

    Article  Google Scholar 

  • 55.

    Robertson, D. R. & Lassig, B. Spatial distribution patterns and coexistence of a group of territorial damselfishes from the Great Barrier Reef. Bull. Mar. Sci. 30, 187–203 (1980).

    Google Scholar 

  • 56.

    D’Agostino, D. et al. The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian Gulf. Coral Reefs 39, 733–744 (2019).

    Article  Google Scholar 

  • 57.

    Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).

    ADS  PubMed  Article  Google Scholar 

  • 58.

    Coker, D. J., Pratchett, M. S. & Munday, P. L. Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. J. Exp. Mar. Biol. Ecol. 414, 62–68 (2012).

    Article  Google Scholar 

  • 59.

    Chase, T. J., Pratchett, M. S., Frank, G. E. & Hoogenboom, M. O. Coral-dwelling fish moderate bleaching susceptibility of coral hosts. PLoS ONE 13, e0208545. https://doi.org/10.1371/journal.pone.0208545 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 50, 1487–1498 (2019).

    ADS  Article  CAS  Google Scholar 

  • 61.

    Wilson, S. K. et al. Maintenance of fish diversity on disturbed coral reefs. Coral Reefs 28, 3–14 (2009).

    ADS  Article  Google Scholar 

  • 62.

    Wilson, S. K., Robinson, J. P., Chong-Seng, K., Robinson, J. & Graham, N. A. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).

    ADS  Article  Google Scholar 

  • 63.

    Schmidt-Roach, S. et al. Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32, 161–172 (2013).

    ADS  Article  Google Scholar 

  • 64.

    Booth, D. J. & Beretta, G. A. Changes in a fish assemblage after a coral bleaching event. Mar. Ecol. Prog. Ser. 245, 205–212 (2002).

    ADS  Article  Google Scholar 

  • 65.

    Sano, M., Shimizu, M. & Nose, Y. Changes in structure of coral reef fish communities by destruction of hermatypic corals: Observational and experimental views. Pac. Sci. 38, 51–79 (1984).

    Google Scholar 

  • 66.

    Bonin, M. C., Munday, P. L., McCormick, M. I., Srinivasan, M. & Jones, G. P. Coral-dwelling fishes resistant to bleaching but not to mortality of host corals. Mar. Ecol. Prog. Ser. 394, 215–222 (2009).

    ADS  Article  Google Scholar 

  • 67.

    Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Booth, D. J. Larval settlement patterns and preferences by domino damselfish Dascyllus albisella Gill. J. Exp. Mar. Biol. Ecol. 155, 85–104 (1992).

    Article  Google Scholar 

  • 69.

    Sweatman, H. P. A. The influence of adults of some coral reef fishes on larval recruitment. Ecol. Monogr. 55, 469–485 (1985).

    Article  Google Scholar 

  • 70.

    Karplus, I., Katzenstein, R. & Goren, M. Predator recognition and social facilitation of predator avoidance in coral reef fish Dascyllus marginatus juveniles. Mar. Ecol. Prog. Ser. 319, 215–223 (2006).

    ADS  Article  Google Scholar 

  • 71.

    Forrester, G. E. Social rank, individual size and group composition as determinants of food consumption by humbug damselfish, Dascyllus aruanus. Anim. Behav. 42, 701–711 (1991).

    Article  Google Scholar 

  • 72.

    Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).

    Article  Google Scholar 

  • 73.

    Noonan, S. H., Jones, G. P. & Pratchett, M. S. Coral size, health and structural complexity: Effects on the ecology of a coral reef damselfish. Mar. Ecol. Prog. Ser. 456, 127–137 (2012).

    ADS  Article  Google Scholar 

  • 74.

    Holbrook, S. J. & Schmitt, R. J. Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83, 2855–2868 (2002).

    Article  Google Scholar 

  • 75.

    Turgeon, K. & Kramer, D. L. Immigration rates during population density reduction in a coral reef fish. PLoS ONE 11, e0156417. https://doi.org/10.1371/journal.pone.0156417 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Shpigel, M. & Fishelson, L. Behavior and physiology of coexistence in 2 species of Dascyllus (Pomacentridae, Teleostei). Environ. Biol. Fish. 17, 253–265 (1986).

    Article  Google Scholar 

  • 77.

    Wong, M. Y., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. R. Soc. B. 274, 1093–1099 (2007).

    PubMed  Article  Google Scholar 

  • 78.

    Hixon, M. A. & Carr, M. H. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).

    CAS  Article  Google Scholar 

  • 79.

    Almany, G. R. Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141, 105–113 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 80.

    Wilson, S. K. et al. Influence of nursery microhabitats on the future abundance of a coral reef fish. Proc. R. Soc. B. 283, 20160903. https://doi.org/10.1098/rspb.2016.0903 (2016).

    Article  PubMed  Google Scholar 

  • 81.

    Graham, N. A. J., McClanahan, T. R., MacNeil, M. A., Wilson, S. K. & Polunin, N. V. C. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS ONE 3, e3039. https://doi.org/10.1371/journal.pone.0003039 (2008).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Hing, M. L., Klanten, O. S., Dowton, M., Brown, K. R. & Wong, M. Y. Repeated cyclone events reveal potential causes of sociality in coral-dwelling Gobiodon fishes. PLoS ONE 13, e0202407. https://doi.org/10.1371/journal.pone.0202407 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Hughes, et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 84.

    Emslie, M. J., Pratchett, M. S. & Cheal, A. J. Effects of different disturbance types on butterflyfish communities of Australia’s Great Barrier Reef. Coral Reefs 30, 461–471 (2011).

    ADS  Article  Google Scholar 

  • 85.

    Buchanan, J. R. et al. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf. Mar. Poll. Bull. 105, 480–488 (2016).

    CAS  Article  Google Scholar 

  • 86.

    Pratchett, M. S. Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995–1999). Coral Reefs 24, 453–462 (2005).

    ADS  Article  Google Scholar 

  • 87.

    Pratchett, M. S. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).

    Google Scholar 

  • 88.

    Manly, B. F., McDonald, L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource selection by animals (Kluwer Academic Publishers, Dordrecht, 2010).

    Google Scholar 

  • 89.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme (2020).

  • 90.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org (2016).


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe